Slicing the hypercube is not easy

Amir Yehudayoff (Technion)

Gal Yehuda (Technion)

background

the Boolean hypercube can be embedded in Euclidean space

vertices: points $\{\pm 1\}^n$ edges: line segments [x, y]

etc.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

important, useful and interesting

question

how many hyperplanes are needed to slice all edges?

the edge [x, y] is sliced by $\langle z, v \rangle = \mu$ if

$$(\langle x, v \rangle - \mu)(\langle y, v \rangle - \mu) < 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

motivations

machine learning [O'Neil 70]

geometry [Grünbaum 72]

computational complexity [Håstad, Paturi-Saks 90, ...]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

upper bounds

two constructions of n hyperplanes:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is this optimal?!

upper bounds

Paterson: there are 5 hyperplanes in dimension 6

subadditivity: there are $\lceil \frac{5n}{6} \rceil$ hyperplanes in dimension *n*

lower bounds

O'Neil:

at least $\Omega(n^{0.5})$ hyperplanes are needed to slice all edges

Emamy-Khansary: at least 4 in dimension 4

Ahlswede-Zhang: at least n if entries are positive

Alon-Bergmann-Coppersmith-Odlyzko, Saks: at least $\frac{n}{2}$ if entries are ± 1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

main result

at least $\Omega(n^{0.57})$ hyperplanes are needed to slice all edges

application: threshold circuits for parity

threshold gates compute $x \mapsto sign(\langle x, v \rangle - \mu)$

threshold circuits are comprised of threshold gates

what is the minimum size of a threshold circuit for parity?

connection: the first layer yields a slicing family

application: threshold circuits for parity

O'Neil: size of first layer in any depth is $\Omega(n^{0.5})$

corollary: size of first layer in any depth is $\Omega(n^{0.57})$

Paturi-Saks, and Impagliazzo-P-S: number of wires in constant-depth

application: covering the cube

minimum number of hyperplanes needed to cover vertices?

what about skew (all entries non-zero) hyperplanes?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

application: covering the cube

minimum number of skew hyperplanes needed to cover?

Littlewood-Offord, Erdös: at least $\Omega(n^{0.5})$

better lower bounds in special cases

corollary: at least $\Omega(n^{0.57})$

reason: a skew covering family yields a slicing family

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

plan

every $k \le n^{0.57}$ hyperplanes must miss an edge

how to locate the missing edge?

```
randomness?
with n^{0.51} hyperplanes we can slice vast majority of edges
algebra?
topology?
geometry?
how to capture slicing?
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

part I: geometry

opening move

Tarski's plank problem: what is minimum total width of planks that are needed to cover a convex body?

opening move: Bang

Bang's theorem: if p_1, p_2, \ldots cover a convex K then

$$\sum_i \mathsf{width}(p_i) \ge \mathsf{width}(K)$$

Ball isolated the following (and used it...)

Bang's lemma: for all $k \times k$ symmetric matrices M with ones on diagonal and $\mu \in \mathbb{R}^k$ and $\theta \in \mathbb{R}$, there **exists** $\epsilon \in \{\pm 1\}^k$ so that for all $i \in [k]$,

$$|\theta(M\epsilon)_i - \mu_i| \ge \theta$$

part II: antichains

antichains of edges

if the entries in $v \in \mathbb{R}^n$ are positive then the set of edges that are sliced by $\langle z, v \rangle = \mu$ is an antichain

for every chain

$$(c_0, c_1), (c_1, c_2), \ldots, (c_{n-1}, c_n)$$

of edges with $c_0 = (-1, -1, ..., -1)$ and $c_n = (1, 1, ..., 1)$, there is at most a single edge (c_j, c_{j+1}) that is sliced

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

O'Neil's bound

theorem

the fraction of edges that are sliced by a hyperplane is $O(\frac{1}{\sqrt{n}})$

proof

the edges sliced by a hyperplane form an (oriented) antichain

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Baker proved that antichains are small

antichains of vertices

vertex antichain = no strict pairwise inclusions

```
identify \{\pm 1\}^n and \{0,1\}^n
```

Sperner's theorem:

the maximum size of an antichain is $\max_{\ell} {n \choose \ell} \leq O(\frac{2^n}{\sqrt{n}})$

fundamental in extremal set theory with many applications

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

antichains of vertices

the Lubell-Yamamoto-Meshalkin inequality:

if A is an antichain then

$$\sum_\ell rac{|\mathcal{A}_\ell|}{\binom{n}{\ell}} \leq 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

where $A_{\ell} = \{a \in A : |a| = \ell\}$

stronger and more useful than Sperner's theorem

generalizations

there are many ...

need: general products measures

Aizenman-Germinet-Klein-Warzel generlized Bernouli decomposition bound is not sharp

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

measures of antichains

theorem

for every non trivial product measure P on $\{0,1\}^n$ and for every antichain A

$$\Pr[z \in A] \le \max_{\ell} \Pr[|z| = \ell]$$

and

$$\sum_{\ell} \Pr[z \in A || z | = \ell] \leq 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

where $z \sim P$

generalizes both Sperner and LYM

what is special about product measures?

lemma

for every non trivial product measure P there is a way to choose a chain

$$\emptyset = c_0 \subset c_1 \subset c_2 \subset \cdots \subset c_n = [n]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

so that $c_\ell \sim P|\{\text{size} = \ell\}$ for all ℓ

our proof is technical

sketch

outline

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

summary

theorem

at least $\Omega(n^{0.57})$ hyperplanes are needed to slice all edges

main ideas

Bang's lemma

context for Sperner's theorem and LYM inequality strong anti-concentration for many scales structure of normal vectors rounding using linear algebra concentration of measure

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

part III: strong anti-concentration

・ロト・日本・ヨト・ヨー うへの

many scales

the vector $v \in \mathbb{R}^n$ has **many scales** if it can be partitioned to $v^{(1)}, v^{(2)}, \ldots, v^{(S)}$ with $S = n^{0.001}$ so that for all s

$$\|v^{(s+1)}\| \le \frac{\|v^{(s)}\|}{100}$$

the **minimum scale** of v is $\delta = \|v^{(S)}\|$

lemma

if v has many scales then for all a

$$\Pr_{x \sim \{\pm 1\}^n}[|\langle x, v \rangle - \mathsf{a}| < \mathsf{n}\delta] \le \exp(-\Omega(S))$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

part IV: structure

structure

arrange the normals as rows of $k \times n$ matrix V

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

part V: rounding

rounding

Bang's lemma:

 $\exists u \in \mathbb{R}^n$ with $||u||_{\infty} \leq 1$ so that $\langle u, v_i \rangle$ is far from μ_i for all i

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

need to round *u* to a vertex

lemma

there is $w \in \mathbb{R}^n$ so that

$$-\langle w, v_i \rangle = \langle u, v_i \rangle \text{ for all } i$$

$$- \|w\|_{\infty} \leq 1$$

 $-|w_i| = 1$ for at least n - k values of j

proof outline

let V be the matrix whose rows are the k normals

structure: write $v_i = (v'_i, v''_i)$

many scales: there is $x'' \sim \{\pm 1\}^{n''}$ so that for all i > k',

 $\langle x'', v_i'' \rangle$ is very far from μ_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

done with rows i > k'

chose $x'' \sim \{\pm 1\}^{n''}$ done with rows i > k'

for
$$i \leq k'$$
, set $\sigma_i = \mu_i - \langle x'', v''_i \rangle$

Bang's lemma: $\exists u \in \mathbb{R}^{n'}$ so that $||u||_{\infty} \leq 1$ and

 $\langle u, v'_i \rangle$ is far from σ_i for all $i \leq k'$

 $M = V' {V'}^T$ and $u = \theta V' \epsilon$ with $\epsilon \in \{\pm 1\}^{k'}$ and $\theta \approx n^{-0.01}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\exists u \in \mathbb{R}^{n'}$$
 so that $\|u\|_{\infty} \leq 1$ and $\langle u, v'_i
angle$ is far from σ_i for all $i \leq k'$

problems: *u* is not a vertex & need an edge

rounding: round u to an almost vertex w

choose $x' \sim P$ so that $\mathbb{E} x'_j = w_j$ for all j (at most k entries has randomness)

let y be a random^{*} neighbor of x = (x', x'')

chose [x, y] carefully at random

structure: most rows $i \leq k'$ have small norm

all columns have small norm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

chose [x, y] carefully at random

structure: most rows $i \leq k'$ have small norm

Bernstein: $\langle x', v_i \rangle$ is far from σ_i for most rows $i \leq k'$ $\mathbb{E}\langle x', v'_i \rangle = \langle w, v'_i \rangle = \langle u, v'_i \rangle$ is far from σ_i

done with most rows $i \leq k'$

measure of antichains: deal with the few final rows

done

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

thank you!