Slicing the hypercube is not easy

Amir Yehudayoff (Technion)
Gal Yehuda (Technion)

background

the Boolean hypercube can be embedded in Euclidean space
vertices: points $\{ \pm 1\}^{n}$
edges: line segments $[x, y]$
etc.

important, useful and interesting

question

how many hyperplanes are needed to slice all edges? the edge $[x, y]$ is sliced by $\langle z, v\rangle=\mu$ if

$$
(\langle x, v\rangle-\mu)(\langle y, v\rangle-\mu)<0
$$

motivations

machine learning [O'Neil 70]
geometry [Grünbaum 72]
computational complexity [Håstad, Paturi-Saks 90, ...]

upper bounds

two constructions of n hyperplanes:

is this optimal?!

upper bounds

Paterson: there are 5 hyperplanes in dimension 6
subadditivity: there are $\left\lceil\frac{5 n}{6}\right\rceil$ hyperplanes in dimension n

lower bounds

O'Neil:

at least $\Omega\left(n^{0.5}\right)$ hyperplanes are needed to slice all edges

Emamy-Khansary: at least 4 in dimension 4
Ahlswede-Zhang: at least n if entries are positive
Alon-Bergmann-Coppersmith-Odlyzko, Saks: at least $\frac{n}{2}$ if entries are ± 1

main result

at least $\Omega\left(n^{0.57}\right)$ hyperplanes are needed to slice all edges

application: threshold circuits for parity

threshold gates compute $x \mapsto \operatorname{sign}(\langle x, v\rangle-\mu)$
threshold circuits are comprised of threshold gates
what is the minimum size of a threshold circuit for parity?
connection: the first layer yields a slicing family

application: threshold circuits for parity

O'Neil: size of first layer in any depth is $\Omega\left(n^{0.5}\right)$
corollary: size of first layer in any depth is $\Omega\left(n^{0.57}\right)$

Paturi-Saks, and Impagliazzo-P-S: number of wires in constant-depth

application: covering the cube

minimum number of hyperplanes needed to cover vertices?
what about skew (all entries non-zero) hyperplanes?

application: covering the cube

minimum number of skew hyperplanes needed to cover?
Littlewood-Offord, Erdös: at least $\Omega\left(n^{0.5}\right)$
better lower bounds in special cases
corollary: at least $\Omega\left(n^{0.57}\right)$
reason: a skew covering family yields a slicing family

plan

every $k \leq n^{0.57}$ hyperplanes must miss an edge
how to locate the missing edge?
randomness?
with $n^{0.51}$ hyperplanes we can slice vast majority of edges
algebra?
topology?
geometry?
how to capture slicing?

part I: geometry

opening move

Tarski's plank problem: what is minimum total width of planks that are needed to cover a convex body?

opening move: Bang

Bang's theorem: if p_{1}, p_{2}, \ldots cover a convex K then

$$
\sum_{i} \operatorname{width}\left(p_{i}\right) \geq \text { width }(K)
$$

Ball isolated the following (and used it...)
Bang's lemma: for all $k \times k$ symmetric matrices M with ones on diagonal and $\mu \in \mathbb{R}^{k}$ and $\theta \in \mathbb{R}$, there exists $\epsilon \in\{ \pm 1\}^{k}$ so that for all $i \in[k]$,

$$
\left|\theta(M \epsilon)_{i}-\mu_{i}\right| \geq \theta
$$

part II: antichains

antichains of edges

if the entries in $v \in \mathbb{R}^{n}$ are positive then the set of edges that are sliced by $\langle z, v\rangle=\mu$ is an antichain
for every chain

$$
\left(c_{0}, c_{1}\right),\left(c_{1}, c_{2}\right), \ldots,\left(c_{n-1}, c_{n}\right)
$$

of edges with $c_{0}=(-1,-1, \ldots,-1)$ and $c_{n}=(1,1, \ldots, 1)$, there is at most a single edge $\left(c_{j}, c_{j+1}\right)$ that is sliced

O'Neil's bound

theorem

the fraction of edges that are sliced by a hyperplane is $O\left(\frac{1}{\sqrt{n}}\right)$

proof

the edges sliced by a hyperplane form an (oriented) antichain
Baker proved that antichains are small

antichains of vertices

vertex antichain $=$ no strict pairwise inclusions
identify $\{ \pm 1\}^{n}$ and $\{0,1\}^{n}$

Sperner's theorem:

the maximum size of an antichain is $\max _{\ell}\binom{n}{\ell} \leq O\left(\frac{2^{n}}{\sqrt{n}}\right)$
fundamental in extremal set theory with many applications

antichains of vertices

the Lubell-Yamamoto-Meshalkin inequality:
if A is an antichain then

$$
\sum_{\ell} \frac{\left|A_{\ell}\right|}{\binom{n}{\ell}} \leq 1
$$

where $A_{\ell}=\{a \in A:|a|=\ell\}$
stronger and more useful than Sperner's theorem

generalizations

there are many ...
need: general products measures

Aizenman-Germinet-Klein-Warzel generlized
Bernouli decomposition
bound is not sharp

measures of antichains

theorem

for every non trivial product measure P on $\{0,1\}^{n}$ and for every antichain A

$$
\operatorname{Pr}[z \in A] \leq \max _{\ell} \operatorname{Pr}[|z|=\ell]
$$

and

$$
\sum_{\ell} \operatorname{Pr}[z \in A| | z \mid=\ell] \leq 1
$$

where $z \sim P$
generalizes both Sperner and LYM

what is special about product measures?

lemma

for every non trivial product measure P there is a way to choose a chain

$$
\emptyset=c_{0} \subset c_{1} \subset c_{2} \subset \cdots \subset c_{n}=[n]
$$

so that $c_{\ell} \sim P \mid\{$ size $=\ell\}$ for all ℓ
our proof is technical
sketch

outline

randomness $\times 2$

summary

theorem

at least $\Omega\left(n^{0.57}\right)$ hyperplanes are needed to slice all edges

main ideas

Bang's lemma
context for Sperner's theorem and LYM inequality
strong anti-concentration for many scales
structure of normal vectors
rounding using linear algebra
concentration of measure
part III: strong anti-concentration

many scales

the vector $v \in \mathbb{R}^{n}$ has many scales if it can be partitioned to $v^{(1)}, v^{(2)}, \ldots, v^{(S)}$ with $S=n^{0.001}$ so that for all s

$$
\left\|v^{(s+1)}\right\| \leq \frac{\left\|v^{(s)}\right\|}{100}
$$

the minimum scale of v is $\delta=\left\|v^{(S)}\right\|$

lemma

if v has many scales then for all a

$$
\operatorname{Pr}_{x \sim\{ \pm 1\}^{n}}[|\langle x, v\rangle-a|<n \delta] \leq \exp (-\Omega(S))
$$

part IV: structure
structure
arrange the normals as rows of $k \times n$ matrix V

n^{\prime}	
SMALLEST SCALE	MANY
SCALES	

part V: rounding

rounding

Bang's lemma:

$\exists u \in \mathbb{R}^{n}$ with $\|u\|_{\infty} \leq 1$ so that $\left\langle u, v_{i}\right\rangle$ is far from μ_{i} for all i need to round u to a vertex

lemma

there is $w \in \mathbb{R}^{n}$ so that
$-\left\langle w, v_{i}\right\rangle=\left\langle u, v_{i}\right\rangle$ for all i
$-\|w\|_{\infty} \leq 1$
$-\left|w_{j}\right|=1$ for at least $n-k$ values of j

proof outline

let V be the matrix whose rows are the k normals

structure: write $v_{i}=\left(v_{i}^{\prime}, v_{i}^{\prime \prime}\right)$
many scales: there is $x^{\prime \prime} \sim\{ \pm 1\}^{n^{\prime \prime}}$ so that for all $i>k^{\prime}$,

$$
\left\langle x^{\prime \prime}, v_{i}^{\prime \prime}\right\rangle \text { is very far from } \mu_{i}
$$

done with rows $i>k^{\prime}$
chose $x^{\prime \prime} \sim\{ \pm 1\}^{n^{\prime \prime}}$ done with rows $i>k^{\prime}$

for $i \leq k^{\prime}$, set $\sigma_{i}=\mu_{i}-\left\langle x^{\prime \prime}, v_{i}^{\prime \prime}\right\rangle$
Bang's lemma: $\exists u \in \mathbb{R}^{n^{\prime}}$ so that $\|u\|_{\infty} \leq 1$ and

$$
\left\langle u, v_{i}^{\prime}\right\rangle \text { is far from } \sigma_{i} \text { for all } i \leq k^{\prime}
$$

$M=V^{\prime} V^{\prime T}$ and $u=\theta V^{\prime} \epsilon$ with $\epsilon \in\{ \pm 1\}^{k^{\prime}}$ and $\theta \approx n^{-0.01}$

$\exists u \in \mathbb{R}^{n^{\prime}}$ so that $\|u\|_{\infty} \leq 1$ and

$$
\left\langle u, v_{i}^{\prime}\right\rangle \text { is far from } \sigma_{i} \text { for all } i \leq k^{\prime}
$$

problems: u is not a vertex \& need an edge

rounding: round u to an almost vertex w
choose $x^{\prime} \sim P$ so that $\mathbb{E} x_{j}^{\prime}=w_{j}$ for all j (at most k entries has randomness)
let y be a random* neighbor of $x=\left(x^{\prime}, x^{\prime \prime}\right)$
chose $[x, y]$ carefully at random
structure: most rows $i \leq k^{\prime}$ have small norm all columns have small norm

chose $[x, y]$ carefully at random
structure: most rows $i \leq k^{\prime}$ have small norm

Bernstein: $\left\langle x^{\prime}, v_{i}\right\rangle$ is far from σ_{i} for most rows $i \leq k^{\prime}$
$\mathbb{E}\left\langle x^{\prime}, v_{i}^{\prime}\right\rangle=\left\langle w, v_{i}^{\prime}\right\rangle=\left\langle u, v_{i}^{\prime}\right\rangle$ is far from σ_{i}
done with most rows $i \leq k^{\prime}$

measure of antichains: deal with the few final rows
done
thank you!

