Average-Case Hardness of NP from Exponential Worst-Case Hardness Assumptions

Shuichi Hirahara
National Institute of Informatics, Tokyo, Japan
Full version: https://eccc.weizmann.ac.il/report/2021/058/
NII
Inter-University Research Institute Corporation /
Research Organization of Information and Systems
National Institute of Informatics

Overview

Main Theorem

$\mathrm{UP} \nsubseteq \operatorname{DTIME}\left(2^{o(n)}\right) \quad \Rightarrow \quad$ DistNP $\nsubseteq \operatorname{Avg} \mathrm{P}$

$>$ This was a long-standing open question with good reason.
> Standard proof techniques do not work!

- Hardness amplification procedure [Viola'05]
- Black-box reductions [Feigenbaum-Fortnow'93, Bogdanov-Trevisan'06]
> New proof techniques: analyzing average-case complexity by meta-complexity

Outline

1. Average-Case Complexity

2. Barrier Results
3. Our Results
4. Proof Techniques
5. Open Problems

Motivations of Average-Case Complexity

1. To understand the practical performance of algorithms.

Example: the Hamiltonian path problem (NP-complete)

- Cannot be solved in P (unless $\mathrm{P}=\mathrm{NP}$)
- Can be solved in expected linear time on an Erdős-Rényi random graph. [Gurevich \& Shelah (1987)]

2. To understand the security of cryptographic primitives.
$>$ One-way functions cannot exist unless NP is hard on average.

Basics of Average-Case Complextiy

[Levin'86],[Impagliazzo'95],[Ben-David, Chor, Goldreich \& Luby '92],[Bogdanov \& Trevisan'06],...

- A distributional problem $(L, \mathcal{D}) \quad L:\{0,1\}^{*} \rightarrow\{0,1\}$, a decision problem
$\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$, a family of (input) distributions
Polynomial-time samplable distribution
- $\operatorname{DistNP}=\{(L, \mathcal{D}) \mid L \in N P, \mathcal{D} \in P S a m p\}$ an average-case analogue of NP

Equivalent to errorless heuristic scheme

- $(L, \mathcal{D}) \in \operatorname{AvgP} \quad$ average-case polynomial-time
$\Leftrightarrow \quad \exists$ an algorithm A and \exists a time bound $t:\{0,1\}^{*} \rightarrow \mathbb{N}$ such that

1. $A(x)=L(x)$ for every x,
2. $A(x)$ runs in time $\leq t(x)$ for every x, and
3. $\mathbb{E}_{x \sim \mathcal{D}_{n}}\left[t(x)^{\epsilon}\right] \leq n^{O(1)}$ for some constant $\epsilon>0$.

Basics of Average-Case Complextiy

[Levin'86],[Impagliazzo'95],[Ben-David, Chor, Goldreich \& Luby '92],[Bogdanov \& Trevisan'06],...

- A distributional problem $(L, \mathcal{D}) \quad L:\{0,1\}^{*} \rightarrow\{0,1\}$, a decision problem
$\mathcal{D}=\left\{\mathcal{D}_{n}\right\}_{n \in \mathbb{N}}$, a family of (input) distributions
- $\operatorname{DistNP}=\{(L, \mathcal{D}) \mid L \in N P, \mathcal{D} \in \operatorname{PSamp}\} \quad$ an average-case analogue of NP
- $(L, \mathcal{D}) \in \operatorname{Avg}_{\mathrm{P}} \mathrm{P} \quad$ P-computable average-case polynomial-time
$\Leftrightarrow \quad \exists$ an algorithm A and \exists a time bound $t:\{0,1\}^{*} \rightarrow \mathbb{N}$ such that

1. $A(x)=L(x)$ for every x,
2. $A(x)$ runs in time $\leq t(x)$ for every x,
3. $\mathbb{E}_{x \sim \mathcal{D}_{n}}\left[t(x)^{\epsilon}\right] \leq n^{O(1)}$ for some constant $\epsilon>0$, and
4. t is computable in polynomial time.

Example: (HamiltonianPath, Erdős-Rényi) $\in \operatorname{Avg}_{P} P \subseteq \operatorname{Avg} P$

Hamiltonian Path

$>$ Let $G(n, p)$ denote the n-vertex Erdős-Rényi random graph with edge probability p.

Theorem [Alon \& Krivelevich 2020]

For every $p \geq \frac{1}{o(\sqrt{n})}, \quad($ HamiltonianPath, $G(n, p)) \in \operatorname{AvgP}$.

Proposition

For every $p \geq \frac{1}{o(\log n)}, \quad($ HamiltonianPath, $G(n, p)) \in \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$.

Big and Frontier Open Questions

Big Open Question

$$
\mathrm{NP} \neq \mathrm{P} \stackrel{?}{\Rightarrow} \quad \text { DistNP } \nsubseteq \mathrm{Avg} \mathrm{P}
$$

$>$ Equivalently: Can we rule out Heuristica? [Impagliazzo'95]
(a world where NP is hard in the worst case but easy on average)
Frontier Question

$$
\mathrm{UP} \nsubseteq \operatorname{DTIME}\left(2^{o(n)}\right) \stackrel{?}{\Rightarrow} \quad \operatorname{DistPH} \nsubseteq \mathrm{AvgP}
$$

> Difficulty: Any proof must bypass three barriers!
(1) "Impossibility" of hardness amplification, (2) limits of black-box reductions, and (3) relativization barriers

Complexity Classes

PSPACE : polynomial space

PH : polynomial(-time) hierarchy

NP : non-deterministic polynomial-time
UP : unambiguous polynomial-time
(solvable by a non-deterministic polynomial-time machine with at most one accepting path for each input.)

P: polynomial time
[Ko'85, Grollmann \& Selman'88]
$\mathrm{UP} \neq \mathrm{P} \Leftrightarrow$ There is a one-to-one one-way function that is hard to invert in the worst case.

Outline

1. Average-Case Complexity
2. Barrier Results
3. Our Results
4. Proof Techniques
5. Open Problems

(Worst-Case) Hardness Amplification

$>$ A general proof technique that shows a worst-case-to-average-case connection:

$$
\text { A worst-case hardness amplification procedure Amp }{ }^{(\cdot)} \text { maps }
$$

$f:\{0,1\}^{n} \rightarrow\{0,1\}$ to $\mathrm{Amp}^{f}:\{0,1\}^{m} \rightarrow\{0,1\}$ and satisfies
" f is worst-case hard $\Rightarrow \mathrm{Amp}^{f}$ is average-case hard"
$>$ There is a PSPACE-computable Amp ${ }^{(\cdot)}$. (e.g., [Sudan-Trevisan-Vadhan'01])
$>$ In particular, PSPACE $\neq \mathrm{P} \Leftrightarrow \operatorname{Dist}(\mathrm{PSPACE}) \nsubseteq \operatorname{Avg} \mathrm{P}$ [Kobler-Schuler'04]

"Impossibility" of Hardness Amplification

[Viola'05]

$>$ Can we prove "UP $\nsubseteq \operatorname{DTIME}\left(2^{0.99 n}\right) \Rightarrow \operatorname{DistPH} \nsubseteq$ AvgP" by constructing Amp ${ }^{f} \in \mathrm{PH}^{f}$?
No! (or at least very difficult) [Viola'05]

Theorem [Viola (CC'05)]

There is no Amp^{f} computable in PH^{f}
(if the relationship between f and Amp^{f} is proved by black-box reductions)

Theorem [Viola (CCC'05)]
If $\exists \mathrm{Amp}^{f} \in \mathrm{PH}^{f}$, then $\mathrm{P} \neq \mathrm{NP}$.
(The property of $\operatorname{Amp}^{f}: f \notin \operatorname{SIZE}\left(2^{0.99 n}\right) \Rightarrow \operatorname{Amp}^{f} \notin \operatorname{HeurSIZE}\left(n^{0(1)}\right)$)

(Black-Box) Reductions

> These are proved by black-box reductions:

$\forall L \in S Z K$, a reduction R^{A} solves L for any oracle A that solves some $\left(L^{\prime}, \mathcal{D}\right) \in \operatorname{DistNP}$.

Limits of Black-Box Reductions

$>$ Can we use a (black-box) reduction technique to prove "UP $\ddagger \operatorname{DTIME}\left(2^{o(n)}\right) \Longrightarrow$ DistNP $\nsubseteq \operatorname{AvgP} " ?$

Theorem [Feigenbaum \& Fortnow'93, Bogdanov \& Trevisan'06]

There is no nonadaptive black-box reduction showing
$" U P \nsubseteq \operatorname{DTIME}\left(2^{o(n)}\right) \Longrightarrow$ DistNP $\nsubseteq \operatorname{AvgP"}$
unless UP $\subseteq \operatorname{coNTIME}\left(2^{o(n)}\right) / 2^{o(n)}$.
$>$ We need to use either non-black-box or adaptive reductions!

Relativization Barriers

Theorem [Impagliazzo'11]

There is an oracle A such that $\mathrm{UP}^{A} \nsubseteq \operatorname{DTIME}^{A}\left(2^{n^{0.1}}\right)$ and $\operatorname{DistNP}^{A} \subseteq \operatorname{AvgP}^{A}$.
$>$ A relativizing proof technique cannot achieve the time bound of $2^{n^{0.1}}\left(\ll 2^{o(n)}\right)$.
$>$ Remark: Our proof is non-relativizing because a result of [Buhrman, Fortnow, Pavan'05] does not seem to relativize.

Outline

1. Average-Case Complexity
2. Barrier Results
3. Our Results
4. Proof Techniques
5. Open Problems

Our Results

Any proof of (1) must overcome the barrier results of [Viola] \& [Bogdanov-Trevisan].

Main Theorems

This rules out a variant of Heuristica

1) UP $\nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \quad{ }^{\circ} \quad$ DistNP \nsubseteq AvgP
(2) $\mathrm{PH} \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \quad \Rightarrow \quad$ DistPH $\nsubseteq \operatorname{Avg} \mathrm{P}$ (3) NP $\nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \quad \operatorname{DistNP} \nsubseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$

P-computable average-case polynomial-time
$>(1)$ and (2) resolve the frontier open question.
$>$ We also prove that DistPH $\ddagger \operatorname{Avg}_{\mathrm{P}} \mathrm{P} \Leftrightarrow$ DistPH \ddagger AvgP.

Our Results

Inverting a size-verifiable oneway function in the worst-case

Main Theorems (Stronge

The hard distribution is the uniform distribution U or the tally distribution \mathcal{T}.
(1) $\operatorname{NTIME}_{\text {sv }}\left(2^{n^{1-\delta}}\right) \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \operatorname{coNP} \times\{\mathcal{U}, \mathcal{T}\} \nsubseteq \operatorname{Avg}_{1-n^{-c}}^{1} \mathrm{P}$
(2) $\operatorname{PHTIME}\left(2^{n^{1-\delta}}\right) \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \Rightarrow \mathrm{PH} \times\{\mathcal{U}, \mathcal{T}\} \nsubseteq \operatorname{Avg}_{1-n^{-c}}^{1} \mathrm{P}$
(3) $\operatorname{NTIME}\left(2^{n^{1-\delta}}\right) \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \mathrm{NP} \times\{\mathcal{U}, \mathcal{T}\} \nsubseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$
$2^{n^{1-\delta}}$-time version of NP
One-sided-error heuristics with success probability n^{-c}.

A candidate that witnesses NP $\nsubseteq \operatorname{DTIME}\left(2^{o(n)}\right)$

$>$ 3SAT is not a candidate: 3 SAT $\in \operatorname{NP} \cap \operatorname{DTIME}\left(2^{O(n / \log n)}\right)$.
An m-clause 3CNF on $O(m)$ variables is encoded by $n=O(m \log m)$ bits and can be solved in time $2^{O(m)}=2^{O(n / \log n)}$.
$>$ DNF-MCSP is an NP-complete problem conjectured to be outside DTIME (2on $2^{o(n)}$.

Corollary (of the Main Theorems)

DNF-MCSP $\notin \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow \operatorname{DistNP} \nsubseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$ \& DistPH $\nsubseteq \operatorname{Avg} \mathrm{P}$.
$>$ This is the first result connecting average-case hardness of NP and worst-case hardness of NP-complete problems.

Minimum Circuit Size Problem (MCSP)

[Kabanets \& Cai '00]

Input

- The truth table of a Boolean function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

- A size parameter $s \in \mathbb{N}$

Example truthtable $\left(\oplus_{2}\right)=0110$

Output

Is there a circuit of size $\leq s$ computing f.

$$
\operatorname{size}\left(\oplus_{2}\right)=3
$$

> MCSP is a meta-computational problem.
MCSP $=$ "the problem of computing the circuit complexity of f "

Minimum DNF Size Problem (DNF-MCSP)

Input

- The truth table of a Boolean function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

- A size parameter $s \in \mathbb{N}$

Output

Is there a DNF formula of size $\leq s$ computing f.

$$
x_{1} \oplus x_{2}=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right)
$$

```
DNFsize( }\mp@subsup{\oplus}{2}{})=
```

Theorem [Masek'79]: DNF-MCSP is NP-complete.
Theorem [H.-Oliveira-Santhanam'18]: (DNF o XOR)-MCSP is NP-complete.
Theorem [llango'20]: AC^{0} formula-MCSP is NP-complete.
$>$ The fastest algorithm is an exhaustive search running in time $2^{O(N)}$ on input length $N=2^{n}$.
$>$ It is reasonable to conjecture that \mathcal{C} - $\operatorname{MCSP} \notin \operatorname{DTIME}\left(2^{o(N)}\right)$.

Minimum DNF Size Problem (DNF-MCSP)

Corollary (of the Main Theorems)

\mathcal{C}-MCSP $\notin \operatorname{DTIME}\left(2^{O(N / \log N)}\right) \Rightarrow$ DistNP \nsubseteq Avg $_{\mathrm{P}} \mathrm{P}$ and DistPH \nsubseteq AvgP.

$$
x_{1} \oplus x_{2}=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(\neg x_{1} \wedge x_{2}\right)
$$

Example

truthtable $\left(\oplus_{2}\right)=0110$

$$
\operatorname{DNFsize}\left(\oplus_{2}\right)=4
$$

Theorem [Masek'79]: DNF-MCSP is NP-complete.
Theorem [H.-Oliveira-Santhanam'18]: (DNF o XOR)-MCSP is NP-complete.
Theorem [llango'20]: AC ${ }^{0}$ formula-MCSP is NP-complete.
$>$ The fastest algorithm is an exhaustive search running in time $2^{O(N)}$ on input length $N=2^{n}$.
$>$ It is reasonable to conjecture that \mathcal{C}-MCSP $\notin \operatorname{DTIME}\left(2^{o(N)}\right)$.

Outline

1. Average-Case Complexity
2. Barrier Results
3. Our Results
4. Proof Techniques
5. Open Problems

Meta-Complexity - Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

```
MINKT [Ko'91] = "Compute the time-bounded Kolmogorov complexity"
```

- t-time-bounded Kolmogorov complexity of x $\mathrm{K}^{t}(x):=$ (the length of a shortest program that prints x in t steps)
- $\operatorname{MINKT}=\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t}(x) \leq s\right\}$.

Meta-Complexity - Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

$$
\text { MINKT }^{A}\left[\mathrm{Ko'}^{\prime} 91\right]=\text { "Compute the } A \text {-oracle time-bounded Kolmogorov complexity" }
$$

- A-oracle t-time-bounded Kolmogorov complexity of x $\mathrm{K}^{t, A}(x):=$ (the length of a shortest program M^{A} that prints x in t steps)
- $\operatorname{MINKT}^{A}=\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t, A}(x) \leq s\right\}$.

Remark: In general, we may have $A \ddagger_{m}^{p}$ MINKT A.
It is easy to see MINKT ${ }^{A} \in \mathrm{NP}^{A}$.

Average-Case Complexity $=$ Meta-Complexity

Theorem [H. (FOCS'20)]

DistPH $\subseteq \operatorname{AvgP} \quad \Leftrightarrow \quad$ GapMINKT ${ }^{\text {PH }} \in P$

$>$ GapMINKT A : an $O(\log n)$-additive approximation version of MINKT ${ }^{A}$.
$>$ Corollary: A new technique of analyzing average-case complexity by meta-complexity.

Theorem [H. STOC'21]

$$
\text { (2') NP } \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \Rightarrow \text { DistPH } \nsubseteq \operatorname{AvgP}
$$

Universal Heuristic Scheme - A key notion in this work

$>$ A universal heuristic scheme is "universal" in the following sense.

Proposition (universality of universal heuristic schemes)

Assume DistNP \subseteq AvgP.

For every $L:\{0,1\}^{*} \rightarrow\{0,1\}$, the following are equivalent.

1. There is a universal heuristic scheme for L.
2. $\{L\} \times \mathrm{PSamp} \subseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$.

The Definition of Universal Heuristic Scheme

$>$ Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

$$
\operatorname{cd}^{t}(x):=\mathrm{K}^{t}(x)-\mathrm{K}^{\infty}(x)
$$

$>(t, s)$-Time-Bounded Computational Depth

$$
\operatorname{cd}^{t, s}(x):=\mathrm{K}^{t}(x)-\mathrm{K}^{s}(x)
$$

$>$ An algorithm A is called a universal heuristic scheme for L if for some polynomial p,
(Simplified, weak definition)

1. $A(x, t)=L(x)$ and
2. $A(x, t)$ halts in time $2^{O\left(\mathrm{~cd}^{t, p(t)}(x)+\log t\right)}$ for all large $t \in \mathbb{N}$.

The Definition of Universal Heuristic Scheme

$>$ Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

$$
\operatorname{cd}^{t}(x):=\mathrm{K}^{t}(x)-\mathrm{K}^{\infty}(x)
$$

$>(t, s)$-Time-Bounded Computational Depth

$$
\operatorname{cd}^{t, s}(x):=\mathrm{K}^{t}(x)-\mathrm{K}^{s}(x)
$$

\Rightarrow A pair (C, S) of algorithms is called a universal heuristic scheme for L if for some polynomial p, for every $t \geq p(n)$ and every $x \in\{0,1\}^{n}$,

$$
\text { 1. } \operatorname{cd}^{t, p(t)}(x) \leq k \Rightarrow C(x, t, k)=1
$$

2. $C(x, t, k)=1 \Rightarrow S(x, t, k)=L(x)$
3. C runs in time poly (t) and S runs in time poly $\left(t, 2^{k}\right)$.
C : checker, S : solver

Theorem [H. STOC'21]

(2') NP $\nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \Rightarrow$ DistPH $\nsubseteq \operatorname{AvgP}$

Fast Algorithms from Universal Heuristic Schemes

Lemma

If there is some universal heuristic scheme A for L, then

$$
L \in \operatorname{DTIME}\left(2^{O(n / \log n)}\right)
$$

Proof Idea: Find a parameter t so that the input x is "computationally shallow" (i.e., $\mathrm{cd}^{t, p(t)}(x)=O(n / \log n)$). Proof: Consider the following telescoping sum for a parameter $I=\epsilon \log n(\epsilon>0$, constant):

$$
\begin{aligned}
& \operatorname{cd}^{t, p(t)}(x)+\operatorname{cd}^{p(t), p \circ p(t)}(x)+\cdots+\operatorname{cd}^{p^{I-1}(t), p^{I}(t)}(x)=\mathrm{K}^{t}(x)-\mathrm{K}^{p^{I}(t)}(x) \leq n+O(1) \\
& \Rightarrow \text { for some } i \in\{1,2, \ldots, I\}, \text { we have } \mathrm{cd}^{p^{i-1}(t), p^{i}(t)}(x) \leq \frac{n+O(1)}{I}=O\left(\frac{n}{\log n}\right) .
\end{aligned}
$$

Algorithm B :
Run $A(x, t), A(x, p(t)), A\left(x, p^{2}(t)\right), \ldots, A\left(x, p^{I-1}(t)\right)$ in parallel. Take the first one that halts, and output what it outputs.

Correctness: $B(x)=L(x)$ for every input x.

A universal heuristic scheme A for $L: \exists p(t)=t^{O(1)}$,

1. $A(x, t)=L(x)$
2. $A(x, t)$ runs in time $2^{o\left(\mathrm{~cd}^{t, p(t)}(x)+\log t\right)}$.
(The running time of $B) \lesssim \min _{i}\left\{2^{o\left(\operatorname{cd}^{p^{i-1}(t), p^{i}(t)}(x)+\log p^{i}(t)\right)}\right\} \leq 2^{O(n / \log n)}$

$$
\left(p^{I}(t) \lesssim n^{c^{I}} \leq 2^{O(n / \log n)} \text { for } I=\epsilon \log n\right)
$$

Theorem [H. STOC'21]

(2') $\operatorname{NP} \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \Rightarrow$ DistPH $\nsubseteq \operatorname{AvgP}$

Average-Case Complexity

Worst-Case Meta-Complexitry

Constructing Universal Heuristics

Lemma [H. STOC'21]

GapMINKT ${ }^{\text {NP }} \in \mathrm{P} \Rightarrow \forall L \in$ NP admits a universal heuristic scheme.

[H. FOCS'20]

$\operatorname{GapMINKT}^{\text {NP }} \in \mathrm{P} \Leftrightarrow \operatorname{Gap}\left(\mathrm{K}^{\mathrm{NP}}\right.$ vs K$) \in \mathrm{P}$

The Gap($\mathrm{K}^{\text {NP }}$ vs K) Problem [H. CCC'20]

A harder problem, but equivalent.

$$
\begin{aligned}
\Pi_{\mathrm{Yes}} & =\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t, \mathrm{NP}}(x) \leq s\right\} \\
\Pi_{\mathrm{No}} & =\left\{\left(x, 1^{t}, 1^{s}\right) \mid \mathrm{K}^{p(|x|+t)}(x)>s+\log p(|x|+t)\right\}
\end{aligned}
$$

(p : some polynomial)

Lemma [H. STOC'21]

$\operatorname{Gap}\left(\mathrm{K}^{\mathrm{NP}}\right.$ vs K$) \in \mathrm{P} \Rightarrow \forall L \in \mathrm{NP}$ admits a universal heuristic scheme.
$>$ Main Tool: k-wise direct product generator $[$. STOC'20] $\mathrm{DP}_{k}(y ; z)=\left(z_{1}, \ldots, z_{k}, \operatorname{Enc}(y)_{z_{1}}, \ldots, \operatorname{Enc}(y)_{z_{k}}\right)$

A pseudorandom generator construction based on a "hard" truth table y

Enc(•): an arbitrary list-decodable error correcting code (e.g., Hadamard code)

$$
\mathrm{DP}_{k}(y ; Z)=(Z, Z y) \text {, where } Z \in \mathrm{GF}(2)^{k \times n} \text { and } y \in \mathrm{GF}(2)^{n} \text { for Hadamard code. }
$$

Reconstruction Algorithm $R^{(\cdot)}$ of DP_{k} :
Given any D that ϵ-distinguishes $\mathrm{DP}_{k}(y ; \cdot)$ from the uniform distribution, there exists an advice string $\alpha \in\{0,1\}^{k+O(\log n)}$ such that $R^{D}(\alpha)=y$.

$$
\text { Key Point: (The advice complexity of } \left.\mathrm{DP}_{k}\right)=k+O(\log n)
$$

Lemma [H. STOC'21]

$\operatorname{Gap}\left(\mathrm{K}^{\mathrm{NP}}\right.$ vs K$) \in \mathrm{P} \Rightarrow \forall L \in \mathrm{NP}$ admits a universal heuristic scheme.
$>$ Let y_{x} be the lexicographically first certificate for $x \in L$, if any. - Want to distinguish $\operatorname{DP}_{k}\left(y_{x} ; z\right)$ from $w \sim\{0,1\}^{|z|+k}$

$$
\begin{aligned}
& \mathrm{K}^{2 t, \mathrm{NP}}\left(x, \mathrm{DP}_{k}\left(y_{x} ; z\right)\right) \leq \mathrm{K}^{t}(x)+|z|+O(\log n) \underbrace{\mathrm{K}^{p(2 t)}(x, w) \geq \mathrm{K}^{q(p(2 t))}(x)+|w|-O(\log n)}_{\begin{array}{c}
\text { Weak symmetry of } \\
\text { information }
\end{array}} \begin{array}{l}
\text { o. } \begin{array}{l}
\text { with high prob. over } w \sim\{0,1\}^{|z|+k}
\end{array} \\
|z|+k
\end{array}
\end{aligned}
$$

If $k \geq \mathrm{K}^{t}(x)-\mathrm{K}^{q(p(2 t))}(x)+O(\log n)=\operatorname{cd}^{t, q \circ p(2 t)}(x)+O(\log n)$, then we get $\mathrm{K}^{p(2 t)}(\underbrace{(x, w)}_{\Pi_{\mathrm{No}}} \gg \mathrm{K}^{2 t, \mathrm{NP}}(\underbrace{x, \mathrm{DP}_{k}\left(y_{x} ; z\right)}_{\Pi_{\mathrm{Yes}}})$.

$$
\Pi_{\text {No }} \quad \Pi_{\mathrm{Yes}} \text { Can be distinguished using Gap }\left(\mathrm{K}^{\mathrm{NP}} \text { vs K) } \in \mathrm{P}\right.
$$

Lemma [H. STOC'21]

$\operatorname{Gap}\left(\mathrm{K}^{\mathrm{NP}}\right.$ vs K$) \in \mathrm{P} \Rightarrow \forall L \in \mathrm{NP}$ admits a universal heuristic scheme.

$>$ Let M be a poly-time algorithm for $\operatorname{Gap}\left(\mathrm{K}^{\mathrm{NP}}\right.$ vs K)

Universal heuristic scheme $(C, S)^{\circ}$ for L

- Input: $x \in\{0,1\}^{n}, t \in \mathbb{N}, k \in \mathbb{N}$
- Define $D_{x}(w):=M\left(x w, 1^{2 t}, 1^{s}\right)$ for some threshold s.
- Checker C accepts iff $\underset{w}{\operatorname{Pr}}\left[D_{x}(w)=1\right] \leq \frac{1}{4}$.
- Solver S computes a list $Y:=\left\{R^{D_{x}}(\alpha) \mid \alpha \in\{0,1\}^{k+O(\log n)}\right\}$ and

Randomized algorithm, but can be derandomized using [Buhrman-Fortnow-Pavan'05] accepts iff $\exists y \in Y$ is a certificate for $x \in L$.

Correctness of $C: \operatorname{cd}^{t, q \circ p(2 t)}(x) \leq k-O(\log n) \Rightarrow\left(x w, 1^{2 t}, 1^{s}\right) \in \Pi_{\mathrm{No}}$ w.h.p. $\Rightarrow C$ accepts.
Correctness of S : C accepts $\Rightarrow D_{x}$ distinguishes $\mathrm{DP}_{k}\left(y_{x} ; \cdot\right)$ from $w \Rightarrow y_{x} \in Y$ (if any).

Theorem [H. STOC'21]

(2') $\operatorname{NP} \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \Rightarrow$ DistPH $\nsubseteq \operatorname{AvgP}$

How we overcame limits of black-box reductions

Let $p(n)$ be the
runtime of AvgP.

DistPH \subseteq AvgP

$\xrightarrow{\left[\mathrm{H} . \text { FOCS' }^{\prime} 18, \text { CCC' }^{20]}\right.}$ GapMINKT ${ }^{\text {NP }} \in \mathrm{P}$

[H. STOC'21] based on [H. ITCS'20, STOC'20]

$>$ The reduction is non-black-box because we exploit the efficiency of AvgP. i.e., the proof is not subject to the barrier of [Bogdanov \& Trevisan'06].

How we overcame [Viola'05]

> One can regard our proof as a "hardness amplification procedure Amp ${ }^{(\cdot) "}$ in a sense, but Amp ${ }^{f}:\{0,1\}^{*} \rightarrow\{0,1\}$ must be defined on all input lengths.

$>$ [Viola'05]'s proof techniques can be applied only when Amp ${ }^{f}:\{0,1\}^{m} \rightarrow\{0,1\}$.
(Extending it to $\{0,1\}^{*}$ would resolve $\mathrm{P} \neq \mathrm{NP}$.)

Proof Ideas for other results

Main Theorems

(1) UP $\ddagger \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \quad \Rightarrow \quad$ DistNP $\nsubseteq \operatorname{Avg} \mathrm{P}$

Already explained
(2) $\mathrm{PH} \nsubseteq \operatorname{DTIME}\left(2^{O(n / \log n)}\right) \quad \Rightarrow \quad$ DistPH $\nsubseteq \mathrm{Avg} \mathrm{P}$
(3) $\operatorname{NP} \nsubseteq \operatorname{DTIME}\left(2^{o(n / \log n)}\right) \quad \Rightarrow \quad$ DistNP $\nsubseteq \operatorname{Avg}_{\mathrm{P}} \mathrm{P}$

Proof Ideas for other results

Main Lemmas
 "Algorithmic language compression" that generalizes [H. FOCS'18, CCC'20]

(1) $\forall L \in$ UP has universal heuristic schemes if DistNP \subseteq AvgP.
(2) $\forall L \in P H$ has universal heuristic schemes if DistPH \subseteq AvgP.
(3) $\forall L \in N P$ has universal heuristic schemes if $\operatorname{DistNP} \subseteq \operatorname{Avg}_{P} P$.

[^0]
Why UP?

If $\left(L_{1}, \mathcal{U}\right) \in \operatorname{AvgP}$, then $\left(\Pi_{\mathrm{Yes}}, \Pi_{\mathrm{No}}\right) \in$ promise-P, where

$$
\Pi_{\mathrm{Yes}}:=L_{0}, \Pi_{\mathrm{No}}:=\left\{x \mid \mathrm{K}^{p(t)}(x) \geq \log \# L_{0}+\log p(t)\right\}
$$

$>$ Consider a language $L \in \mathrm{UP}$ and a verifier V for L.

$$
\begin{aligned}
& x \in L \Longrightarrow \exists!y, V(x, y)=1 \\
& x \notin L \Longrightarrow \forall y, V(x, y)=0
\end{aligned}
$$

$>$ A hard distributional problem $\left(L_{1}, U\right)$ in DistNP is (roughly) as follows.

$$
\begin{aligned}
L_{0} & :=\left\{\left(x \mathrm{DP}_{k}(y ; z), 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t}(x) \leq s, V(x, y)=1\right\} \\
& =\text { "Algorithmic language compression" } \\
L_{1} & :=\left\{\left(\mathrm{DP}_{\ell}\left(w ; z^{\prime}\right), 1^{t}, 1^{s}\right) \mid\left(w, 1^{t}, 1^{s}\right) \in L_{0}\right\} \\
& :=\left\{\left(\mathrm{DP}_{\ell}\left(x \mathrm{DP}_{k}(y ; z) ; z^{\prime}\right), 1^{t}, 1^{s}\right) \mid \mathrm{K}^{t}(x) \leq s, V(x, y)=1\right\} \in \mathrm{NP}
\end{aligned}
$$

$>$ We exploit the property that

$$
\#\left\{(x, y) \mid \mathrm{K}^{t}(x) \leq s, V(x, y)=1\right\} \leq 2^{s+1} . \circ
$$

Summary and Open Questions

> Meta-complexity is a powerful tool to analyze average-case complexity.
$>$ A lot of interesting questions remain open:

- Can we prove NP $\ddagger \operatorname{DTIME}\left(2^{o(n)}\right) \Longrightarrow$ DistNP \nsubseteq AvgP?
- Does the exponential-time hypothesis (ETH) imply DistPH \nsubseteq AvgP?
- Can we prove PH \ddagger io-DTIME $\left(2^{o(n)}\right) \Rightarrow$ DistPH \nsubseteq io-AvgP?

Viola's barrier comes into play in this setting!

- Can our results relativize?

Subsequent Work

Theorem [H. and Nanashima]

There exists an oracle A such that

$$
\operatorname{DistPH}^{A} \subseteq \operatorname{AvgP}^{A} \text { and } \mathrm{UP}^{A} \cap \operatorname{coUP}{ }^{A} \nsubseteq \operatorname{DTIME}\left(2^{n / \omega(\log n)}\right) .
$$

$>$ Surprisingly, our time bound $2^{O(n / \log n)}$ is nearly optimal for relativizing proof techniques.

[^0]: "Universality" of universal heuristic schemes
 Based on the ideas of [Antunes \& Fortnow '09]

