Average-Case Hardness of NP from Exponential Worst-Case Hardness Assumptions

Shuichi Hirahara

National Institute of Informatics, Tokyo, Japan

Full version: https://eccc.weizmann.ac.il/report/2021/058/

Inter-University Research Institute Corporation / Research Organization of Information and Systems

National Institute of Informatics

@Oxford Warwick complexity meetings

> This was a long-standing open question with good reason.

Standard proof techniques do not work!

- Hardness amplification procedure [Viola'05]
- Black-box reductions [Feigenbaum-Fortnow'93, Bogdanov-Trevisan'06]

> New proof techniques: analyzing **average-case complexity** by **meta-complexity**

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

Motivations of Average-Case Complexity

1. To understand the practical performance of algorithms.

Example: the Hamiltonian path problem (NP-complete)

- Cannot be solved in P (unless P = NP)
- Can be solved in expected linear time on an Erdős–Rényi random graph. [Gurevich & Shelah (1987)]
- 2. To understand the security of cryptographic primitives.
 - > One-way functions cannot exist unless NP is hard on average.

Basics of Average-Case Complexity

[Levin'86], [Impagliazzo'95], [Ben-David, Chor, Goldreich & Luby '92], [Bogdanov & Trevisan'06],...

• A <u>distributional problem</u> (L, D) $L: \{0,1\}^* \rightarrow \{0,1\}, a$ decision problem

 $\mathcal{D} = \{\mathcal{D}_n\}_{n \in \mathbb{N}}$, a family of (input) distributions

Polynomial-time samplable distribution

• DistNP = { $(L, D) | L \in NP, D \in PSamp$ } an average-case analogue of NP

Equivalent to *errorless heuristic scheme*

- $(L, D) \in AvgP$ average-case polynomial-time
 - \Leftrightarrow \exists an algorithm *A* and \exists a time bound $t: \{0,1\}^* \rightarrow \mathbb{N}$ such that

1. A(x) = L(x) for every x,

- *2.* A(x) runs in time $\leq t(x)$ for every x, and
- *3.* $\mathbb{E}_{x \sim \mathcal{D}_n}[t(x)^{\epsilon}] \leq n^{O(1)}$ for some constant $\epsilon > 0$.

Basics of Average-Case Complexity

[Levin'86], [Impagliazzo'95], [Ben-David, Chor, Goldreich & Luby '92], [Bogdanov & Trevisan'06],...

- A <u>distributional problem</u> (L, D) $L: \{0,1\}^* \to \{0,1\}$, a decision problem $D = \{D_n\}_{n \in \mathbb{N}}$, a family of (input) distributions
- DistNP = { $(L, D) | L \in NP, D \in PSamp$ } an average-case analogue of NP
- $(L, D) \in Avg_P P$ P-computable average-case polynomial-time
 - \Leftrightarrow \exists an algorithm *A* and \exists a time bound $t: \{0,1\}^* \rightarrow \mathbb{N}$ such that
 - 1. A(x) = L(x) for every x,
 - 2. A(x) runs in time $\leq t(x)$ for every x,
 - 3. $\mathbb{E}_{x \sim \mathcal{D}_n}[t(x)^{\epsilon}] \leq n^{O(1)}$ for some constant $\epsilon > 0$, and
 - 4. t is computable in polynomial time.

<u>Example</u>: (HamiltonianPath, Erdős–Rényi) \in Avg_PP \subseteq AvgP

Hamiltonian Path

> Let G(n, p) denote the *n*-vertex Erdős–Rényi random graph with edge probability *p*.

Theorem[Alon & Krivelevich 2020]For every $p \ge \frac{1}{o(\sqrt{n})}$,(HamiltonianPath, G(n, p)) \in AvgP.

Proposition

For every
$$p \ge \frac{1}{O(\log n)}$$
, (HamiltonianPath, $G(n, p)$) $\in Avg_PP$.

Big and Frontier Open Questions

Big Open Question

$$\begin{array}{c} ?\\ NP \neq P \implies \\ DistNP \not\subseteq AvgP \end{array}$$

Equivalently: Can we rule out Heuristica? [Impagliazzo'95] (a world where NP is hard in the worst case but easy on average) Frontier Question

$$UP \not\subseteq DTIME(2^{o(n)}) \xrightarrow{?} DistPH \not\subseteq AvgP$$

Difficulty: Any proof must bypass three barriers!

(1) "Impossibility" of hardness amplification, (2) limits of black-box reductions, and (3) relativization barriers

Complexity Classes

[Ko'85, Grollmann & Selman'88]

PSPACE : polynomial space

PH: polynomial(-time) hierarchy

NP: non-deterministic polynomial-time

UP: unambiguous polynomial-time

(solvable by a non-deterministic polynomial-time machine with at most one accepting path for each input.)

P: polynomial time

 $UP \neq P \iff$ There is a one-to-one one-way function that is hard to invert in the worst case.

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

(Worst-Case) Hardness Amplification

A general proof technique that shows a worst-case-to-average-case connection:

> A <u>worst-case hardness amplification procedure</u> $Amp^{(\cdot)}$ maps $f: \{0,1\}^n \to \{0,1\}$ to $Amp^f: \{0,1\}^m \to \{0,1\}$ and satisfies "f is worst-case hard $\Longrightarrow Amp^f$ is average-case hard"

- > There is a PSPACE-computable $Amp^{(\cdot)}$. (e.g., [Sudan-Trevisan-Vadhan'01])
- > In particular, PSPACE ≠ P ⇔ Dist(PSPACE) \nsubseteq AvgP [Kobler-Schuler'04]

"Impossibility" of Hardness Amplification [Viola'05]

Can we prove "UP ⊈ DTIME(2^{0.99n}) ⇒ DistPH ⊈ AvgP" by constructing Amp^f ∈ PH^f?
No! (or at least very difficult) [Viola'05]

Theorem [Viola (CC'05)]

There is no Amp^f computable in PH^f

(if the relationship between f and Amp^{f} is proved by black-box reductions)

Theorem [Viola (CCC'05)]

If $\exists \operatorname{Amp}^{f} \in \operatorname{PH}^{f}$, then $P \neq \operatorname{NP}$. (The property of $\operatorname{Amp}^{f}: f \notin \operatorname{SIZE}(2^{0.99n}) \Longrightarrow \operatorname{Amp}^{f} \notin \operatorname{HeurSIZE}(n^{O(1)})$)

(Black-Box) Reductions

[Ajtai'96,...]

Theorems: <

- [Ostrovsky'91,Hastad-Impagliazzo-Levin-Luby'99,...,H.'18]
- GapSVP \notin BPP \Rightarrow DistNP \nsubseteq HeurBPP [SZK \neq P \Rightarrow DistNP \nsubseteq AvgP [Ostro] NP \nsubseteq DTIME $(2^{O(n)}) \Rightarrow$ DistNP \nsubseteq AvgP

[Ben-David, Chor, Goldreich & Luby '92]

 $\forall L \in SZK$, a reduction R^A solves L for any oracle A that solves some $(L', \mathcal{D}) \in DistNP$.

Limits of Black-Box Reductions

➤ Can we use a (black-box) reduction technique to prove "UP ⊈ DTIME(2^{o(n)}) ⇒ DistNP ⊈ AvgP"?
No!

Theorem [Feigenbaum & Fortnow'93, Bogdanov & Trevisan'06]

There is no nonadaptive black-box reduction showing "UP \nsubseteq DTIME $(2^{o(n)}) \Rightarrow$ DistNP \nsubseteq AvgP" unless UP \subseteq coNTIME $(2^{o(n)})/2^{o(n)}$.

> We need to use either non-black-box or adaptive reductions!

Relativization Barriers

Theorem [Impagliazzo'11]

There is an oracle A such that $UP^A \not\subseteq DTIME^A(2^{n^{0.1}})$ and $DistNP^A \subseteq AvgP^A$.

- > A relativizing proof technique cannot achieve the time bound of $2^{n^{0.1}} (\ll 2^{o(n)})$.
- <u>Remark</u>: Our proof is non-relativizing because a result of [Buhrman, Fortnow, Pavan'05] does not seem to relativize.

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

> (1) and (2) resolve the frontier open question.

> We also prove that DistPH \nsubseteq Avg_PP ⇔ DistPH \nsubseteq AvgP.

Our Results

The hard distribution is Inverting a size-verifiable one-Main Theorems (Stronge the uniform distribution \mathcal{U} way function in the worst-case or the tally distribution \mathcal{T} . every constant $\delta > 0$ and $c \in \mathbb{N}$, (1) NTIME_{sv} $(2^{n^{1-\delta}}) \not\subseteq \text{DTIME}(2^{O(n/\log n)}) \implies \text{coNP} \times \{\mathcal{U}, \mathcal{T}\} \not\subseteq \text{Avg}_{1-n^{-c}}^1 P$ (2) PHTIME $(2^{n^{1-\delta}}) \not\subseteq \text{DTIME}(2^{O(n/\log n)}) \implies \text{PH} \times \{\mathcal{U}, \mathcal{T}\} \not\subseteq \text{Avg}_{1-n^{-c}}^1 P$ (3) NTIME $(2^{n^{1-\delta}}) \not\subseteq \text{DTIME}(2^{O(n/\log n)}) \implies \text{NP} \times \{\mathcal{U}, \mathcal{T}\} \not\subseteq \text{Avg}_{P} \text{P}$ One-sided-error heuristics $2^{n^{1-\delta}}$ -time version of NP with success probability n^{-c} .

n is the input length.

A candidate that witnesses NP \nsubseteq DTIME($2^{o(n)}$)

> 3SAT is not a candidate: 3SAT ∈ NP ∩ DTIME($2^{O(n/\log n)}$).

An *m*-clause 3CNF on O(m) variables is encoded by $n = O(m \log m)$ bits and can be solved in time $2^{O(m)} = 2^{O(n/\log n)}$.

> DNF-MCSP is an NP-complete problem conjectured to be outside DTIME($2^{o(n)}$).

<u>Corollary</u> (of the Main Theorems)

DNF-MCSP \notin DTIME $(2^{O(n/\log n)}) \Rightarrow$ DistNP \notin Avg_PP & DistPH \notin AvgP.

This is the first result connecting average-case hardness of NP and worst-case hardness of NP-complete problems.

Minimum Circuit Size Problem (MCSP)

[Kabanets & Cai '00]

 $x_1 \oplus x_2$

 x_1

InputOutput• The truth table of a Boolean function
 $f: \{0,1\}^n \to \{0,1\}$ Is there a circuit of size $\leq s$
computing f.• A size parameter $s \in \mathbb{N}$ $size(\bigoplus_2) = 3$

➢ MCSP is a *meta-computational* problem.

Fact: MCSP \in NP

MCSP = "the problem of computing the circuit complexity of f''

Open: NP-hardness of MCSP

Minimum DNF Size Problem (DNF-MCSP)

Input

- The truth table of a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$
- A size parameter $s \in \mathbb{N}$

<u>Output</u>

Is there a DNF formula of size $\leq s$ computing f.

 $x_1 \oplus x_2 = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$

Example truthtable(\bigoplus_2) = 0110

 $DNFsize(\bigoplus_2) = 4$

<u>Theorem</u> [Masek'79]: DNF-MCSP is NP-complete. <u>Theorem</u> [H.-Oliveira-Santhanam'18]: (DNF • XOR)-MCSP is NP-complete. <u>Theorem</u> [Ilango'20]: AC⁰ formula-MCSP is NP-complete.

- > The fastest algorithm is an exhaustive search running in time $2^{O(N)}$ on input length $N = 2^n$.
- ≻ It is reasonable to conjecture that C-MCSP \notin DTIME $(2^{o(N)})$.

Minimum DNF Size Problem (DNF-MCSP)

Corollary (of the Main Theorems) -

C-MCSP \notin DTIME $(2^{O(N/\log N)}) \Rightarrow$ DistNP \notin Avg_PP and DistPH \notin AvgP.

 $x_1 \oplus x_2 = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$

Example truthtable(\bigoplus_2) = 0110

 $DNFsize(\bigoplus_2) = 4$

Theorem [Masek'79]: DNF-MCSP is NP-complete.

<u>Theorem</u> [H.-Oliveira-Santhanam'18]: (DNF • XOR)-MCSP is NP-complete.

<u>Theorem</u> [llango'20]: AC⁰ formula-MCSP is NP-complete.

➤ The fastest algorithm is an exhaustive search running in time 2^{O(N)} on input length N = 2ⁿ.
➤ It is reasonable to conjecture that C-MCSP ∉ DTIME(2^{O(N)}).

Outline

- 1. Average-Case Complexity
- 2. Barrier Results
- 3. Our Results
- 4. Proof Techniques
- 5. Open Problems

Meta-Complexity – Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

MINKT [Ko'91] = "Compute the time-bounded Kolmogorov complexity"

- *t*-time-bounded Kolmogorov complexity of *x* $K^t(x) \coloneqq$ (the length of a shortest program that prints *x* in *t* steps)
- MINKT = { $(x, 1^t, 1^s) | K^t(x) \le s$ }.

Meta-Complexity – Complexity of Complexity

> Examples of meta-computational problems: MCSP, MKTP, MINKT, ...

 $MINKT^{A}$ [Ko'91] = "Compute the *A*-oracle time-bounded Kolmogorov complexity"

- A-oracle *t*-time-bounded Kolmogorov complexity of *x* $K^{t,A}(x) \coloneqq (\text{the length of a shortest program } M^A \text{ that prints } x \text{ in } t \text{ steps})$
- MINKT^A = { $(x, 1^t, 1^s) \mid K^{t,A}(x) \le s$ }.

<u>Remark</u>: In general, we may have $A \leq_m^p \text{MINKT}^A$. It is easy to see $\text{MINKT}^A \in \text{NP}^A$.

Average-Case Complexity = Meta-Complexity

Theorem [H. (FOCS'20)]

 $GapMINKT^{PH} \in P$

For every $A \in PH$,

 $GapMINKT^A \in P$

> GapMINKT^A: an $O(\log n)$ -additive approximation version of MINKT^A.

DistPH ⊆ AvgP

Corollary: A new technique of analyzing average-case complexity by meta-complexity.

Universal Heuristic Scheme — A key notion in this work

> A universal heuristic scheme is "universal" in the following sense.

Proposition (universality of universal heuristic schemes) Assume DistNP \subseteq AvgP. For every L: {0,1}* \rightarrow {0,1}, the following are equivalent.

1. There is a universal heuristic scheme for *L*.

2. $\{L\} \times PSamp \subseteq Avg_PP$.

The notion of P-computable average-case poly-time appears naturally!

The Definition of Universal Heuristic Scheme

Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

 $\mathrm{cd}^t(x)\coloneqq\mathrm{K}^t(x)-\mathrm{K}^\infty(x)$

 \succ (*t*, *s*)-Time-Bounded Computational Depth

 $\mathrm{cd}^{t,s}(x) \coloneqq \mathrm{K}^t(x) - \mathrm{K}^s(x)$

An algorithm A is called a <u>universal heuristic scheme</u> for L if for some polynomial p, (Simplified, weak definition)

1. A(x,t) = L(x) and

2. A(x,t) halts in time $2^{O(\operatorname{cd}^{t,p(t)}(x)+\log t)}$ for all large $t \in \mathbb{N}$.

The Definition of Universal Heuristic Scheme

Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran'06]

 $\mathrm{cd}^t(x)\coloneqq\mathrm{K}^t(x)-\mathrm{K}^\infty(x)$

 \succ (*t*, *s*)-Time-Bounded Computational Depth

 $\mathrm{cd}^{t,s}(x)\coloneqq\mathrm{K}^t(x)-\mathrm{K}^s(x)$

A pair (C,S) of algorithms is called a <u>universal heuristic scheme</u> for *L* if for some polynomial *p*, for every $t \ge p(n)$ and every $x \in \{0,1\}^n$, 1. $\operatorname{cd}^{t,p(t)}(x) \le k \implies C(x,t,k) = 1$ 2. $C(x,t,k) = 1 \implies S(x,t,k) = L(x)$ 3. *C* runs in time poly(*t*) and *S* runs in time poly($t, 2^k$).

C: checker, S: solver

Fast Algorithms from Universal Heuristic Schemes

<u>Lemma</u>

If there is some universal heuristic scheme A for L, then $L \in \text{DTIME}(2^{O(n/\log n)}).$

<u>Proof Idea</u>: Find a parameter t so that the input x is "computationally shallow" (i.e., $cd^{t,p(t)}(x) = O(n/\log n)$). <u>Proof</u>: Consider the following telescoping sum for a parameter $I = \epsilon \log n$ ($\epsilon > 0$, constant): $cd^{t,p(t)}(x) + cd^{p(t),p \circ p(t)}(x) + \dots + cd^{p^{l-1}(t),p^{l}(t)}(x) = K^{t}(x) - K^{p^{l}(t)}(x) \le n + O(1)$ ⇒ for some $i \in \{1, 2, ..., I\}$, we have $cd^{p^{i-1}(t), p^i(t)}(x) \le \frac{n+O(1)}{I} = O\left(\frac{n}{\log n}\right)$. Algorithm *B*: Run $A(x,t), A(x,p(t)), A(x,p^{2}(t)), ..., A(x,p^{l-1}(t))$ in parallel. A universal heuristic scheme A for L: $\exists p(t) = t^{O(1)}$, Take the first one that halts, and output what it outputs. A(x,t) = L(x)1. A(x,t) runs in time $2^{O(\operatorname{cd}^{t,p(t)}(x)+\log t)}$. Correctness: B(x) = L(x) for every input x. 2. (The running time of B) $\lesssim \min_{i} \left\{ 2^{O\left(\operatorname{cd}^{p^{i-1}(t),p^{i}(t)}(x) + \log p^{i}(t)\right)} \right\} \le 2^{O(n/\log n)}$ $(p^{I}(t) \lesssim n^{c^{I}} \le 2^{O(n/\log n)} \text{ for } I = \epsilon \log n)$

Constructing Universal Heuristics

Lemma [H. STOC'21]

GapMINKT^{NP} \in P $\implies \forall L \in$ NP admits a universal heuristic scheme.

[H. FOCS'20] $GapMINKT^{NP} \in P \Leftrightarrow Gap(K^{NP} vs K) \in P$ $\underline{The Gap(K^{NP} vs K) Problem} [H. CCC'20]$ $\Pi_{Yes} = \{(x, 1^{t}, 1^{s}) \mid K^{t, NP}(x) \leq s\}.$ $\Pi_{No} = \{(x, 1^{t}, 1^{s}) \mid K^{p(|x|+t)}(x) > s + \log p(|x|+t)\}.$ (p: some polynomial)

Lemma [H. STOC'21]

 $Gap(K^{NP} vs K) \in P \implies \forall L \in NP$ admits a universal heuristic scheme.

Main Tool: k-wise direct product generator [H. STOC'20] $DP_k(y; z) = (z_1, ..., z_k, Enc(y)_{z_1}, ..., Enc(y)_{z_k})$ A pseudorandom generator construction based on a "hard" truth table y

 $Enc(\cdot)$: an arbitrary list-decodable error correcting code (e.g., Hadamard code)

 $DP_k(y; Z) = (Z, Zy)$, where $Z \in GF(2)^{k \times n}$ and $y \in GF(2)^n$ for Hadamard code.

<u>Reconstruction Algorithm $R^{(\cdot)}$ of DP_k :</u>

Given any *D* that ϵ -distinguishes $DP_k(y; \cdot)$ from the uniform distribution, there exists an advice string $\alpha \in \{0,1\}^{k+O(\log n)}$ such that $R^D(\alpha) = y$.

<u>Key Point</u>: (The advice complexity of DP_k) = $k + O(\log n)$

Symmetry of Information [Levin-Kolmogorov]

 $\mathbf{K}^{\infty}(x,w) \ge \mathbf{K}^{\infty}(x) + \mathbf{K}^{\infty}(w|x) - O(\log n)$

Lemma [H. STOC'21]

 $Gap(K^{NP} vs K) \in P \implies \forall L \in NP$ admits a universal heuristic scheme.

 \succ Let y_x be the lexicographically first certificate for $x \in L$, if any. • Want to distinguish $DP_k(y_r; z)$ from $w \sim \{0,1\}^{|z|+k}$ $K^{2t, NP}(x, DP_k(y_x; z)) \le K^t(x) + |z| + O(\log n)$ Weak symmetry of information [H. STOC'21] $K^{p(2t)}(x,w) \ge K^{q(p(2t))}(x) + |w| - O(\log n)$ with high prob. over $w \sim \{0,1\}^{|z|+k}$ |z| + kIf $k \ge K^t(x) - K^{q(p(2t))}(x) + O(\log n) = \operatorname{cd}^{t,q \circ p(2t)}(x) + O(\log n)$, then we get $K^{p(2t)}(x, w) \gg K^{2t,NP}(x, DP_k(y_x; z))$. $\prod_{V \in S}$ Can be distinguished using $Gap(K^{NP} vs K) \in P$ Π_{NO}

Lemma [H. STOC'21]

 $Gap(K^{NP} vs K) \in P \implies \forall L \in NP$ admits a universal heuristic scheme.

► Let *M* be a poly-time algorithm for $Gap(K^{NP} vs K)$ <u>Universal heuristic scheme $(C, S)^{\circ}$ for L° </u>

- Input: $x \in \{0,1\}^n, t \in \mathbb{N}, k \in \mathbb{N}$
- Define $D_x(w) \coloneqq M(xw, 1^{2t}, 1^s)$ for some threshold s.
- Checker *C* accepts iff $\Pr[D_x(w) = 1] \leq \frac{1}{4}$.
- Solver *S* computes a list $Y \coloneqq \{R^{D_X}(\alpha) \mid \alpha \in \{0,1\}^{k+O(\log n)}\}$ and accepts iff $\exists y \in Y$ is a certificate for $x \in L$.

Correctness of C: $\operatorname{cd}^{t,q\circ p(2t)}(x) \leq k - O(\log n) \Rightarrow (xw, 1^{2t}, 1^s) \in \Pi_{\operatorname{No}} \text{ w.h.p.} \Rightarrow C$ accepts. Correctness of S: C accepts $\Rightarrow D_x$ distinguishes $\operatorname{DP}_k(y_x; \cdot)$ from $w \Rightarrow y_x \in Y$ (if any).

Randomized algorithm, but can be derandomized using [Buhrman-Fortnow-Pavan'05]

The size of list $\leq \operatorname{poly}(n, 2^k)$

Theorem [H. STOC'21] (2') NP $\not\subseteq$ DTIME $(2^{O(n/\log n)}) \Rightarrow$ DistPH $\not\subseteq$ AvgP Average-Case Complexity Worst-Case Meta-Complexitry Direct product generator [H. FOCS'18, CCC'20] $GapMINKT^{NP} \in P$ $DistPH \subseteq AvgP$ [H. STOC'21] Direct product generator [H. STOC'20] Weak symmetry of information [H. STOC'21] based on [H. ITCS'20, STOC'20] $\forall L \in NP$ has $NP \subseteq DTIME(2^{O(n/\log n)})$ a universal heuristic scheme. Easy ("computationally shallow")

The reduction is non-black-box because we exploit the efficiency of AvgP. i.e., the proof is not subject to the barrier of [Bogdanov & Trevisan'06].

How we overcame [Viola'05]

➢ One can regard our proof as a "hardness amplification procedure Amp^(·)" in a sense, but Amp^f: {0,1}* → {0,1} must be defined on all input lengths.

Viola'05]'s proof techniques can be applied only when Amp^f: {0,1}^m → {0,1}.
(Extending it to {0,1}* would resolve P ≠ NP.)

Proof Ideas for other results

Proof Ideas for other results

Main Lemmas

"Algorithmic language compression" that generalizes [H. FOCS'18, CCC'20]

(1) $\forall L \in UP$ has universal heuristic schemes if DistNP \subseteq AvgP.

(2) $\forall L \in PH$ has universal heuristic schemes if DistPH \subseteq AvgP.

(3) $\forall L \in NP$ has universal heuristic schemes if $DistNP \subseteq Avg_PP$.

"Universality" of universal heuristic schemes Based on the ideas of [Antunes & Fortnow '09]

Why UP?

Algorithmic language compression [H. STOC'21]

If $(L_1, \mathcal{U}) \in AvgP$, then $(\Pi_{Yes}, \Pi_{No}) \in \text{promise-P}$, where

 $\Pi_{\text{Yes}} \coloneqq L_0, \Pi_{\text{No}} \coloneqq \left\{ x \middle| \mathsf{K}^{p(t)}(x) \ge \log \frac{\#L_0}{\#L_0} + \log p(t) \right\}$

 \succ Consider a language $L \in UP$ and a verifier V for L.

 $x \in L \Longrightarrow \exists ! y, V(x, y) = 1$ $x \notin L \Longrightarrow \forall y, V(x, y) = 0$

 \succ A hard distributional problem (L_1 , U) in DistNP is (roughly) as follows.

 $L_0 \coloneqq \{ (x \operatorname{DP}_k(y; z), 1^t, 1^s) | \mathrm{K}^t(x) \le s, V(x, y) = 1 \}$ $\bigcup \text{ "Algorithmic language compression"}$

 $L_{1} \coloneqq \{ (\mathrm{DP}_{\ell}(w; z'), 1^{t}, 1^{s}) | (w, 1^{t}, 1^{s}) \in L_{0} \} \\ \coloneqq \{ (\mathrm{DP}_{\ell}(x \operatorname{DP}_{k}(y; z); z'), 1^{t}, 1^{s}) | \mathrm{K}^{t}(x) \leq s, V(x, y) = 1 \} \in \mathrm{NP} \}$

We exploit the property that

 $\#\{(x,y)|\mathsf{K}^t(x)\leq s, V(x,y)=1\}\leq 2^{s+1}.\circ \circ$

[Valiant-Vazilani'86] isn't sufficient.

Summary and Open Questions

Meta-complexity is a powerful tool to analyze average-case complexity.

> A lot of interesting questions remain open:

- Can we prove NP \nsubseteq DTIME $(2^{o(n)}) \Longrightarrow$ DistNP \nsubseteq AvgP?
- Does the exponential-time hypothesis (ETH) imply DistPH ⊈ AvgP?
- Can we prove PH ⊈ io-DTIME(2^{o(n)}) ⇒ DistPH ⊈ io-AvgP?
 Viola's barrier comes into play in this setting!
- Can our results relativize?

Subsequent Work

Theorem [H. and Nanashima] —

There exists an oracle A such that DistPH^A \subseteq AvgP^A and UP^A \cap coUP^A \nsubseteq DTIME $(2^{n/\omega(\log n)})$.

> Surprisingly, our time bound $2^{O(n/\log n)}$ is nearly optimal for relativizing proof techniques.

Thank you!