
Average-Case Hardness of NP
from Exponential Worst-Case

Hardness Assumptions
Shuichi Hirahara

National Institute of Informatics, Tokyo, Japan

@Oxford Warwick complexity meetings June 10, 2021

Full version: https://eccc.weizmann.ac.il/report/2021/058/

Overview
Main Theorem

UP ⊈ DTIME 2𝑜 𝑛 ⟹ DistNP ⊈ AvgP

➢This was a long-standing open question with good reason.

• Hardness amplification procedure [Viola’05]

• Black-box reductions [Feigenbaum-Fortnow’93, Bogdanov-Trevisan’06]

➢New proof techniques: analyzing average-case complexity by meta-complexity

➢ Standard proof techniques do not work!

Outline

1. Average-Case Complexity

2. Barrier Results

3. Our Results

4. Proof Techniques

5. Open Problems

Motivations of Average-Case Complexity

1. To understand the practical performance of algorithms.

Example: the Hamiltonian path problem (NP-complete)

• Cannot be solved in P (unless P = NP)

• Can be solved in expected linear time

on an Erdős–Rényi random graph. [Gurevich & Shelah (1987)]

2. To understand the security of cryptographic primitives.

➢ One-way functions cannot exist unless NP is hard on average.

Basics of Average-Case Complextiy
[Levin’86],[Impagliazzo’95],[Ben-David, Chor, Goldreich & Luby ‘92],[Bogdanov & Trevisan’06],…

• A distributional problem 𝐿, 𝒟

• DistNP = 𝐿,𝒟 𝐿 ∈ NP, 𝒟 ∈ PSamp

• 𝐿, 𝒟 ∈ AvgP

⟺

𝐿: 0,1 ∗ → 0,1 , a decision problem

𝒟 = 𝒟𝑛 𝑛∈ℕ, a family of (input) distributions

∃ an algorithm 𝐴 and ∃ a time bound 𝑡: 0,1 ∗ → ℕ such that

1. 𝐴 𝑥 = 𝐿(𝑥) for every 𝑥,

2. 𝐴(𝑥) runs in time ≤ 𝑡(𝑥) for every 𝑥, and

3. 𝔼𝑥∼𝒟𝑛 𝑡 𝑥 𝜖 ≤ 𝑛𝑂 1 for some constant 𝜖 > 0.

an average-case analogue of NP

average-case polynomial-time

Polynomial-time samplable distribution

Equivalent to errorless heuristic scheme

Basics of Average-Case Complextiy
[Levin’86],[Impagliazzo’95],[Ben-David, Chor, Goldreich & Luby ‘92],[Bogdanov & Trevisan’06],…

• A distributional problem 𝐿, 𝒟

• DistNP = 𝐿,𝒟 𝐿 ∈ NP, 𝒟 ∈ PSamp

• 𝐿, 𝒟 ∈ AvgPP

⟺

𝐿: 0,1 ∗ → 0,1 , a decision problem

𝒟 = 𝒟𝑛 𝑛∈ℕ, a family of (input) distributions

∃ an algorithm 𝐴 and ∃ a time bound 𝑡: 0,1 ∗ → ℕ such that

1. 𝐴 𝑥 = 𝐿(𝑥) for every 𝑥,

2. 𝐴(𝑥) runs in time ≤ 𝑡(𝑥) for every 𝑥,

3. 𝔼𝑥∼𝒟𝑛 𝑡 𝑥 𝜖 ≤ 𝑛𝑂 1 for some constant 𝜖 > 0, and

4. 𝑡 is computable in polynomial time.

an average-case analogue of NP

P-computable average-case polynomial-time

Example: HamiltonianPath, Erdős–Rényi ∈ AvgPP ⊆ AvgP

Hamiltonian Path

➢ Let 𝐺(𝑛, 𝑝) denote the 𝑛-vertex Erdős–Rényi random graph with edge probability 𝑝.

Proposition

HamiltonianPath, 𝐺 𝑛, 𝑝 ∈ AvgPP.For every 𝑝 ≥
1

𝑂 log 𝑛
,

Theorem [Alon & Krivelevich 2020]

HamiltonianPath, 𝐺 𝑛, 𝑝 ∈ AvgP.For every 𝑝 ≥
1

𝑜 𝑛
,

Big and Frontier Open Questions
Big Open Question

NP ≠ P ⟹ DistNP ⊈ AvgP
?

➢ Equivalently: Can we rule out Heuristica? [Impagliazzo’95]

Frontier Question

UP ⊈ DTIME 2𝑜 𝑛 ⟹ DistPH ⊈ AvgP
?

➢ Difficulty: Any proof must bypass three barriers!

(1) “Impossibility” of hardness amplification, (2) limits of black-box reductions, and (3) relativization barriers

(a world where NP is hard in the worst case but easy on average)

Complexity Classes

P

NPcoNP

PH

PSPACE

𝐏 : polynomial time

𝐔𝐏 : unambiguous polynomial-time

𝐍𝐏 : non-deterministic polynomial-time

𝐏𝐇 : polynomial(-time) hierarchy

𝐏𝐒𝐏𝐀𝐂𝐄 : polynomial space

UPcoUP
(solvable by a non-deterministic polynomial-time machine

with at most one accepting path for each input.)

UP ≠ P ⟺ There is a one-to-one one-way function that is hard to invert in the worst case.

[Ko’85, Grollmann & Selman‘88]

Outline

1. Average-Case Complexity

2. Barrier Results

3. Our Results

4. Proof Techniques

5. Open Problems

(Worst-Case) Hardness Amplification

➢ A general proof technique that shows a

worst-case-to-average-case connection:

A worst-case hardness amplification procedure Amp(⋅) maps

𝑓: 0,1 𝑛 → {0,1} to Amp𝑓: 0,1 𝑚 → 0,1 and satisfies

“𝑓 is worst-case hard ⟹ Amp𝑓 is average-case hard”

➢ There is a PSPACE-computable Amp ⋅ . (e.g., [Sudan-Trevisan-Vadhan’01])

➢ In particular, PSPACE ≠ P ⟺ Dist PSPACE ⊈ AvgP [Kobler-Schuler’04]

“Impossibility” of Hardness Amplification
[Viola’05]

➢ Can we prove “UP ⊈ DTIME 20.99𝑛 ⟹ DistPH ⊈ AvgP” by constructing Amp𝑓 ∈ PH𝑓?

No! (or at least very difficult) [Viola’05]

Theorem [Viola (CC’05)]

There is no Amp𝑓 computable in PH𝑓

(if the relationship between 𝑓 and Amp𝑓 is proved by black-box reductions)

Theorem [Viola (CCC’05)]

If ∃ Amp𝑓∈ PH𝑓, then P ≠ NP.
(The property of Amp𝑓: 𝑓 ∉ SIZE 20.99𝑛 ⟹ Amp𝑓 ∉ HeurSIZE 𝑛𝑂(1))

(Black-Box) Reductions

reduction 𝑅(⋅)

query

answer oracle 𝐴

∀𝐿 ∈ SZK, a reduction 𝑅𝐴 solves 𝐿 for any oracle 𝐴 that solves some 𝐿′, 𝒟 ∈ DistNP.

• SZK ≠ P ⟹ DistNP ⊈ AvgP

➢ These are proved by black-box reductions:

[Ostrovsky’91,Hastad-Impagliazzo-Levin-Luby’99,...,H.’18]

• NP ⊈ DTIME 2𝑂 𝑛 ⟹ DistNP ⊈ AvgP [Ben-David, Chor, Goldreich & Luby ‘92]

No efficiency

requirement

Theorems:

• GapSVP ∉ BPP ⟹ DistNP ⊈ HeurBPP [Ajtai’96,…]

Limits of Black-Box Reductions

Theorem [Feigenbaum & Fortnow’93, Bogdanov & Trevisan’06]

There is no nonadaptive black-box reduction showing

“UP ⊈ DTIME 2𝑜 𝑛 ⟹DistNP ⊈ AvgP”

unless UP ⊆ coNTIME 2𝑜 𝑛 /2𝑜(𝑛).

➢ We need to use either non-black-box or adaptive reductions!

➢ Can we use a (black-box) reduction technique to prove

“UP ⊈ DTIME 2𝑜 𝑛 ⟹DistNP ⊈ AvgP”? No!

Relativization Barriers

Theorem [Impagliazzo’11]

There is an oracle 𝐴 such that UP𝐴 ⊈ DTIME𝐴 2𝑛
0.1

and DistNP𝐴 ⊆ AvgP𝐴.

➢ A relativizing proof technique cannot achieve the time bound of 2𝑛
0.1

≪ 2𝑜 𝑛 .

➢ Remark: Our proof is non-relativizing because

a result of [Buhrman, Fortnow, Pavan’05] does not seem to relativize.

Outline

1. Average-Case Complexity

2. Barrier Results

3. Our Results

4. Proof Techniques

5. Open Problems

Our Results

Main Theorems

(1) UP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistNP ⊈ AvgP

(2) PH ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistPH ⊈ AvgP

Any proof of (1) must

overcome the barrier results of

[Viola] & [Bogdanov-Trevisan].

➢We also prove that DistPH ⊈ AvgPP ⟺ DistPH ⊈ AvgP.

➢ (1) and (2) resolve the frontier open question.

(3) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistNP ⊈ AvgPP

This rules out

a variant of

Heuristica

P-computable

average-case

polynomial-time

Our Results

Main Theorems (Stronger version)

(1) NTIMEsv 2𝑛
1−𝛿

⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ coNP × {𝒰, 𝒯} ⊈ Avg1−𝑛−𝑐
1 P

(2) PHTIME 2𝑛
1−𝛿

⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ PH× {𝒰,𝒯} ⊈ Avg1−𝑛−𝑐
1 P

(3) NTIME 2𝑛
1−𝛿

⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹NP × {𝒰,𝒯} ⊈ AvgPP

For every constant 𝛿 > 0 and 𝑐 ∈ ℕ,

The hard distribution is

the uniform distribution 𝒰
or the tally distribution 𝒯.

One-sided-error heuristics

with success probability 𝑛−𝑐.2𝑛
1−𝛿

-time version of NP

Inverting a size-verifiable one-

way function in the worst-case

A candidate that witnesses NP ⊈ DTIME 2𝑜 𝑛

➢ 3SAT is not a candidate: 3SAT ∈ NP ∩ DTIME 2𝑂 𝑛/ log 𝑛 .

An 𝑚-clause 3CNF on 𝑂 𝑚 variables is encoded by 𝑛 = 𝑂 𝑚 log𝑚 bits

and can be solved in time 2𝑂(𝑚) = 2𝑂 𝑛/ log 𝑛 .

Corollary (of the Main Theorems)

DNF-MCSP ∉ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistNP ⊈ AvgPP & DistPH ⊈ AvgP.

➢ DNF-MCSP is an NP-complete problem conjectured to be

outside DTIME 2𝑜 𝑛 .

𝑛 is the input length.

➢ This is the first result connecting average-case hardness of NP and

worst-case hardness of NP-complete problems.

Minimum Circuit Size Problem (MCSP)

➢ MCSP is a meta-computational problem.

Fact: MCSP ∈ NP Open: NP-hardness of MCSP

• The truth table of a Boolean function

𝑓: 0,1 𝑛 → 0, 1
Is there a circuit of size ≤ 𝑠

computing 𝑓.

Input Output

Example

MCSP = “the problem of computing the circuit complexity of 𝑓”

• A size parameter 𝑠 ∈ ℕ

truthtable ⊕2 = 0110 size ⊕2 = 3

[Kabanets & Cai ’00]

Minimum DNF Size Problem (DNF-MCSP)

• The truth table of a Boolean function

𝑓: 0,1 𝑛 → 0, 1
Is there a DNF formula of size ≤ 𝑠

computing 𝑓.

Input Output

Example

• A size parameter 𝑠 ∈ ℕ

truthtable ⊕2 = 0110 DNFsize ⊕2 = 4

𝑥1 ⊕𝑥2 = 𝑥1 ∧ ¬𝑥2 ∨ ¬𝑥1 ∧ 𝑥2

Theorem [Masek’79]: DNF-MCSP is NP-complete.

Theorem [H.-Oliveira-Santhanam’18]: DNF ∘ XOR -MCSP is NP-complete.

Theorem [Ilango’20]: AC0 formula-MCSP is NP-complete.

➢ The fastest algorithm is an exhaustive search running in time 2𝑂(𝑁) on input length 𝑁 = 2𝑛.

➢ It is reasonable to conjecture that 𝒞-MCSP ∉ DTIME 2𝑜 𝑁 .

Minimum DNF Size Problem (DNF-MCSP)

• The truth table of a Boolean function

𝑓: 0,1 𝑛 → 0, 1
Is there a DNF formula of size ≤ 𝑠

computing 𝑓.

Input Output

Example

• A size parameter 𝑠 ∈ ℕ

truthtable ⊕2 = 0110 DNFsize ⊕2 = 4

𝑥1 ⊕𝑥2 = 𝑥1 ∧ ¬𝑥2 ∨ ¬𝑥1 ∧ 𝑥2

Theorem [Masek’79]: DNF-MCSP is NP-complete.

Theorem [H.-Oliveira-Santhanam’18]: DNF ∘ XOR -MCSP is NP-complete.

Theorem [Ilango’20]: AC0 formula-MCSP is NP-complete.

➢ The fastest algorithm is an exhaustive search running in time 2𝑂(𝑁) on input length 𝑁 = 2𝑛.

➢ It is reasonable to conjecture that 𝒞-MCSP ∉ DTIME 2𝑜 𝑁 .

Corollary (of the Main Theorems)

𝒞-MCSP ∉ DTIME 2𝑂 𝑁/ log 𝑁 ⟹ DistNP ⊈ AvgPP and DistPH ⊈ AvgP.

Outline

1. Average-Case Complexity

2. Barrier Results

3. Our Results

4. Proof Techniques

5. Open Problems

Meta-Complexity − Complexity of Complexity

➢Examples of meta-computational problems: MCSP,MKTP,MINKT,…

MINKT [Ko’91] = “Compute the time-bounded Kolmogorov complexity”

K𝑡 𝑥 ≔ (the length of a shortest program that prints 𝑥 in 𝑡 steps)

• 𝑡-time-bounded Kolmogorov complexity of 𝑥

• MINKT = 𝑥, 1𝑡, 1𝑠 K𝑡 𝑥 ≤ 𝑠 .

Meta-Complexity − Complexity of Complexity

➢Examples of meta-computational problems: MCSP,MKTP,MINKT,…

MINKT𝐴 [Ko’91]

K𝑡,𝐴 𝑥 ≔ (the length of a shortest program𝑀𝐴 that prints 𝑥 in 𝑡 steps)

• 𝐴-oracle 𝑡-time-bounded Kolmogorov complexity of 𝑥

• MINKT𝐴 = 𝑥, 1𝑡, 1𝑠 K𝑡,𝐴 𝑥 ≤ 𝑠 .

Remark: In general, we may have 𝐴 ≰𝑚
𝑝
MINKT𝐴.

It is easy to see MINKT𝐴 ∈ NP𝐴.

= “Compute the 𝐴-oracle time-bounded Kolmogorov complexity”

Average-Case Complexity = Meta-Complexity

DistPH ⊆ AvgP GapMINKTPH ∈ P⟺

Theorem [H. (FOCS’20)]
For every 𝐴 ∈ PH,

GapMINKT𝐴 ∈ P

➢ GapMINKT𝐴: an 𝑂(log 𝑛)-additive approximation version of MINKT𝐴.

DistPH ⊆ Avg1−1/poly(𝑛)
1 P

DistPH ⊆ AvgP

Gap KPH vs K ∈ P

GapMINKTPH ∈ P

o
b

v
io

u
s

average-case hardness

amplification for PH

Corollary

Average-Case Complexity Worst-Case Meta-Complexitry

➢ Corollary: A new technique of analyzing average-case complexity by meta-complexity.

[H. FOCS’18, CCC’20]

[H. ITCS’20, STOC’20]

Easier to analyze

worst-case complexity!

Theorem [H. STOC’21]

(2’) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP

Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

Universal Heuristic Scheme ― A key notion in this work

➢A universal heuristic scheme is “universal” in the following sense.

Proposition (universality of universal heuristic schemes)

Assume DistNP ⊆ AvgP.
For every 𝐿: 0,1 ∗ → 0,1 , the following are equivalent.

1. There is a universal heuristic scheme for 𝐿.
2. 𝐿 × PSamp ⊆ AvgPP.

The notion of P-computable

average-case poly-time

appears naturally!

The Definition of Universal Heuristic Scheme

➢Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran’06]

cd𝑡 𝑥 ≔ K𝑡 𝑥 − K∞(𝑥)

➢ 𝑡, 𝑠 -Time-Bounded Computational Depth

cd𝑡,𝑠 𝑥 ≔ K𝑡 𝑥 − K𝑠(𝑥)

➢An algorithm 𝐴 is called a universal heuristic scheme for 𝐿 if

1. 𝐴 𝑥, 𝑡 = 𝐿(𝑥) and

2. 𝐴(𝑥, 𝑡) halts in time 2𝑂 cd𝑡,𝑝 𝑡 𝑥 +log 𝑡 for all large 𝑡 ∈ ℕ.

for some polynomial 𝑝, (Simplified, weak definition)

The Definition of Universal Heuristic Scheme

➢Computational Depth [Antunes, Fortnow, van Melkebeek, Vinodchandran’06]

cd𝑡 𝑥 ≔ K𝑡 𝑥 − K∞(𝑥)

➢ 𝑡, 𝑠 -Time-Bounded Computational Depth

cd𝑡,𝑠 𝑥 ≔ K𝑡 𝑥 − K𝑠(𝑥)

➢A pair (𝐶, 𝑆) of algorithms is called a universal heuristic scheme for 𝐿 if

1. cd𝑡,𝑝 𝑡 𝑥 ≤ 𝑘 ⟹ 𝐶 𝑥, 𝑡, 𝑘 = 1
2. 𝐶 𝑥, 𝑡, 𝑘 = 1 ⟹ 𝑆 𝑥, 𝑡, 𝑘 = 𝐿(𝑥)

3. 𝐶 runs in time poly 𝑡 and 𝑆 runs in time poly 𝑡, 2𝑘 .

for some polynomial 𝑝, for every 𝑡 ≥ 𝑝(𝑛) and every 𝑥 ∈ 0,1 𝑛,

𝐶: checker, 𝑆: solver

Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

Easy to prove

(Next slide)

Theorem [H. STOC’21]

(2’) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP

Fast Algorithms from Universal Heuristic Schemes

Lemma

If there is some universal heuristic scheme 𝐴 for 𝐿, then

𝐿 ∈ DTIME 2𝑂 𝑛/ log 𝑛 .

Proof Idea: Find a parameter 𝑡 so that the input 𝑥 is “computationally shallow” (i.e., cd𝑡,𝑝 t 𝑥 = 𝑂(𝑛/ log 𝑛)).

Proof: Consider the following telescoping sum for a parameter 𝐼 = 𝜖 log 𝑛 (𝜖 > 0, constant):

cd𝑡,𝑝 𝑡 𝑥 + cd𝑝 𝑡 ,𝑝∘𝑝 𝑡 𝑥 + ⋯+ cd𝑝
𝐼−1 𝑡 ,𝑝𝐼 𝑡 𝑥 = K𝑡 𝑥 − K𝑝

𝐼 𝑡 𝑥 ≤ 𝑛 + 𝑂(1)

⟹ for some 𝑖 ∈ 1, 2, … , 𝐼 , we have cd𝑝
𝑖−1 𝑡 ,𝑝𝑖 𝑡 𝑥 ≤

𝑛+𝑂 1

𝐼
= 𝑂

𝑛

log 𝑛
.Algorithm 𝐵:

Run 𝐴 𝑥, 𝑡 , 𝐴 𝑥, 𝑝 𝑡 , 𝐴 𝑥, 𝑝2 𝑡 , … , 𝐴 𝑥, 𝑝𝐼−1 𝑡 in parallel.

Take the first one that halts, and output what it outputs.

Correctness: 𝐵 𝑥 = 𝐿(𝑥) for every input 𝑥.

The running time of 𝐵 ≲ min
𝑖

2𝑂 cd𝑝
𝑖−1 𝑡 ,𝑝𝑖 𝑡 𝑥 +log 𝑝𝑖(𝑡) ≤ 2𝑂 𝑛/ log 𝑛

（𝑝𝐼 𝑡 ≲ 𝑛𝑐
𝐼
≤ 2𝑂(𝑛/ log 𝑛) for 𝐼 = 𝜖 log 𝑛）

A universal heuristic scheme 𝐴 for 𝐿: ∃ 𝑝 𝑡 = 𝑡𝑂 1 ,

1. 𝐴 𝑥, 𝑡 = 𝐿(𝑥)

2. 𝐴 𝑥, 𝑡 runs in time 2𝑂 cd𝑡,𝑝 𝑡 𝑥 +log 𝑡 .

Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

• Direct product generator [H. STOC’20]

• Weak symmetry of information [H. STOC’21]

Theorem [H. STOC’21]

(2’) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP

Constructing Universal Heuristics

Lemma [H. STOC’21]

GapMINKTNP ∈ P ⟹ ∀𝐿 ∈ NP admits a universal heuristic scheme.

GapMINKTNP ∈ P ⟺ Gap KNP vs K ∈ P

[H. FOCS’20]

The Gap KNP vs K Problem [H. CCC’20]

ΠYes = 𝑥, 1𝑡 , 1𝑠 K𝑡, NP 𝑥 ≤ 𝑠 .

ΠNo = 𝑥, 1𝑡, 1𝑠 K𝑝(|𝑥|+𝑡) 𝑥 > 𝑠 + log 𝑝 𝑥 + 𝑡 .

A harder problem,

but equivalent.

(𝑝: some polynomial)

Lemma [H. STOC’21]

Gap KNP vs K ∈ P ⟹ ∀𝐿 ∈ NP admits a universal heuristic scheme.

➢ Main Tool: 𝑘-wise direct product generator [H. STOC’20]

DP𝑘 𝑦; 𝑧 = 𝑧1, … , 𝑧𝑘 , Enc 𝑦 𝑧1 , … , Enc 𝑦 𝑧𝑘

Enc ⋅ : an arbitrary list-decodable error correcting code (e.g., Hadamard code)

Reconstruction Algorithm 𝑅(⋅) of DP𝑘:

Given any 𝐷 that 𝜖-distinguishes DP𝑘(𝑦;⋅) from the uniform distribution,

there exists an advice string 𝛼 ∈ 0,1 𝑘+𝑂 log 𝑛 such that 𝑅𝐷 𝛼 = 𝑦.

A pseudorandom generator

construction based on

a “hard” truth table 𝑦

Key Point: (The advice complexity of DP𝑘) = 𝑘 + 𝑂(log 𝑛)

DP𝑘 𝑦; 𝑍 = 𝑍, 𝑍𝑦 , where 𝑍 ∈ GF 2 𝑘×𝑛 and 𝑦 ∈ GF 2 𝑛 for Hadamard code.

Lemma [H. STOC’21]

Gap KNP vs K ∈ P ⟹ ∀𝐿 ∈ NP admits a universal heuristic scheme.

K2𝑡, NP 𝑥, DP𝑘 𝑦𝑥; 𝑧 ≤ K𝑡 𝑥 + 𝑧 + 𝑂 log 𝑛

➢ Let 𝑦𝑥 be the lexicographically first certificate for 𝑥 ∈ 𝐿, if any.

K𝑝(2𝑡) 𝑥,𝑤 ≥ K𝑞 𝑝 2𝑡 𝑥 + 𝑤 − 𝑂 log 𝑛

𝑧 + 𝑘

=

If 𝑘 ≥ K𝑡 𝑥 − K𝑞 𝑝 2𝑡 𝑥 + 𝑂 log 𝑛

with high prob. over 𝑤 ∼ 0,1 𝑧 +𝑘

= cd𝑡,𝑞∘𝑝 2𝑡 𝑥 + 𝑂 log 𝑛 ,

then we get K𝑝 2𝑡 𝑥,𝑤 ≫ K2𝑡,NP 𝑥, DP𝑘 𝑦𝑥; 𝑧 .

ΠNo ΠYes Can be distinguished using Gap KNP vs K ∈ P

Weak symmetry of

information [H. STOC’21]

K∞ 𝑥, 𝑤 ≥ K∞ 𝑥 + K∞ 𝑤 𝑥 − 𝑂 log 𝑛

Symmetry of Information [Levin-Kolmogorov]

• Want to distinguish DP𝑘(𝑦𝑥; 𝑧) from 𝑤 ∼ 0,1 𝑧 +𝑘

Lemma [H. STOC’21]

Gap KNP vs K ∈ P ⟹ ∀𝐿 ∈ NP admits a universal heuristic scheme.

➢ Let 𝑀 be a poly-time algorithm for Gap KNP vs K .

Universal heuristic scheme (𝐶, 𝑆) for 𝐿

• Define 𝐷𝑥 𝑤 ≔ 𝑀 𝑥𝑤, 12𝑡 , 1𝑠 for some threshold 𝑠.

• Input: 𝑥 ∈ 0,1 𝑛, 𝑡 ∈ ℕ, 𝑘 ∈ ℕ

• Checker 𝐶 accepts iff Pr
𝑤
𝐷𝑥 𝑤 = 1 ≤

1

4
.

• Solver 𝑆 computes a list 𝑌 ≔ {𝑅𝐷𝑥 𝛼 𝛼 ∈ 0,1 𝑘+𝑂 log 𝑛 and

accepts iff ∃𝑦 ∈ 𝑌 is a certificate for 𝑥 ∈ 𝐿.

Correctness of 𝑆: 𝐶 accepts ⟹𝐷𝑥 distinguishes DP𝑘(𝑦𝑥;⋅) from 𝑤 ⟹ 𝑦𝑥 ∈ 𝑌 (if any).

Correctness of 𝐶: cd𝑡,𝑞∘𝑝 2𝑡 𝑥 ≤ 𝑘 − 𝑂 log𝑛 ⟹ 𝑥𝑤, 12𝑡, 1𝑠 ∈ ΠNo w.h.p. ⟹ 𝐶 accepts.

The size of list

≤ poly 𝑛, 2𝑘

Randomized algorithm, but

can be derandomized using

[Buhrman-Fortnow-Pavan’05]

Average-Case Complexity Worst-Case Meta-Complexitry

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

Easy (“computationally shallow”)

Theorem [H. STOC’21]

(2’) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹DistPH ⊈ AvgP

• Direct product generator [H. STOC’20]

• Weak symmetry of information [H. STOC’21]

Direct product generator

NP ⊆ DTIME 2𝑂 𝑛/ log 𝑛

DistPH ⊆ AvgP

Goal

GapMINKTNP ∈ P

∀ 𝐿 ∈ NP has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

Let 𝑝(𝑛) be the

runtime of AvgP.

The algorithm runs

in time

2
𝑂 cd𝑡,𝑝

′ 𝑡 𝑥
.

➢ The reduction is non-black-box because we exploit the efficiency of AvgP.

i.e., the proof is not subject to the barrier of [Bogdanov & Trevisan’06].

How we overcame limits of black-box reductions

NP𝑓 ⊆ DTIME𝑓 2𝑂 𝑛/ log 𝑛

Amp𝑓 ∈ AvgP

Goal

GapMINKTNP
𝑓
∈ P

∀ 𝐿 ∈ NP𝑓 has
a universal heuristic scheme.

[H. FOCS’18, CCC’20]

[H. STOC’21]

[H. STOC’21]

based on [H. ITCS’20, STOC’20]

➢ One can regard our proof as a “hardness amplification procedure Amp ⋅ ” in a sense,

but Amp𝑓: 0,1 ∗ → {0,1} must be defined on all input lengths.

How we overcame [Viola’05]

➢ [Viola’05]’s proof techniques can be applied only when Amp𝑓: 0,1 𝑚 → {0,1}.

(Extending it to 0,1 ∗ would resolve P ≠ NP.)

Proof Ideas for other results

Main Theorems

(1) UP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistNP ⊈ AvgP

(2) PH ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistPH ⊈ AvgP

(3) NP ⊈ DTIME 2𝑂 𝑛/ log 𝑛 ⟹ DistNP ⊈ AvgPP

Already explained

Proof Ideas for other results

Main Lemmas

(1) ∀𝐿 ∈ UP has universal heuristic schemes if DistNP ⊆ AvgP.

(3) ∀𝐿 ∈ NP has universal heuristic schemes if DistNP ⊆ AvgPP.

(2) ∀𝐿 ∈ PH has universal heuristic schemes if DistPH ⊆ AvgP.

“Algorithmic language compression”

that generalizes [H. FOCS’18, CCC’20]

“Universality” of universal heuristic schemes

Based on the ideas of [Antunes & Fortnow ’09]

Why UP?

➢Consider a language 𝐿 ∈ UP and a verifier 𝑉 for 𝐿.

𝑥 ∈ 𝐿 ⟹ ∃! 𝑦, 𝑉 𝑥, 𝑦 = 1

𝑥 ∉ 𝐿 ⟹ ∀𝑦, 𝑉 𝑥, 𝑦 = 0

➢Consider a language 𝐿 ∈ UP and a verifier 𝑉 for 𝐿.

➢A hard distributional problem 𝐿1, 𝒰 in DistNP is (roughly) as follows.

𝐿0 ≔ 𝑥 DP𝑘 𝑦; 𝑧 , 1𝑡 , 1𝑠 K𝑡 𝑥 ≤ 𝑠, 𝑉 𝑥, 𝑦 = 1

𝑥, 𝑦 K𝑡 𝑥 ≤ 𝑠, 𝑉 𝑥, 𝑦 = 1 ≤ 2𝑠+1.

“Algorithmic language compression”

𝐿1 ≔ DPℓ 𝑤; 𝑧′ , 1
𝑡, 1𝑠 𝑤, 1𝑡, 1𝑠 ∈ 𝐿0

➢ We exploit the property that

≔ DPℓ 𝑥 DP𝑘 𝑦; 𝑧 ; 𝑧′ , 1𝑡, 1𝑠 K𝑡 𝑥 ≤ 𝑠, 𝑉 𝑥, 𝑦 = 1 ∈ NP

Algorithmic language compression [H. STOC’21]

If 𝐿1, 𝒰 ∈ AvgP, then ΠYes, ΠNo ∈ promise-P, where

ΠYes ≔ 𝐿0, ΠNo ≔ 𝑥 K𝑝 𝑡 𝑥 ≥ log#𝐿0 + log𝑝 𝑡

[Valiant-Vazilani’86]

isn’t sufficient.

Summary and Open Questions

➢ Meta-complexity is a powerful tool to analyze average-case complexity.

➢ A lot of interesting questions remain open:

• Can we prove NP ⊈ DTIME 2𝑜 𝑛 ⟹DistNP ⊈ AvgP?

• Does the exponential-time hypothesis (ETH) imply DistPH ⊈ AvgP?

• Can we prove PH ⊈ io-DTIME 2𝑜 𝑛 ⟹DistPH ⊈ io-AvgP?

Viola’s barrier comes into play in this setting!

• Can our results relativize?

Subsequent Work

Theorem [H. and Nanashima]

There exists an oracle 𝐴 such that

DistPH𝐴 ⊆ AvgP𝐴 and UP𝐴 ∩ coUP𝐴 ⊈ DTIME 2𝑛/𝜔 log 𝑛 .

➢ Surprisingly, our time bound 2𝑂 𝑛/ log 𝑛 is nearly optimal for relativizing proof techniques.

Thank you!

