The Complexity of Gradient Descent: CLS = PPAD \cap PLS

ALEXANDROS HOLLENDER

joint work with JOHN FEARNLEY, PAUL GOLDBERG and RAHUL SAVANI

Some interesting computational problems

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.
FACTORING:
Find a prime factor of a number $n \geq 2$.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.
FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.
FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$.
CONTRACTION:
Find the unique fixpoint of a contraction $f:[0,1]^{n} \rightarrow[0,1]^{n}$.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.
FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$.
CONTRACTION:
Find the unique fixpoint of a contraction $f:[0,1]^{n} \rightarrow[0,1]^{n}$.

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.
What do these problems have in common?
2
FACTORING:
Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$.
CONTRACTION:
Find the unique fixpoint of a contraction $f:[0,1]^{n} \rightarrow[0,1]^{n}$.

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.

FACTORING:

Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$.

CONTRACTION:

Find the unique fixpoint of a contraction $f:[0,1]^{n} \rightarrow[0,1]^{n}$.

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.

FACTORING:

Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$. CONTRACTION:
Find the unique fixpoint of a contraction $f:[0,1]^{n} \rightarrow[0,1]^{n}$.

What do these problems have in common?
\longrightarrow
They are NP Total Search (TFNP) problems!

- Total: there is always a solution
- NP: it is easy to verify solutions

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

NASH:

Find a mixed Nash equilibrium of a game.

FACTORING:

Find a prime factor of a number $n \geq 2$.

BROUWER:

Find a fixpoint of a continuous function $f:[0,1]^{3} \rightarrow[0,1]^{3}$.

CONTRACTION:

Find the unique fixpoint of a contraction $f:[0,1]^{n} \rightarrow[0,1]^{n}$.

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?
\longrightarrow
They are NP Total Search (TFNP) problems!

- Total: there is always a solution
- NP: it is easy to verify solutions

Not unless co-NP = NP...

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

TFNP lies between P and NP (search versions)

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

How do we show that a TFNP-problem is hard:

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

How do we show that a TFNP-problem is hard:

- No TFNP-problem can be NP-hard, unless NP = coNP...

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

How do we show that a TFNP-problem is hard:

- No TFNP-problem can be NP-hard, unless NP = coNP...

3-SAT \leq NASH $\quad \Rightarrow$ certificate for unsatisfiable 3-SAT formulas

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

How do we show that a TFNP-problem is hard:

- No TFNP-problem can be NP-hard, unless NP = coNP...

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

- "search" : looking for a solution, not just YES or NO
- "NP": any solution can be checked efficiently
- "total": there always exists at least one solution

How do we show that a TFNP-problem is hard:

- No TFNP-problem can be NP-hard, unless NP = coNP...
- Believed that no TFNP-complete problems exists...

The TFNP landscape

TFNP subclasses

What reasons are there to believe that PPAD $\neq P, P L S \neq P$, etc?

TFNP subclasses

What reasons are there to believe that PPAD $\neq P, P L S \neq P$, etc?

- many seemingly hard problems lie in PPAD, PLS etc...

TFNP subclasses

What reasons are there to believe that PPAD $\neq P, P L S \neq P$, etc?

- many seemingly hard problems lie in PPAD, PLS etc...
- oracle separations between the classes (in particular PPAD $=$ PLS)

TFNP subclasses

What reasons are there to believe that PPAD $\neq P, P L S \neq P$, etc?

- many seemingly hard problems lie in PPAD, PLS etc...
- oracle separations between the classes (in particular PPAD $=$ PLS)
- hard under cryptographic assumptions

PPAD \cap PLS seems unnatural...

PPAD \cap PLS seems unnatural...

Problem A : PPAD-complete
Problem B: PLS-complete

PPAD \cap PLS seems unnatural...

Problem A : PPAD-complete
Problem B : PLS-complete

EITHER-SOLUTION (A, B) :
Input: instance I_{A} of A, instance I_{B} of B
Goal: find a solution of I_{A}, or a solution of I_{B}

PPAD \cap PLS seems unnatural...

Problem A : PPAD-complete
Problem B: PLS-complete

EITHER-SOLUTION (A, B) :
Input: instance I_{A} of A, instance I_{B} of B
Goal: find a solution of I_{A}, or a solution of I_{B}
\rightarrow EITHER-SOLUTION (A, B) is (PPAD \cap PLS)-complete!

PPAD \cap PLS seems unnatural...

BROUWER:

Input: a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$
Goal: find a fixpoint x

$$
f(x)=x
$$

PPAD \cap PLS seems unnatural...

BROUWER:

Input: a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$, precision $\varepsilon>0$
Goal: find an approximate fixpoint x

$$
\|f(x)-x\| \leq \varepsilon
$$

PPAD \cap PLS seems unnatural...

BROUWER:

Input: a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$, precision $\varepsilon>0$
Goal: find an approximate fixpoint x

$$
\|f(x)-x\| \leq \varepsilon
$$

REAL-LOCAL-OPT:

Input:

- a continuous function $p:[0,1]^{n} \rightarrow[0,1]$
- a (possibly non-continuous) function $g:[0,1]^{n} \rightarrow[0,1]^{n}$

PPAD \cap PLS seems unnatural...

BROUWER:

Input: a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$, precision $\varepsilon>0$
Goal: find an approximate fixpoint x

$$
\|f(x)-x\| \leq \varepsilon
$$

REAL-LOCAL-OPT:

Input:

- a continuous function $p:[0,1]^{n} \rightarrow[0,1]$
- a (possibly non-continuous) function $g:[0,1]^{n} \rightarrow[0,1]^{n}$

Goal: find a local minimum of p with respect to g

$$
p(g(x)) \geq p(x)
$$

PPAD \cap PLS seems unnatural...

BROUWER:

Input: a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$, precision $\varepsilon>0$
Goal: find an approximate fixpoint x

$$
\|f(x)-x\| \leq \varepsilon
$$

REAL-LOCAL-OPT:

Input:

- a continuous function $p:[0,1]^{n} \rightarrow[0,1]$
- a (possibly non-continuous) function $g:[0,1]^{n} \rightarrow[0,1]^{n}$ Goal: find a local minimum of p with respect to g

$$
p(g(x)) \geq p(x)-\varepsilon
$$

$P P A D \cap P L S$ seems unnatural...

BROUWER:

Input: a continuous function $f:[0,1]^{n} \rightarrow[0,1]^{n}$, precision $\varepsilon>0$
Goal: find an approximate fixpoint x

$$
\|f(x)-x\| \leq \varepsilon
$$

REAL-LOCAL-OPT:

Input:

- a continuous function $p:[0,1]^{n} \rightarrow[0,1]$
- a (possibly non-continuous) function $g:[0,1]^{n} \rightarrow[0,1]^{n}$

Goal: find a local minimum of p with respect to g

$$
p(g(x)) \geq p(x)-\varepsilon
$$

\rightarrow EITHER-SOLUTION(BROUWER,LOCAL-OPT) is (PPAD \cap PLS)-complete.

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:

Input: continuous functions $g:[0,1]^{n} \rightarrow[0,1]^{n}$ and $p:[0,1]^{n} \rightarrow[0,1]$
Goal: find x such that

$$
p(g(x)) \geq p(x)-\varepsilon
$$

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:

Input: continuous functions $g:[0,1]^{n} \rightarrow[0,1]^{n}$ and $p:[0,1]^{n} \rightarrow[0,1]$
Goal: find x such that

$$
p(g(x)) \geq p(x)-\varepsilon
$$

\rightarrow class Continuous Local Search (CLS) [Daskalakis-Papadimitriou, 2011]

PPAD \cap PLS

EITHER-SOLUTION (A, B)

PPAD \cap PLS

PPAD \cap PLS

Motivation behind the classes

Motivation behind the classes

PPAD: "all problems that can be solved by a path-following algorithm" (Lemke-Howson algorithm for NASH)

Motivation behind the classes

PPAD: "all problems that can be solved by a path-following algorithm" (Lemke-Howson algorithm for NASH)

PLS: "all problems that can be solved by a local search algorithm"

Motivation behind the classes

PPAD: "all problems that can be solved by a path-following algorithm" (Lemke-Howson algorithm for NASH)

PLS: "all problems that can be solved by a local search algorithm"
CLS: "all problems that can be solved by a continuous local search algorithm"

Motivation behind the classes

PPAD: "all problems that can be solved by a path-following algorithm" (Lemke-Howson algorithm for NASH)

PLS: "all problems that can be solved by a local search algorithm"
CLS: "all problems that can be solved by a continuous local search algorithm"

GD: "all problems that can be solved by gradient descent"

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \longleftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \leftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Goal: find a point where gradient descent terminates

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \leftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Goal: find a point where gradient descent terminates

$$
\left[x^{\prime}:=x-\eta \nabla f(x)\right]
$$

GD-Local-Search:
Goal: find x such that $f\left(x^{\prime}\right) \geq f(x)-\varepsilon$
(the next iterate decreases f by at most ε)

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \leftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Goal: find a point where gradient descent terminates

$$
\left[x^{\prime}:=x-\eta \nabla f(x)\right]
$$

GD-Local-Search:
Goal: find x such that $f\left(x^{\prime}\right) \geq f(x)-\varepsilon \quad$ (the next iterate decreases f by at most ε)
\rightarrow in CLS: $\quad p(x):=f(x)$ and $g(x):=x-\eta \nabla f(x)$

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \leftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Goal: find a point where gradient descent terminates

$$
\left[x^{\prime}:=x-\eta \nabla f(x)\right]
$$

GD-Local-Search:
Goal: find x such that $f\left(x^{\prime}\right) \geq f(x)-\varepsilon$
(the next iterate decreases f by at most ε)

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \leftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Goal: find a point where gradient descent terminates

$$
\left[x^{\prime}:=x-\eta \nabla f(x)\right]
$$

GD-Local-Search:

Goal: find x such that $f\left(x^{\prime}\right) \geq f(x)-\varepsilon$
(the next iterate decreases f by at most ε)

GD-Fixed-Point:

Goal: find x such that $\left\|x^{\prime}-x\right\| \leq \varepsilon$

Gradient Descent Problems

GD: "all problems that can be solved by gradient descent"
Input: C^{1}-function $f:[0,1]^{n} \rightarrow[0,1]$, step size $\eta>0$, precision $\varepsilon>0$

$$
x_{k+1} \leftarrow x_{k}-\eta \nabla f\left(x_{k}\right)
$$

Goal: find a point where gradient descent terminates

$$
\left[x^{\prime}:=x-\eta \nabla f(x)\right]
$$

GD-Local-Search:

Goal: find x such that $f\left(x^{\prime}\right) \geq f(x)-\varepsilon$
(the next iterate decreases f by at most ε)

GD-Fixed-Point:

Goal: find x such that $\left\|x^{\prime}-x\right\| \leq \varepsilon$
(the next iterate is ε-close)
\rightarrow polynomial-time equivalent!

PPAD \cap PLS

PPAD \cap PLS

EITHER-SOLUTION (A, B)

PPAD \cap PLS

PPAD \cap PLS

EITHER-SOLUTION (A, B)

Consequences

Consequences

- PPAD \cap PLS is an interesting class!

Consequences

- PPAD \cap PLS is an interesting class!
- It captures continuous local search, and even gradient descent

Consequences

- PPAD \cap PLS is an interesting class!
- It captures continuous local search, and even gradient descent
- CLS and GD are robust with respect to:
$>$ dimension
$>$ domain
$>$ arithmetic circuits
> ...

Proof Sketch

PPAD

Canonical complete problem: END-OF-LINE

PPAD

Canonical complete problem: END-OF-LINE
Input: directed graph of paths and cycles, and a source

PPAD

Canonical complete problem: END-OF-LINE
Input: directed graph of paths and cycles, and a source

PPAD

Canonical complete problem: END-OF-LINE
Input: directed graph of paths and cycles, and a source

PPAD

Canonical complete problem: END-OF-LINE
Input: directed graph of paths and cycles, and a source
Goal: find a sink, or another source

PPAD

Canonical complete problem: END-OF-LINE
Input: directed graph of paths and cycles, and a source
Goal: find a sink, or another source

PPAD

Canonical complete problem: END-OF-LINE
Input: directed graph of paths and cycles, and a source
Goal: find a sink, or another source

Reduction: high level

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT
\rightarrow Construct a continuously differentiable function $f:[0,1]^{2} \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT
\rightarrow Construct a continuously differentiable function $f:[0,1]^{2} \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT
\rightarrow Construct a continuously differentiable function $f:[0,1]^{2} \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT
\rightarrow Construct a continuously differentiable function $f:[0,1]^{2} \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT
\rightarrow Construct a continuously differentiable function $f:[0,1]^{2} \rightarrow \mathbb{R}$ such that any gradient descent fixed point yields a solution to the EITHER-SOLUTION instance

Warm up: Monotone-End-of-Line

Warm up: Monotone-End-of-Line
0
(1)
(2)
3
(4)
5
(6)
(7)

Warm up: Monotone-End-of-Line

Special case of END-OF-LINE: No backward edges allowed!

Warm up: Monotone-End-of-Line

Special case of END-OF-LINE: No backward edges allowed!

Warm up: Monotone-End-of-Line

Special case of END-OF-LINE: No backward edges allowed!

Locally computable!
[Hubáček-Yogev, 2017] for CLS

Back to standard End-of-Line

Back to standard End-of-Line

0
(1)
(2)
(3)
(4)
(5)
(6)
(7)

Back to standard End-of-Line

Back to standard End-of-Line

green edges: forward
red edges: backwards

\rightarrow to find a gradient descent fixed point, we have to solve the PPAD problem or the PLS problem

Future Directions

- are there other intersections of classes that are interesting?

Future Directions

- are there other intersections of classes that are interesting?
- candidates for (PPAD \cap PLS)-completeness:
> CONTRACTION
$>$ TARSKI
> POLYNOMIAL-KKT
> MIXED-CONGESTION

Future Directions

- are there other intersections of classes that are interesting?
- candidates for (PPAD \cap PLS)-completeness:
> CONTRACTION
$>$ TARSKI
> POLYNOMIAL-KKT
> MIXED-CONGESTION \square Solved!

Future Directions

- are there other intersections of classes that are interesting?
- candidates for (PPAD \cap PLS)-completeness:
> CONTRACTION
> TARSKI
> POLYNOMIAL-KKT
> MIXED-CONGESTION
Solved!
[Babichenko-Rubinstein, 2020]
2D-GD-FIXED-POINT \leq MIXED-CONGESTION \leq POLYNOMIAL-KKT

Thank You!

