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What do these problems have in common?

NASH:

Find a mixed Nash equilibrium of a game.  —

FACTORING: They are NP Total Search (TFNP) problems!
Find a prime factor of a numbern = 2. « Total: there is always a solution
BROUWER: * NP:itis easy to verify solutions

Find a fixpoint of a continuous function f:[0,1]3— [0,1]3. w
CONTRACTION:

Find the unique fixpoint of a contraction f:[0,1]™"— [0,1]™. Can a TENP problem be NP-hard?

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Not unless co-NP = NP...
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The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

How do we show that a TENP-problem is hard:
= No TFNP-problem can be NP-hard, unless NP = coNP...

= Believed that no TFNP-complete problems exists...
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TFENP subclasses

What reasons are there to believe that PPAD # P, PLS # P, etc?
* many seemingly hard problems lie in PPAD, PLS etc...
* oracle separations between the classes (in particular PPAD # PLS)

* hard under cryptographic assumptions
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Goal: find an approximate fixpoint x

If(x) —x|| < ¢

REAL-LOCAL-OPT:

Input:

- a continuous function p: [0,1]"— [0,1]

- a (possibly non-continuous) function g:[0,1]"*— [0,1]"
Goal: find a local minimum of p with respect to g

p(g(x) = px) —¢

— EITHER-SOLUTION(BROUWER,LOCAL-OPT) is (PPAD N PLS)-complete.
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But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:
Input: continuous functions g: [0,1]"— [0,1]™ and p: [0,1]"— [0,1]
Goal: find x such that

p(g(x) = px) —¢

— class Continuous Local Search (CLS) [Daskalakis-Papadimitriou, 2011]
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GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xi+1 < Xk —NVf(xg)

Goal: find a point where gradient descent terminates
[x" = x—nVf(x)]

GD-Local-Search:
Goal: find x suchthat f(x') = f(x) — ¢ (the next iterate decreases f by at most )

GD-Fixed-Point:
Goal: find x such that ||x' — x|| < ¢ (the next iterate is e-close)

— polynomial-time equivalent!
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Conseguences

« PPAD n PLS is an interesting class!
- It captures continuous local search, and even gradient descent

* CLS and GD are robust with respect to:
» dimension
» domain

» arithmetic circuits
> ..
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Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source Y
| *
/The catch: the graph is given implicitly\ ‘
[ > @ o | > @

Vertex set {0,1}" —®
Boolean circuits S and P

successor circuit S: {0,1}" - {0,1}"

®——0
RN
\ / predecessor circuit P: {0,1}" - {0,1}"
o——o *_K >y e
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[Hubacek-Yogev, 2017] for CLS
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Requires solving the PLS instance!







— to find a gradient descent fixed
point, we have to solve the PPAD
problem or the PLS problem
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[Babichenko-l}ubinstein, 2020]
2D-GD-FIXED-POINT < MIXED-CONGESTION < POLYNOMIAL-KKT



Thank You!




