
The Complexity of Gradient Descent:
CLS = PPAD ∩ PLS

ALEXANDROS HOLLENDER

J O I N T WO R K W I T H JOHN FEARNLEY, PAUL GOLDBERG A N D RAHUL SAVANI

Some interesting computational problems

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction 𝑓: 0,1 𝑛→ [0,1]𝑛.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction 𝑓: 0,1 𝑛→ [0,1]𝑛.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction 𝑓: 0,1 𝑛→ [0,1]𝑛.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction 𝑓: 0,1 𝑛→ [0,1]𝑛.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?

They are NP Total Search (TFNP) problems!
• Total: there is always a solution
• NP: it is easy to verify solutions

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction 𝑓: 0,1 𝑛→ [0,1]𝑛.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?

They are NP Total Search (TFNP) problems!
• Total: there is always a solution
• NP: it is easy to verify solutions

Can a TFNP problem be NP-hard?

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a number 𝑛 ≥ 2.

BROUWER:
Find a fixpoint of a continuous function 𝑓: 0,1 3→ [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction 𝑓: 0,1 𝑛→ [0,1]𝑛.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

What do these problems have in common?

They are NP Total Search (TFNP) problems!
• Total: there is always a solution
• NP: it is easy to verify solutions

Can a TFNP problem be NP-hard?

Not unless co-NP = NP…

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

TFNP lies between P and NP (search versions)

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP…

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP…

3-SAT ≤ NASH ⇒ certificate for unsatisfiable 3-SAT formulas

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP…

The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP…

▪ Believed that no TFNP-complete problems exists…

TFNP

The TFNP landscape

P

TFNP

The TFNP landscape

PPP

P

Pigeonhole Principle

TFNP

The TFNP landscape

PPP

PPA

P

Pigeonhole Principle Parity Argument
Borsuk-Ulam

TFNP

The TFNP landscape

PPP

PPA

PLS

P

Pigeonhole Principle

Local Search Argument
PURE-CONGESTION
LOCAL-MAX-CUT

Parity Argument
Borsuk-Ulam

TFNP

The TFNP landscape

PPP

PPA

PLSPPAD

P

Pigeonhole Principle

Directed Graph Argument
NASH
BROUWER

Local Search Argument
PURE-CONGESTION
LOCAL-MAX-CUT

Parity Argument
Borsuk-Ulam

TFNP

The TFNP landscape

PPP

PPA

PLSPPAD

P

Pigeonhole Principle

Directed Graph Argument
NASH
BROUWER

Local Search Argument
PURE-CONGESTION
LOCAL-MAX-CUT

Parity Argument
Borsuk-Ulam

FACTORING

TFNP subclasses

What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

TFNP subclasses

What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

• many seemingly hard problems lie in PPAD, PLS etc…

TFNP subclasses

What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

• many seemingly hard problems lie in PPAD, PLS etc…

• oracle separations between the classes (in particular PPAD ≠ PLS)

TFNP subclasses

What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

• many seemingly hard problems lie in PPAD, PLS etc…

• oracle separations between the classes (in particular PPAD ≠ PLS)

• hard under cryptographic assumptions

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTIONBROUWER

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTIONBROUWER

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTION

CONTRACTION

BROUWER

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTION

MIXED-CONGESTION

CONTRACTION

BROUWER

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTION

MIXED-CONGESTION

CONTRACTION

BROUWER

PPAD ∩ PLS

P-LCP

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTION

MIXED-CONGESTION

CONTRACTION

BROUWER

PPAD ∩ PLS

TARSKIP-LCP

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT

PURE-CONGESTION

MIXED-CONGESTION

CONTRACTION

BROUWER

PPAD ∩ PLS

TARSKI
SSGs

P-LCP

PPAD ∩ PLS seems unnatural…

PPAD ∩ PLS seems unnatural…

Problem 𝐴 : PPAD-complete

Problem 𝐵 : PLS-complete

PPAD ∩ PLS seems unnatural…

Problem 𝐴 : PPAD-complete

Problem 𝐵 : PLS-complete

EITHER-SOLUTION(𝑨,𝑩):
Input: instance 𝐼𝐴 of 𝐴, instance 𝐼𝐵 of 𝐵
Goal: find a solution of 𝐼𝐴, or a solution of 𝐼𝐵

PPAD ∩ PLS seems unnatural…

Problem 𝐴 : PPAD-complete

Problem 𝐵 : PLS-complete

EITHER-SOLUTION(𝑨,𝑩):
Input: instance 𝐼𝐴 of 𝐴, instance 𝐼𝐵 of 𝐵
Goal: find a solution of 𝐼𝐴, or a solution of 𝐼𝐵

→ EITHER-SOLUTION(𝑨,𝑩) is (PPAD ∩ PLS)-complete!

PPAD ∩ PLS seems unnatural…
BROUWER:
Input: a continuous function 𝑓: 0,1 𝑛→ [0,1]𝑛

Goal: find a fixpoint 𝑥
𝑓 𝑥 = 𝑥

PPAD ∩ PLS seems unnatural…
BROUWER:
Input: a continuous function 𝑓: 0,1 𝑛→ [0,1]𝑛, precision 𝜀 > 0
Goal: find an approximate fixpoint 𝑥

𝑓 𝑥 − 𝑥 ≤ 𝜀

PPAD ∩ PLS seems unnatural…
BROUWER:
Input: a continuous function 𝑓: 0,1 𝑛→ [0,1]𝑛, precision 𝜀 > 0
Goal: find an approximate fixpoint 𝑥

𝑓 𝑥 − 𝑥 ≤ 𝜀

REAL-LOCAL-OPT:
Input:
- a continuous function 𝑝: [0,1]𝑛→ 0,1
- a (possibly non-continuous) function 𝑔: 0,1 𝑛→ [0,1]𝑛

PPAD ∩ PLS seems unnatural…
BROUWER:
Input: a continuous function 𝑓: 0,1 𝑛→ [0,1]𝑛, precision 𝜀 > 0
Goal: find an approximate fixpoint 𝑥

𝑓 𝑥 − 𝑥 ≤ 𝜀

REAL-LOCAL-OPT:
Input:
- a continuous function 𝑝: [0,1]𝑛→ 0,1
- a (possibly non-continuous) function 𝑔: 0,1 𝑛→ [0,1]𝑛

Goal: find a local minimum of 𝑝 with respect to 𝑔
𝑝 𝑔 𝑥 ≥ 𝑝 𝑥

PPAD ∩ PLS seems unnatural…
BROUWER:
Input: a continuous function 𝑓: 0,1 𝑛→ [0,1]𝑛, precision 𝜀 > 0
Goal: find an approximate fixpoint 𝑥

𝑓 𝑥 − 𝑥 ≤ 𝜀

REAL-LOCAL-OPT:
Input:
- a continuous function 𝑝: [0,1]𝑛→ 0,1
- a (possibly non-continuous) function 𝑔: 0,1 𝑛→ [0,1]𝑛

Goal: find a local minimum of 𝑝 with respect to 𝑔
𝑝 𝑔 𝑥 ≥ 𝑝 𝑥 − 𝜀

PPAD ∩ PLS seems unnatural…
BROUWER:
Input: a continuous function 𝑓: 0,1 𝑛→ [0,1]𝑛, precision 𝜀 > 0
Goal: find an approximate fixpoint 𝑥

𝑓 𝑥 − 𝑥 ≤ 𝜀

REAL-LOCAL-OPT:
Input:
- a continuous function 𝑝: [0,1]𝑛→ 0,1
- a (possibly non-continuous) function 𝑔: 0,1 𝑛→ [0,1]𝑛

Goal: find a local minimum of 𝑝 with respect to 𝑔
𝑝 𝑔 𝑥 ≥ 𝑝 𝑥 − 𝜀

→ EITHER-SOLUTION(BROUWER,LOCAL-OPT) is (PPAD ∩ PLS)-complete.

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural…

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural…

CONTINUOUS-LOCAL-OPT:
Input: continuous functions 𝑔: 0,1 𝑛→ [0,1]𝑛 and 𝑝: [0,1]𝑛→ [0,1]
Goal: find 𝑥 such that

𝑝 𝑔 𝑥 ≥ 𝑝 𝑥 − 𝜀

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural…

CONTINUOUS-LOCAL-OPT:
Input: continuous functions 𝑔: 0,1 𝑛→ [0,1]𝑛 and 𝑝: [0,1]𝑛→ [0,1]
Goal: find 𝑥 such that

𝑝 𝑔 𝑥 ≥ 𝑝 𝑥 − 𝜀

→ class Continuous Local Search (CLS) [Daskalakis-Papadimitriou, 2011]

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

P

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS
CONTINUOUS-LOCAL-OPT

P

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS
CONTINUOUS-LOCAL-OPT

P

SSGs

MIXED-CONGESTION

CONTRACTION

P-LCP

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs

MIXED-CONGESTION

CONTRACTION

P-LCP

[Daskalakis-Tzamos-Zampetakis, 2018]

Motivation behind the classes

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

CLS: “all problems that can be solved by a continuous local search algorithm”

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

CLS: “all problems that can be solved by a continuous local search algorithm”

GD: “all problems that can be solved by gradient descent”

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Goal: find a point where gradient descent terminates

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Goal: find a point where gradient descent terminates
[𝑥′ ≔ 𝑥 − 𝜂∇𝑓(𝑥)]

GD-Local-Search:
Goal: find 𝑥 such that 𝑓 𝑥′ ≥ 𝑓 𝑥 − 𝜀 (the next iterate decreases 𝑓 by at most 𝜀)

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Goal: find a point where gradient descent terminates
[𝑥′ ≔ 𝑥 − 𝜂∇𝑓(𝑥)]

GD-Local-Search:
Goal: find 𝑥 such that 𝑓 𝑥′ ≥ 𝑓 𝑥 − 𝜀 (the next iterate decreases 𝑓 by at most 𝜀)

→ in CLS: 𝑝 𝑥 ≔ 𝑓 𝑥 and 𝑔 𝑥 ≔ 𝑥 − 𝜂∇𝑓(𝑥)

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Goal: find a point where gradient descent terminates
[𝑥′ ≔ 𝑥 − 𝜂∇𝑓(𝑥)]

GD-Local-Search:
Goal: find 𝑥 such that 𝑓 𝑥′ ≥ 𝑓 𝑥 − 𝜀 (the next iterate decreases 𝑓 by at most 𝜀)

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Goal: find a point where gradient descent terminates
[𝑥′ ≔ 𝑥 − 𝜂∇𝑓(𝑥)]

GD-Local-Search:
Goal: find 𝑥 such that 𝑓 𝑥′ ≥ 𝑓 𝑥 − 𝜀 (the next iterate decreases 𝑓 by at most 𝜀)

GD-Fixed-Point:
Goal: find 𝑥 such that 𝑥′ − 𝑥 ≤ 𝜀 (the next iterate is 𝜀-close)

Gradient Descent Problems
GD: “all problems that can be solved by gradient descent”

Input: 𝐶1-function 𝑓: 0,1 𝑛→ [0,1], step size 𝜂 > 0, precision 𝜀 > 0

𝑥𝑘+1 ⟵ 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘)

Goal: find a point where gradient descent terminates
[𝑥′ ≔ 𝑥 − 𝜂∇𝑓(𝑥)]

GD-Local-Search:
Goal: find 𝑥 such that 𝑓 𝑥′ ≥ 𝑓 𝑥 − 𝜀 (the next iterate decreases 𝑓 by at most 𝜀)

GD-Fixed-Point:
Goal: find 𝑥 such that 𝑥′ − 𝑥 ≤ 𝜀 (the next iterate is 𝜀-close)

→ polynomial-time equivalent!

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs

MIXED-CONGESTION

CONTRACTION

P-LCP

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

GD
GD-FIXED-POINT

MIXED-CONGESTION

CONTRACTION

SSGs

P-LCP

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

GD
GD-FIXED-POINT

MIXED-CONGESTION

CONTRACTION

SSGs

P-LCP

2D-GD-FIXED-POINT

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

GD
GD-FIXED-POINT

MIXED-CONGESTION

CONTRACTION

SSGs

P-LCP

2D-GD-FIXED-POINT

PPAD ∩ PLS

EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

GD
GD-FIXED-POINT

MIXED-CONGESTION

CONTRACTION

SSGs

P-LCP

2D-GD-FIXED-POINT

PPAD ∩ PLS = CLS = GD
EITHER-SOLUTION(𝐴, 𝐵)

BANACH
CONTINUOUS-LOCAL-OPT

P

2D-GD-FIXED-POINT

MIXED-CONGESTION

CONTRACTION

SSGs

P-LCP

Consequences

Consequences

• PPAD ∩ PLS is an interesting class!

Consequences

• PPAD ∩ PLS is an interesting class!

• It captures continuous local search, and even gradient descent

Consequences

• PPAD ∩ PLS is an interesting class!

• It captures continuous local search, and even gradient descent

• CLS and GD are robust with respect to:
➢ dimension

➢ domain

➢ arithmetic circuits

➢ …

Proof Sketch

PPAD
Canonical complete problem: END-OF-LINE

PPAD
Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

PPAD
Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

PPAD
Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

PPAD
Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source

PPAD
Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source

PPAD
Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source

The catch: the graph is given implicitly

Vertex set 0,1 𝑛

Boolean circuits 𝑆 and 𝑃

successor circuit 𝑆: 0,1 𝑛 → 0,1 𝑛

predecessor circuit 𝑃: 0,1 𝑛 → 0,1 𝑛

Reduction: high level

Reduction: high level
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

Reduction: high level
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function 𝑓: 0,1 2 → ℝ such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

Reduction: high level
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function 𝑓: 0,1 2 → ℝ such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

0,1 2

Reduction: high level
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function 𝑓: 0,1 2 → ℝ such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

0,1 2

Reduction: high level
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function 𝑓: 0,1 2 → ℝ such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

0,1 2

(0,0)

Reduction: high level
Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

→ Construct a continuously differentiable function 𝑓: 0,1 2 → ℝ such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

0,1 2

(0,0)

(0,0)

(0,0)

Warm up: Monotone-End-of-Line

Warm up: Monotone-End-of-Line

0 1 2 3 4 5 6 7

Warm up: Monotone-End-of-Line

0 1 2 3 4 5 6 7

Special case of END-OF-LINE: No backward edges allowed!

Warm up: Monotone-End-of-Line

1 2 3 4 5 6 7

Special case of END-OF-LINE: No backward edges allowed!

0

Warm up: Monotone-End-of-Line

1 3 5 6

Special case of END-OF-LINE: No backward edges allowed!

0 2 4 7

1 2 3 4 5 6 70

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0

0

1

2

3

4

5

6

7

0

1 3 5 60 2 4 7

1

2

3

4

5

6

7

[Hubáček-Yogev, 2017] for CLS

0

1 3 5 60 2 4 7

Locally computable!

Back to standard End-of-Line

Back to standard End-of-Line

1 2 3 4 5 6 70

Back to standard End-of-Line

1 2 3 4 5 6 70

Back to standard End-of-Line

1 2 3 4 5 6 70

green edges: forward
red edges: backwards

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

PLS
Labyrinth

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

Requires solving the PLS instance!

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

→ to find a gradient descent fixed
point, we have to solve the PPAD
problem or the PLS problem

Future Directions

• are there other intersections of classes that are interesting?

Future Directions

• are there other intersections of classes that are interesting?

• candidates for (PPAD ∩ PLS)-completeness:
➢ CONTRACTION

➢ TARSKI

➢ POLYNOMIAL-KKT

➢ MIXED-CONGESTION

Future Directions

• are there other intersections of classes that are interesting?

• candidates for (PPAD ∩ PLS)-completeness:
➢ CONTRACTION

➢ TARSKI

➢ POLYNOMIAL-KKT

➢ MIXED-CONGESTION
Solved!

Future Directions

• are there other intersections of classes that are interesting?

• candidates for (PPAD ∩ PLS)-completeness:
➢ CONTRACTION

➢ TARSKI

➢ POLYNOMIAL-KKT

➢ MIXED-CONGESTION

[Babichenko-Rubinstein, 2020]

2D-GD-FIXED-POINT ≤ MIXED-CONGESTION ≤ POLYNOMIAL-KKT

Solved!

Thank You!

