The Complexity of Gradient Descent:
CLS = PPAD N PLS

ALEXANDROS HOLLENDER
JOINT WoRK WITH JOHN FEARNLEY, PAUL GOLDBERG anpD RAHUL SAVAN|

s
/< O A\

- O\

NPT A
)/ s \AN\O) |
*,(& /Sy

S

Some interesting computational problems

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a numbern = 2.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a numbern = 2.

BROUWER:
Find a fixpoint of a continuous function f:[0,1]3- [0,1]3.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a numbern = 2.

BROUWER:
Find a fixpoint of a continuous function f:[0,1]3- [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction f:[0,1]"— [0,1]™.

Some interesting computational problems

NASH:
Find a mixed Nash equilibrium of a game.

FACTORING:
Find a prime factor of a numbern = 2.

BROUWER:
Find a fixpoint of a continuous function f:[0,1]3— [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction f:[0,1]"— [0,1]™.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

‘ 2
NASH: What do these problems have in common:

Find a mixed Nash equilibrium of a game. —

FACTORING:
Find a prime factor of a numbern = 2.

BROUWER:
Find a fixpoint of a continuous function f:[0,1]3— [0,1]3.

CONTRACTION:
Find the unique fixpoint of a contraction f:[0,1]"— [0,1]™.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

What do these problems have in common?

NASH:

Find a mixed Nash equilibrium of a game. —

FACTORWG: They are NP Total Search (TFNP) problems!
Find a prime factor of a numbern = 2. . Total: there is always a solution
BROUWER: * NP:itis easy to verify solutions

Find a fixpoint of a continuous function f:[0,1]3— [0,1]3. w
CONTRACTION:

Find the unique fixpoint of a contraction f:[0,1]"— [0,1]™.

PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

What do these problems have in common?

NASH:

Find a mixed Nash equilibrium of a game. —

FACTORWG: They are NP Total Search (TFNP) problems!
Find a prime factor of a numbern = 2. « Total: there is always a solution
BROUWER: * NP:itis easy to verify solutions

Find a fixpoint of a continuous function f:[0,1]3— [0,1]3. w
CONTRACTION:

Find the unique fixpoint of a contraction f:[0,1]™"— [0,1]™. Can a TENP problem be NP-hard?

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Some interesting computational problems

What do these problems have in common?

NASH:

Find a mixed Nash equilibrium of a game. —

FACTORING: They are NP Total Search (TFNP) problems!
Find a prime factor of a numbern = 2. « Total: there is always a solution
BROUWER: * NP:itis easy to verify solutions

Find a fixpoint of a continuous function f:[0,1]3— [0,1]3. w
CONTRACTION:

Find the unique fixpoint of a contraction f:[0,1]™"— [0,1]™. Can a TENP problem be NP-hard?

PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game.

Not unless co-NP = NP...

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO

* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

TFENP lies between P and NP (search versions)

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

How do we show that a TENP-problem is hard:

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

How do we show that a TENP-problem is hard:

= No TFNP-problem can be NP-hard, unless NP = coNP...

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

How do we show that a TENP-problem is hard:
= No TFNP-problem can be NP-hard, unless NP = coNP...

3-SAT < NASH = certificate for unsatisfiable 3-SAT formulas

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

How do we show that a TENP-problem is hard:

= No TFNP-problem can be NP-hard, unless NP = coNP...

The class TENP [Megiddo-Papadimitriou, 1991]

Total NP search problems:
* “search” : looking for a solution, not just YES or NO
* “NP”: any solution can be checked efficiently

* “total”: there always exists at least one solution

How do we show that a TENP-problem is hard:
= No TFNP-problem can be NP-hard, unless NP = coNP...

= Believed that no TFNP-complete problems exists...

The TENP l[andscape

TFNP

()

The TENP l[andscape

Pigeonhole Principle

TFNP

PPP

The TENP l[andscape

Pigeonhole Principle Parity Argument

TFNP

B

The TENP l[andscape

Pigeonhole Principle Parity Argument

Borsuk-Ulam

Local Search Argument
PURE-CONGESTION
LOCAL-MAX-CUT

The TENP l[andscape

Pigeonhole Principle Parity Argument

Borsuk-Ulam

Local Search Argument
PURE-CONGESTION

Directed Graph Argument
LOCAL-MAX-CUT

NASH
BROUWER

The TENP l[andscape

Pigeonhole Principle Parity Argument

Borsuk-Ulam

Local Search Argument
PURE-CONGESTION

Directed Graph Argument
LOCAL-MAX-CUT

NASH
BROUWER

TFENP subclasses

What reasons are there to believe that PPAD # P, PLS # P, etc?

TFENP subclasses

What reasons are there to believe that PPAD # P, PLS # P, etc?

* many seemingly hard problems lie in PPAD, PLS etc...

TFENP subclasses

What reasons are there to believe that PPAD # P, PLS # P, etc?

* many seemingly hard problems lie in PPAD, PLS etc...

* oracle separations between the classes (in particular PPAD # PLS)

TFENP subclasses

What reasons are there to believe that PPAD # P, PLS # P, etc?
* many seemingly hard problems lie in PPAD, PLS etc...
* oracle separations between the classes (in particular PPAD # PLS)

* hard under cryptographic assumptions

PPAD

BROUWER NASH

PLS

NASH LOCAL-MAX-CUT
BROUWER PURE-CONGESTION

PPAD

PPAD N PLS

PLS

NASH LOCAL-MAX-CUT
BROUWER PURE-CONGESTION

PPAD

PPAD N PLS
CONTRACTION

PLS

NASH LOCAL-MAX-CUT
BROUWER PURE-CONGESTION

PPAD

PPAD N PLS
CONTRACTION
MIXED-CONGESTION

PLS

NASH LOCAL-MAX-CUT
BROUWER PURE-CONGESTION

PPAD

PPAD N PLS
CONTRACTION

MIXED-CONGESTION
P-LCP

PLS

NASH LOCAL-MAX-CUT
BROUWER PURE-CONGESTION

PPAD

PPAD N PLS
CONTRACTION
MIXED-CONGESTION
P-LCP TARSKI

PLS

NASH LOCAL-MAX-CUT
BROUWER PURE-CONGESTION

PPAD

PPAD N PLS
CONTRACTION
MIXED-CONGESTION
P-LCP TARSKI

SSGs

PPAD N PLS seems unnatural...

PPAD N PLS seems unnatural...

Problem A : PPAD-complete

Problem B : PLS-complete

PPAD N PLS seems unnatural...

Problem A : PPAD-complete
Problem B : PLS-complete

EITHER-SOLUTION(A,B):
Input: instance I, of 4, instance Iz of B
Goal: find a solution of 14, or a solution of I

PPAD N PLS seems unnatural...

Problem A : PPAD-complete
Problem B : PLS-complete

EITHER-SOLUTION(A,B):
Input: instance I, of 4, instance Iz of B
Goal: find a solution of 14, or a solution of I

— EITHER-SOLUTION(A,B) is (PPAD N PLS)-complete!

PPAD N PLS seems unnatural...

BROUWER:
Input: a continuous function f:[0,1]"— [0,1]"
Goal: find a fixpoint x

flx)=x

PPAD N PLS seems unnatural...

BROUWER:
Input: a continuous function f:[0,1]™— [0,1]™, precision € > 0
Goal: find an approximate fixpoint x

If(x) — x| < e

PPAD N PLS seems unnatural...

BROUWER:
Input: a continuous function f:[0,1]™— [0,1]™, precision € > 0
Goal: find an approximate fixpoint x

If(x) —x|| < ¢

REAL-LOCAL-OPT:

Input:

- a continuous function p: [0,1]"— [0,1]

- a (possibly non-continuous) function g:[0,1]"*— [0,1]"

PPAD N PLS seems unnatural...

BROUWER:
Input: a continuous function f:[0,1]™— [0,1]™, precision € > 0
Goal: find an approximate fixpoint x

If(x) —x|| < ¢

REAL-LOCAL-OPT:

Input:

- a continuous function p: [0,1]"— [0,1]

- a (possibly non-continuous) function g:[0,1]"*— [0,1]"
Goal: find a local minimum of p with respect to g

p(g(x)) = p(x)

PPAD N PLS seems unnatural...

BROUWER:
Input: a continuous function f:[0,1]™— [0,1]™, precision € > 0
Goal: find an approximate fixpoint x

If(x) —x|| < ¢

REAL-LOCAL-OPT:

Input:

- a continuous function p: [0,1]"— [0,1]

- a (possibly non-continuous) function g:[0,1]"*— [0,1]"

Goal: find a local minimum of p with respect to g
p(9(x) =p(x) —&

PPAD N PLS seems unnatural...

BROUWER:
Input: a continuous function f:[0,1]™— [0,1]™, precision € > 0
Goal: find an approximate fixpoint x

If(x) —x|| < ¢

REAL-LOCAL-OPT:

Input:

- a continuous function p: [0,1]"— [0,1]

- a (possibly non-continuous) function g:[0,1]"*— [0,1]"
Goal: find a local minimum of p with respect to g

p(g(x) = px) —¢

— EITHER-SOLUTION(BROUWER,LOCAL-OPT) is (PPAD N PLS)-complete.

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:
Input: continuous functions g: [0,1]"— [0,1]™ and p: [0,1]"— [0,1]
Goal: find x such that

p(9(0) 2 p(x) — &

Continuous Local Search

But EITHER-SOLUTION(BROUWER,LOCAL-OPT) is not very natural...

CONTINUOUS-LOCAL-OPT:
Input: continuous functions g: [0,1]"— [0,1]™ and p: [0,1]"— [0,1]
Goal: find x such that

p(g(x) = px) —¢

— class Continuous Local Search (CLS) [Daskalakis-Papadimitriou, 2011]

PPAD N PLS
EITHER-SOLUTION(A, B)

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS
CONTINUOUS-LOCAL-OPT

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS
CONTINUOUS-LOCAL-OPT

CONTRACTION

MIXED-CONGESTION

SSGs P-LCP

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

CONTRACTION

MIXED-CONGESTION

SSGs P-LCP

[Daskalakis-Tzamos-Zampetakis, 2018]

Motivation behind the classes

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

CLS: “all problems that can be solved by a continuous local search algorithm”

Motivation behind the classes

PPAD: “all problems that can be solved by a path-following algorithm”
(Lemke-Howson algorithm for NASH)

PLS: “all problems that can be solved by a local search algorithm”

)

CLS: “all problems that can be solved by a continuous local search algorithm’

GD: “all problems that can be solved by gradient descent”

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xi+1 < Xk —NVf(xg)

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”
Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xi+1 < Xk —NVf(xg)

Goal: find a point where gradient descent terminates

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xi+1 < Xk —NVf(xg)

Goal: find a point where gradient descent terminates
[x" = x—nVf(x)]

GD-Local-Search:
Goal: find x suchthat f(x') = f(x) — ¢ (the next iterate decreases f by at most)

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xp+1 < X —NVf(xk)
Goal: find a point where gradient descent terminates
[x" = x—nVf(x)]
GD-Local-Search:
Goal: find x suchthat f(x') = f(x) — ¢ (the next iterate decreases f by at most)

= inCLS: p(x) :== f(x) and g(x) == x —nVf(x)

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xi+1 < Xk —NVf(xg)

Goal: find a point where gradient descent terminates
[x" = x—nVf(x)]

GD-Local-Search:
Goal: find x suchthat f(x') = f(x) — ¢ (the next iterate decreases f by at most)

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xp+1 < X —NVf(xk)
Goal: find a point where gradient descent terminates
[x" = x—nVf(x)]
GD-Local-Search:
Goal: find x suchthat f(x') = f(x) — ¢ (the next iterate decreases f by at most)

GD-Fixed-Point:
Goal: find x such that ||x' — x|| < ¢ (the next iterate is e-close)

Gradient Descent Problems

GD: “all problems that can be solved by gradient descent”

Input: Cl-function f:[0,1]"— [0,1], step sizen > 0, precision £ > 0

Xi+1 < Xk —NVf(xg)

Goal: find a point where gradient descent terminates
[x" = x—nVf(x)]

GD-Local-Search:
Goal: find x suchthat f(x') = f(x) — ¢ (the next iterate decreases f by at most)

GD-Fixed-Point:
Goal: find x such that ||x' — x|| < ¢ (the next iterate is e-close)

— polynomial-time equivalent!

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

CONTRACTION

MIXED-CONGESTION

SSGs P-LCP

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

GD

GD-FIXED-POINT
_________________ CONTRACTION

SSGs

MIXED-CONGESTION | P-LCP

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

________________ CONTRACTION
SSGs
P-LCP

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

GD

GD-FIXED-POINT
_________________ CONTRACTION

2D-GD-FIXED-POINT

SSGs
P-LCP

MIXED-CONGESTION

PPAD N PLS
EITHER-SOLUTION(A, B)

CLS

CONTINUOUS-LOCAL-OPT
BANACH

GD

GD-FIXED-POINT
_________________ CONTRACTION

2D-GD-FIXED-POINT

SSGs

MIXED-CONGESTION | P-LCP

PPAD N PLS =CLS =GD

EITHER-SOLUTION(4, B)
CONTINUOUS-LOCAL-OPT

BANACH
2D-GD-FIXED-POINT

CONTRACTION

SSGs
MIXED-CONGESTION ~ p_|cp

Conseguences

Consequences

- PPAD N PLS is an interesting class!

Conseguences

- PPAD N PLS is an interesting class!

- It captures continuous local search, and even gradient descent

Conseguences

« PPAD n PLS is an interesting class!
- It captures continuous local search, and even gradient descent

* CLS and GD are robust with respect to:
» dimension
» domain

» arithmetic circuits
> ..

Proof Sketch

PPAD

Canonical complete problem: END-OF-LINE

PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

@
@
v
@ @ @ @ o
|- |- |- |-
: : ® o @ S
A
Q@ ——@ v
/ o
® @
A
@
O Q@ — @ — @
®e—©O @ +— @ — Q@ — @

PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

@
@
v
@
B > > b >
~e = i - e 0 -@
S
.4_‘ v
/ "
® @
A
@
o Q@ — Q@ — @
@ —©0 @ — @ — @ — @

PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source O
@
v
E——e——0——0— ?
E - E @ ® >@ >@
.4_. v
o ~
@
\ / |
— Q@ — Q@ — ()
®— @ ® o—0———0—0

PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source Y
v
@
O @ 0 @ -k o @ @
.4_. v
o ~
@
\ / |
“— @ — @ — @
®e— @ * o—o0——0——K

PPAD

Canonical complete problem: END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source Y
| *
/The catch: the graph is given implicitly\ ‘
[> @ o | > @

Vertex set {0,1}" —®
Boolean circuits S and P

successor circuit S: {0,1}" - {0,1}"

®——0
RN
\ / predecessor circuit P: {0,1}" - {0,1}"
o——o *_K >y e

Reduction: high level

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

- Construct a continuously differentiable function f:[0,1]? » R such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

- Construct a continuously differentiable function f:[0,1]? » R such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

[0,1]

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

- Construct a continuously differentiable function f:[0,1]? » R such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

/S v v XK
/
4 // Z
4 S
e)
x /
7 2 2 s
//////
“ L s

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

- Construct a continuously differentiable function f:[0,1]? » R such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

sy v v ¥
/

4 // Z

4

Reduction: high level

Goal: reduction from EITHER-SOLUTION(END-OF-LINE, LOCAL-OPT) to 2D-GD-FIXED-POINT

- Construct a continuously differentiable function f:[0,1]? » R such that any gradient
descent fixed point yields a solution to the EITHER-SOLUTION instance

2\

S v v XK
///// 1.5\
4

v
K/ // / / /
"
Y v
Y i
X / /

/
K/ / / / / /
“
P /
x/ / /
y < 7

(0,0) L—=—*

Warm up: Monotone-End-of-Line

Warm up: Monotone-End-of-Line

Warm up: Monotone-End-of-Line

N N
0O—0 0 60 0 06 0
N -/

Special case of END-OF-LINE: No backward edges allowed!

Warm up: Monotone-End-of-Line

N N
0H—6 0 -0 06 0 o0
N -/

Special case of END-OF-LINE: No backward edges allowed!

Warm up: Monotone-End-of-Line

b6 « 0% 6 0 %

N

Special case of END-OF-LINE: No backward edges allowed!

—O0 0 00

—O0 0 00

II— 06 060 6 0 0

AW
TTJ NN\
e N\ N
> SER NN
S /q
NN q/
NN 7;/
N " !
N -
. e ™ W a

II— 06 060 6 0 0

AW
AIAM ~ NN
e N\ N
> SRS N
, /a
N q q/
N N T
/ N !
e -«
. A ~ N\ f

—% ©
S

¥
~—

E—©

W
AlTw ~ NN
N\ N\ W
> SRS N
. g
N q q/
N N T
~ \ !
/ «—
. A ~ N\ f

b6 « 6% 6 0 %

S~

Locally computable!

[Hubacek-Yogev, 2017] for CLS

Back to standard End-of-Line

Back to standard End-of-Line

Back to standard End-of-Line

~ N 7 N

— 0 6 0 6000

Back to standard End-of-Line

— © 0 0 000
N

green edges: forward
red edges: backwards

W

— —> —>

e

pLs @

Labyrinth '

I

}//

Requires solving the PLS instance!

— to find a gradient descent fixed
point, we have to solve the PPAD
problem or the PLS problem

!
I%I .
10
I%I HQI -
10 14
146! (—.2 H}'t
4!10 14 461
!G 1(—.2 HTI igI
4610 21£1 3461 46:
? 15_' THBG IJGI 4"'1
PR 219 30-;20 Y !
' — 1 ._fot 6l ot
10 I?g Izq ?I ?
461 72] ._,D 46 ‘161
? 1{;—' IT?I4 \ 24 2.—301 45I JGI
46 {—.?1 313 214 HQOI JGI 431
! 1 Is "‘G IQ“ QDI 4GI 41
0 ‘_.TG IQQ 26 2.—> c 6
46 Hm & e 14 20! 481 al.gt
' 12 <-1 ._,26 124"’ QI ?
10 H?S IQQ . 5 .._,U 16 4Gg
481 o) e HG 12-4 203 4I 41
' <—.' 12 <—-1 Hl % 20—: I'E' 6
10 <—-75 IQQ 1 - .14 ._,20 4GI 451
461 70 e H1 <—02‘3 124 ?I !
? . 182 (—.1 Hl 1 5 ._,0 16 461
10 (-.?5 122 e “'G 12‘1 2OI 451 4I
46! 70 8 "‘1 “'1 Hl 1—-23 2"" . ’
! N Il Hl (—.1 1 I‘l ._)20 4{31 4GI
10 HT4 88 e <—-1 «-093 124 QI ?
451 6 I (—.1 (—.1 <—.1 t—ll 9 .._,D 46 r-lgt
' HG Hgo HQ{] (_.1 . Ha 124 QGI 4GI 41
10 ‘_.?3 87 q A (—.1 {—ITO I‘J? 2.—) I 6
! - o ! L ! : RN o o! "
I {—-1 4—0?3 HBg (_.90 (—05 I23 124 QOI 4I ?
10 . - - - g 2 - 6 4
4GI ""3 Hgg Hgﬂ Hl 1 7 .“'G 12"‘ QDI 451 461
- - o 8 9 e - 1% HQG e !
I 10 1 e 9 — 0 PEPY 1 HTU & I 4 ._)20 481 4GI
41 - <-.1 H?a HSQ Hgg 12 Hl HQG 124 201 41
6 Hl ¢-.1 . . <—01 {_."5 122 1 2 — ¢
? 0 . " Hrs Hsg Hg{] <-.7° . e 4—.6 124 QUI 461
IG 21(_.1 1‘_.1 c—ol Hl (—.?3 HBQH Dﬂggc_.?«ﬁ SIQQ Hl (—.1 HQG 1240—)0 QOI
! 2«—0 Hl (—.1 (—ol (_.fg R 12 ’Hl Hl 4—.1 1—.25 g_H
5 4—.1 1 Hg t—.?‘l:" 122 1 14
t o5 —8 (_.1 (—.1 Hfg 4—.89 29 o (—.1 Hl HQG 124H
td Hl Hl ‘—.1 Hl T I 'Hl Hl ‘—.1 <—|29 2
25 1 «—-3 {_,?'5 22 HG I\
t QH {—.1 4—.1 1—01 H91 321 ng Hl <—.1 25 HQG
5 (—.1 4—.1 <—.1 I bHB (_.1 1—.]‘ HQBI Dl
t 25 Hl (—.?5' 22 9 . e
? «—-1 i—.l ._.1 70 SI “‘D H1 <-.1 461 25
? 95 <—.1 Hl H’ IQ HT{] Hﬁo 4—.1 HQSI 410
! a5 ‘—.1 (—.?5 IQQ 80 1 6
3" H1 . - - o 8"'(” - w? 0l
= "—.l (_.1 75 '.H : ’_,H o Hl (—.28! 461
! » ._.1 ‘_.GQHO 8 » - Hl(’” ,_.1 451 PR
? 25) (12 _<—-1 H?S Hl HQS! i
—® ;..JI 22 1 [6
t 25 —e 1 Hﬂﬁj . 1{—. 1(_. 99 —e 1 JGI 46:
! 2 t—.l 4-.35 1H Hl HQS! 4GI
? 25 4—.1 H1H 1"'1 ‘-’1 451 46!
! 25 Hl HIH 1<-.1 HQBI 4.;$
! 25 <—o1 o <-.1 461 4GI
I 95 Hl 1—.]‘ HQSI 461
td QrHI 1“'1 <—01 481 46!
10 '25(_.(_,1”1 1“28!41461 ?
e 16 16
: 125 QHI HQBI 46:
t‘r’ 21-01 4GI 463
I5 HQB! 461
325 461 463
IQT! 4('.I
!4G$4$46I
6
! 14(5?
?

Future Directions

* are there other intersections of classes that are interesting?

Future Directions

* are there other intersections of classes that are interesting?

* candidates for (PPAD N PLS)-completeness:
» CONTRACTION
» TARSKI
> POLYNOMIAL-KKT
» MIXED-CONGESTION

Future Directions

* are there other intersections of classes that are interesting?

* candidates for (PPAD N PLS)-completeness:
» CONTRACTION
» TARSKI
> POLYNOMIAL-KKT }
Solved!
» MIXED-CONGESTION

Future Directions

* are there other intersections of classes that are interesting?

* candidates for (PPAD N PLS)-completeness:
» CONTRACTION
» TARSKI
> POLYNOMIAL-KKT }
Solved!
» MIXED-CONGESTION

[Babichenko-l}ubinstein, 2020]
2D-GD-FIXED-POINT < MIXED-CONGESTION < POLYNOMIAL-KKT

Thank You!

