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What do these problems have in common?

They are NP Total Search (TFNP) problems!
• Total: there is always a solution
• NP: it is easy to verify solutions

Can a TFNP problem be NP-hard?

Not unless co-NP = NP…
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The class TFNP [Megiddo-Papadimitriou, 1991]

Total NP search problems:

• “search” : looking for a solution, not just YES or NO

• “NP”: any solution can be checked efficiently

• “total”: there always exists at least one solution

How do we show that a TFNP-problem is hard:

▪ No TFNP-problem can be NP-hard, unless NP = coNP…

▪ Believed that no TFNP-complete problems exists…
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TFNP subclasses

What reasons are there to believe that PPAD ≠ P, PLS ≠ P, etc?

• many seemingly hard problems lie in PPAD, PLS etc…

• oracle separations between the classes (in particular PPAD ≠ PLS)

• hard under cryptographic assumptions
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CONTINUOUS-LOCAL-OPT:
Input: continuous functions 𝑔: 0,1 𝑛→ [0,1]𝑛 and 𝑝: [0,1]𝑛→ [0,1]
Goal: find 𝑥 such that 

𝑝 𝑔 𝑥 ≥ 𝑝 𝑥 − 𝜀

→ class Continuous Local Search (CLS)           [Daskalakis-Papadimitriou, 2011]
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→ polynomial-time equivalent!
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Consequences

• PPAD ∩ PLS is an interesting class!

• It captures continuous local search, and even gradient descent

• CLS and GD are robust with respect to:
➢ dimension

➢ domain

➢ arithmetic circuits

➢ …
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Canonical complete problem:      END-OF-LINE

Input: directed graph of paths and cycles, and a source

Goal: find a sink, or another source

The catch: the graph is given implicitly

Vertex set 0,1 𝑛

Boolean circuits 𝑆 and 𝑃

successor circuit 𝑆: 0,1 𝑛 → 0,1 𝑛

predecessor circuit 𝑃: 0,1 𝑛 → 0,1 𝑛
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[Hubáček-Yogev, 2017] for CLS
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Locally computable!
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green edges: forward
red edges: backwards



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



1

2

3

4

5

6

7

1 2 3 4 5 6 70

0



PLS 
Labyrinth

1

2

3

4

5

6

7

1 2 3 4 5 6 70

0

Requires solving the PLS instance!
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→ to find a gradient descent fixed
point, we have to solve the PPAD 
problem or the PLS problem
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Future Directions

• are there other intersections of classes that are interesting?

• candidates for (PPAD ∩ PLS)-completeness:
➢ CONTRACTION

➢ TARSKI

➢ POLYNOMIAL-KKT

➢ MIXED-CONGESTION

[Babichenko-Rubinstein, 2020]

2D-GD-FIXED-POINT ≤ MIXED-CONGESTION ≤ POLYNOMIAL-KKT

Solved!



Thank You!


