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The Minimum Circuit Size Problem (MCSP)

𝑥 0𝑛 … 1𝑛

𝒇(𝒙) 𝑓(0𝑛) … 𝑓(1𝑛)

Truth table 𝑻 of a 
Boolean function 𝒇 ,( ) →

“size threshold” 
𝑠 ∈ ℕ in unary ∃ circuit with ≤ 𝑠 gates

computing 𝒇?

𝑇 =

Complexity:
NP

P

NP-complete

???
MCSP

Input Output

𝑁 = 2𝑛



Why care about MCSP?



The search for fundamental problems

What problem have we learned the most from?

Study of SAT →
NP-completeness,

PCPs,

SAT solvers,

Fine-grained complexity

SAT is fundamental because
Natural questions ⇒ important (often unexpected) advances

Can we can find more fundamental problems?

SAT !!



A potential fundamental problem?

1. Connections to: 2. Its complexity is a mystery

Is MCSP NP-complete?

Is MCSP hard to approximate?

Can you beat the naïve brute-
force algorithm?

“MCSP is more fundamental than SAT!”

X is true about MCSP ⇒ Solution to a long-standing open problem

MCSP is NP-complete ⇒ EXP ≠ ZPP

An approximation to MCSP 
is NP-complete

⇒ Computing NP “on average” is as hard as 
computing NP in the “worst-case”

A version of MCSP does not 
have 𝑛 poly(log 𝑛) circuits

⇒ NP does not have polynomial-size circuits

[Murray-Williams
‘15]

[Hirahara ‘18]

[McKay-Murray-
Williams ‘19]

-- Rahul (Santhanam)

Cryptography Learning Structural 
Complexity

Average Case 
Complexity

Circuit 
Complexity



Cryptography Learning Average Case 
Complexity

Structural 
Complexity

Circuit 
Complexity

What are these connections?
Rahul Ilango TCS+ Talk



“If it is NP-complete, it 
would have to require 

techniques that are not like 
any polynomial time 

reduction that we have ever 
seen”

Is MCSP NP-hard?

MCSP
𝑠

YES NO

Input: function 𝑓 and integer 𝑠

size of 
smallest 
circuit 
computing 𝑓0



Is MCSP NP-hard?

MCSP
𝑠

YES NO

Input: function 𝑓 and integer 𝑠

size of 
smallest 
circuit 
computing 𝑓0

Difficult NO
instances of 
MCSP

→
Functions requiring 
large circuits

Deterministic poly-
time reduction 
requires breakthrough

Randomized Reductions? Conjecture: ETH ⇒ MCSP ∉ P

⇒
[Kabanets-Cai ‘00, 
Murray-Williams ’16,
Saks-Santhanam ‘20]



Is 𝒞-MCSP NP-hard?

Don’t know 
functions requiring 
large circuits

→
Hard to 
prove MCSP
is NP-hard

Know functions 
requiring large 𝒞-
circuits

→Can we prove 
𝒞-MCSP is NP-
hard?

Circuit class 𝒞 ∈ {DNF, DNF ∘ 𝑋𝑂𝑅,… , ACd
0 , ACd

0 2 }
NP-hard by 

[Masek ’79,…, Khot-Saket ‘08]
NP-hard by 

[Hirahara-Oliveira-Santhanam ‘18]

???
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Main Result: Preliminaries
Def
Let 𝐿𝑑 𝑓 ≔ min. # leaves in depth-d formula computing 𝑓

Constant Depth Formula Model
• Rooted tree of constant depth
• Internal nodes labeled by AND, OR gates of unbounded fan-in
• Leaf nodes labelled by 0,1, 𝑥1, … , 𝑥𝑛, ¬𝑥1, … , ¬𝑥𝑛
• Size of formula  = # of leaves (ignoring constant leaves)
• Gates alternate between AND and OR

V

∧

∧

Note: Computing 𝐿𝑑 𝑓 reduces to (depth-d formula)-MCSP



Main Result

Theorem
For all 𝑑 ≥ 2, computing 𝐿𝑑 ⋅ is NP-hard under quasi-poly time 
randomized Turing reductions.

Def
Let 𝐿𝑑 𝑓 ≔ min. # leaves in depth-d formula computing 𝑓



Proof Outline: An Inductive Approach

Def: 𝐿𝑑
𝑂𝑅 𝑓 ∶= min. leaves in OR-top depth-d formula for 𝑓

Step 1: Restrict to top OR gate

Thm: If computing 𝐿𝑑
𝑂𝑅 ⋅ is NP-hard, then so is computing 𝐿𝑑 ⋅

Step 2: 𝑑 = 2 Base Case

Thm: “Approx.” computing 𝐿2
𝑂𝑅 ⋅ is NP-hard

Step 3: 𝑑 ≥ 3 Inductive Argument

Thm: “approx.” computing 𝐿𝑑
𝑂𝑅 ⋅ reduces to “approx.” computing 𝐿𝑑+1

𝑂𝑅 ⋅

Theorem: Computing 𝐿𝑑 ⋅ is NP-hard for all 𝑑 ≥ 2.

Known from [Masek ’79,…, Allender et al. ‘06, Feldman ‘06, Khot-Saket ‘08]



Proof Outline: Techniques

Computing 𝐿2
𝑂𝑅 ⋅ is 

NP-hard ⇒ Computing 𝐿𝑑
𝑂𝑅 ⋅ is 

NP-hard for all 𝑑 ≥ 2 ⇒ Computing 𝐿𝑑 ⋅ is NP-
hard for all 𝑑 ≥ 2

Novel “Lifting-esque” 
Theorem

DeMorgan’s Laws + 
Direct Sum Rules 

(+ Depth Hierarchy Thms)

Theorem: Computing 𝐿𝑑 ⋅ is NP-hard for all 𝑑 ≥ 2.



Reducing depth-d to d+1: Pseudocode

Given 𝑓 and oracle to 𝐿𝑑+1
𝑂𝑅 ⋅ , estimate 𝐿𝑑

𝐴𝑁𝐷 𝑓 = 𝐿𝑑
𝑂𝑅 ¬𝑓

while True:

Sample (𝑔, error_bound) ← 𝒟

Let  𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Set f_estimate = 𝐿𝑑+1
𝑂𝑅 𝐻 − 𝐿𝑑+1

𝑂𝑅 𝑔

If f_estimate >> error_bound :

Output that 𝐿𝑑
𝐴𝑁𝐷 𝑓 ≈ 𝑓_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.

I’ll try to explain 
why this quantity 
roughly estimates

𝐿𝑑
𝐴𝑁𝐷 𝑓



Sketch of “Lifting-esque Result”

What’s an 
“MCSP”?

Main Theorem 
Statement

Sketch of Main 
Technique

Other 
Consequences



Intuition

Want: Given 𝑓 and oracle access to 𝐿𝑑+1
𝑂𝑅 (⋅), compute 𝐿𝑑

𝐴𝑁𝐷(𝑓)

Idea: Find function 𝐻 whose optimal depth-(d+1) OR-top formula 
contains an optimal depth-d AND-top formula for 𝑓

How? Switching Lemma??

Direct Sum Idea! 𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦) for some function 𝑔

=

𝐿𝑑
𝑂𝑅(¬𝑓)



Intuition for 𝐻

Size: 𝑡𝑔 ⋅ 𝜙 + 𝑡𝑓 ⋅ |Ψ|

Naïve family of OR-top depth-(d+1) formulas for 𝐻:

𝑓 𝑥 = 𝜙 𝑥 = ሧ

𝑖∈ 𝑡𝑓

𝜙𝑖(𝑥)

𝐻 𝑥, 𝑦 = ሧ

𝑖,𝑗 ∈ 𝑡𝑓 × 𝑡𝑔

(𝜙𝑖 𝑥 ∧ Ψ𝑗 𝑦 )

If 
• 𝑔 is waaaay more complex than 𝑓 and 
• has optimal formulas with 𝑡𝑔 = 1, 

then the size is  plausibly minimized by using the smallest 
𝜙 with 𝑡𝑓 = 1

In which case:

𝐿𝑑+1
𝑂𝑅 𝐻 = 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

𝑔 𝑦 = Ψ 𝑦 = ሧ

𝑗∈ 𝑡𝑔

Ψ𝑗 𝑦 ,

OR-top depth-(d+1) formulas for 𝑓 and 𝑔 OR-top depth-(d+1) formulas for 𝐻↦



Main Technical Result

Theorem (Informal): If 𝑔 is “expensive” compared to 𝑓, then 

𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔 .

Is this tight?

What does this 
mean?

𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)



Technical Result Preliminaries

• Non-Deterministic Formulas

• One-sided Approximations

• Direct Sum Theorems



Preliminaries: Non-Deterministic Formulas

A non-deterministic (ND) formula Ψ specified by 
• an integer 𝑚 specifying the number of “non-deterministic inputs” 

• (unrestricted) formula 𝜙(𝑥, 𝑦) on (𝑚 + 𝑛)-inputs

Non-deterministic
input

Regular input

Def (Bounded non-det. formula complexity)
𝐿𝑁𝐷 𝑓 ∶= min size of ND formula for 𝑓 with 𝑚 = 𝑛 non-det. input bits

Computes 𝑛-bit function given by Ψ 𝑦 ∶= ,𝑥𝜙(𝑥ڀ 𝑦)

Size of non-det. formula Ψ ∶= |𝜙|



Preliminaries: One-Sided Approximation

Let 𝑔, ෤𝑔: 0,1 𝑛 → {0,1}. 

Def 
෤𝑔 is an 𝛼-one sided approximation of 𝑔 if
• ෤𝑔 rejects all NO instances of 𝑔
• ෤𝑔 accepts at least an 𝛼-fraction of the YES instances of 𝑔

• i.e. ෤𝑔−1 1 ≥ 𝛼 ⋅ |𝑔−1 1 |

Def 
𝐿𝑁𝐷,𝛼 𝑔 := min 𝐿𝑁𝐷( ෤𝑔) over all 𝛼-one sided approx ෤𝑔 of 𝑔



Preliminaries: Direct Sum Theorem

Thm (Folklore?):

Let 𝑓, 𝑔 be non-constant functions. Then 
𝐿𝑑
𝑂𝑅 𝐻 𝑥, 𝑦 ≥ 𝐿𝑑

𝑂𝑅 𝑓 + 𝐿𝑑
𝑂𝑅 𝑔 .

Proof

Suppose 
• 𝜙 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)
• 𝑔 𝑦⋆ = 1.

Then restriction 𝜙 𝑥, 𝑦⋆

computes 𝑓.

𝜙 has ≥ 𝐿𝑑
𝑂𝑅 𝑓 many 𝑥-leaves.

Similarly, 𝜙 has ≥ 𝐿𝑑
𝑂𝑅 𝑔 many 𝑦-leaves.

Recall: 𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)



What is “expensive”?

𝑔 is expensive compared to 𝑓 if 
𝑔 takes more inputs than 𝑓,
and both

• 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 (𝑔)

• 2 ⋅ 𝐿𝑁𝐷, .73 𝑔

are greater than  𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

“ND complexity of 𝑔 and a weak approx. to 𝑔”

“ND complexity of computing strong approx. to 𝑔 twice”

Our desired lower bound

𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Theorem (Informal): If 𝑔 is “expensive” compared to 𝑓, then 

𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔 .

𝛾 = “some small number” = 10−4



Formal Theorem
Theorem:             𝐿𝑑+1

𝑂𝑅 𝐻 ≥ 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

when min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔 > 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

and 𝑓 and 𝑔 are non-constant and 𝑔 takes more inputs than 𝑓.

𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)



Is this tight? 𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Trivial Lower Bound:𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑+1

𝑂𝑅 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

Trivial Upper Bound:𝐿𝑑+1
𝑂𝑅 𝐻 ≤ 𝐿𝑑

𝐴𝑁𝐷 𝐻 = 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑

𝐴𝑁𝐷 𝑔

Best Bounds: 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔 ≤ 𝐿𝑑+1
𝑂𝑅 𝐻 ≤ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑
𝐴𝑁𝐷 𝑔

Tight if: 𝐿𝑑+1
𝑂𝑅 𝑔 = 𝐿𝑑

𝐴𝑁𝐷 𝑔

Theorem:             𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

when min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔 > 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

and 𝑓 and 𝑔 are non-constant and 𝑔 takes more inputs than 𝑓.



Is this tight? 𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Best Bounds :𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔 ≤ 𝐿𝑑+1
𝑂𝑅 𝐻 ≤ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑
𝐴𝑁𝐷 𝑔

𝐿𝑑
𝐴𝑁𝐷 𝑓 ≤ 𝐿𝑑+1

𝑂𝑅 𝐻 − 𝐿𝑑+1
𝑂𝑅 𝑔 ≤ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + [𝐿𝑑
𝐴𝑁𝐷 𝑔 − 𝐿𝑑+1

𝑂𝑅 𝑔 ]

So 𝐿𝑑
𝐴𝑁𝐷 𝑓 ≈ (1) up to additive error (2)

Can build on this to give the desired reduction between depth-d and depth-(d+1)

(1) (2)

Theorem:             𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

when min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔 > 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

and 𝑓 and 𝑔 are non-constant and 𝑔 takes more inputs than 𝑓.



Proof!

Visualization of 
the 𝑓, 𝑔, and 𝐻
functions

00 11

NO inputs YES inputs

𝑓(𝑥)

𝑔(𝑦)

11

𝐻 𝑥, 𝑦

𝑥

𝑦

00

𝑦

𝑥

Theorem:             𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

when min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔 > 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

and 𝑓 and 𝑔 are non-constant and 𝑔 takes more inputs than 𝑓.



Proof!

∨
…

𝜙1 𝜙𝑡

𝐻(𝑥, 𝑦)

𝑥

𝑦

𝑥

𝑦

𝜙1
𝑁𝐷(𝑥, 𝑦)𝑦 𝜙𝑡

𝑁𝐷𝑦

Suppose 𝜙 computing 𝐻 𝑥, 𝑦 =
𝑓 𝑥 ∧ 𝑔 𝑦 contradicted this 

𝜙

𝑥

𝑦

Splitting Claim: 
Can split 𝜙𝑁𝐷 into two disjoint subformulas Ψ𝐿

𝑁𝐷 and Ψ𝑅
𝑁𝐷 that are 

both (.73)-one sided non-det. approxs of 𝑔.

Splitting Claim ⇒ done!: 
𝜙 = 𝜙𝑁𝐷

≥ Ψ𝐿
𝑁𝐷 + Ψ𝑅

𝑁𝐷

≥ 2 ⋅ 𝐿𝑁𝐷,.73 𝑔

> 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

Theorem:             𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

when min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔 > 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

and 𝑓 and 𝑔 are non-constant and 𝑔 takes more inputs than 𝑓.



Proof!

∨
…

𝜙1

𝐻(𝑥, 𝑦)

𝑥

𝑦

𝑥

𝑦

𝜙1
𝑁𝐷(𝑥, 𝑦)𝑦 𝜙𝑡

𝑁𝐷𝑦

𝜙

𝑥

𝑦

Redundancy Claim: Every YES instances 𝑦⋆ of 𝑔 is non-det. 
accepted by at least two of 𝜙1

𝑁𝐷, … , 𝜙𝑡
𝑁𝐷.

Pf: Suppose 𝑦⋆ is only non-det. accepted by 𝜙1
𝑁𝐷

Then 𝜙𝑖(𝑥, 𝑦
⋆) = 0 for all 𝑥 and 𝑖 ≥ 2.

But then 𝜙1(𝑥, 𝑦
⋆) computes 𝑓(𝑥):

𝑓 𝑥 = 𝐻 𝑥, 𝑦⋆ = 𝜙 𝑥, 𝑦⋆ = ∨𝑖 𝜙𝑖 𝑥, 𝑦
⋆ = 𝜙1(𝑥, 𝑦

⋆)

Then depth-d sub formula 𝜙1 has ≥ 𝐿𝑑
𝐴𝑁𝐷 𝑓 many 𝑥-leaves!

But 𝜙 has ≥ 𝐿𝑑+1
𝑂𝑅 𝑔 many 𝑦-leaves, by setting 𝑥 to a 

YES instance of 𝑓!

So 𝜙 ≥ 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

𝜙𝑡

Splitting Claim: 
Can split 𝜙𝑁𝐷 into two disjoint subformulas Ψ𝐿

𝑁𝐷 and Ψ𝑅
𝑁𝐷 that are 

both (.73)-one sided non-det. approxs of 𝑔.

Theorem:             𝐿𝑑+1
𝑂𝑅 𝐻 ≥ 𝐿𝑑

𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1
𝑂𝑅 𝑔

when min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔 > 𝐿𝑑
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Gaps in Formula Complexity Between Depths

Theorem

There exists an 𝜖 > 0 s.t. for all 𝑑 ≥ 2 there exists a function 𝑓 such 
that 𝐿𝑑 𝑓 − 𝐿𝑑+1 𝑓 ≥ 2Ω𝑑(𝑛

𝜖)

𝒅 = 𝟐, 𝟑 cases: Use existing depth hierarchy theorems [Hastad ‘89] that shows 2𝑛
Ω

1
𝑑

seperation

𝒅 ≥ 𝟒 case: Use “Lifting-esque Theorem” to “lift” a 𝐿𝑑 𝑓 − 𝐿𝑑+1 𝑓 separation 
into a 𝐿𝑑+1(𝐻) − 𝐿𝑑+2 𝐻 (cost is a constant in the exponent)

𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)



Thanks!

Questions?



Finding good 𝑔

Suppose you have a 𝑓 on 𝑛-inputs of size 𝑠

One can sample a 𝑔 such that

Use Inputs to 
𝒈

min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔

> 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

Inequality Slack 
𝐿𝑑 𝑓 − 𝐿𝑑+1 𝑓

How to Sample

Affects # of  inputs to 
𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Hypothesis of Lifting-
esque Lower Bound 𝐿𝑑+1

𝑂𝑅 𝐻 ≈ 𝐿𝑑+1
𝑂𝑅 𝑔 + 𝐿𝑑

𝐴𝑁𝐷 𝑓
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Use Inputs to 
𝒈
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𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

Inequality Slack 
𝐿𝑑 𝑓 − 𝐿𝑑+1 𝑓

How to Sample

Reduction 𝑝𝑜𝑙𝑦(𝑛)  𝑜(𝑠) for 𝑑 ≥ 2 Depth-2 Subformula of 
Lupanov’s formula for 
random function

Affects # of  inputs to 
𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Hypothesis of Lifting-
esque Lower Bound 𝐿𝑑+1

𝑂𝑅 𝐻 ≈ 𝐿𝑑+1
𝑂𝑅 𝑔 + 𝐿𝑑

𝐴𝑁𝐷 𝑓



Finding good 𝑔

Suppose you have a 𝑓 on 𝑛-inputs of size 𝑠

One can sample a 𝑔 such that

Use Inputs to 
𝒈

min 𝐿𝑁𝐷 𝑔 + 𝐿𝑁𝐷,𝛾 𝑔 , 2 ⋅ 𝐿𝑁𝐷, .73 𝑔

> 𝐿𝑑
𝐴𝑁𝐷 𝑓 + 𝐿𝑑+1

𝑂𝑅 𝑔

Inequality Slack 
𝐿𝑑 𝑓 − 𝐿𝑑+1 𝑓

How to Sample

Reduction 𝑝𝑜𝑙𝑦(𝑛)  𝑜(𝑠) for 𝑑 ≥ 2 Depth-2 Subformula of 
Lupanov’s formula for 
random function

Gap 
Theorem

𝑂(𝑛)  𝑜 𝑠 if 𝑑 ≥ 3 Biased random function

Affects # of  inputs to 
𝐻 𝑥, 𝑦 = 𝑓 𝑥 ∧ 𝑔(𝑦)

Hypothesis of Lifting-
esque Lower Bound 𝐿𝑑+1

𝑂𝑅 𝐻 ≈ 𝐿𝑑+1
𝑂𝑅 𝑔 + 𝐿𝑑

𝐴𝑁𝐷 𝑓



Depth-2 Subformulas of Lupanov

• 𝑚 = 𝑛100

• For each 𝑥 ∈ 0,1 𝑛, select a random subset 𝑆𝑥 ⊆ [𝑚]

• 𝑔: 0,1 𝑛 × 0,1 𝑚 → {0,1}

• 𝑔 𝑥, 𝑦 = ڀ ෤𝑥∈ 0,1 𝑛 1𝑥= ෤𝑥 𝑥 ∧ 1𝑤𝑒𝑖𝑔ℎ𝑡 𝑦 =1 𝑦 ∧ 1𝑦⊆𝑆෥𝑥 𝑦


