

UNIVERSITY OF WARWICK

A lifting-esque theorem for constant depth formulas with consequences for MCSP and lower bounds

Learn something about:

Some problem called MCSP

Proving this "lifting-esque" theorem

What is MCSP?

The Minimum Circuit Size Problem (MCSP)

Why care about MCSP?

The search for fundamental problems

What problem have we learned the most from? SAT !! Study of SAT \rightarrow

- NP-completeness,
- PCPs,
- SAT solvers,
- Fine-grained complexity
- SAT is fundamental because
 - Natural questions \Rightarrow important (often unexpected) advances
- Can we can find more fundamental problems?

A potential fundamental problem?

"MCSP is more fundamental than SAT!"

-- Rahul (Santhanam)

1. Connections to:				Its complexity is a mystery		
0	• 7	Structural Complexity		Circuit Complexity	Is MCSP NP-complete?	
Cryptography	Learning		Average Case Complexity		Is MCSP hard to approximate? Can you beat the naïve brute- force algorithm?	
	X is	X is true about MCSP MCSP is NP-complete An approximation to MCSP is NP-complete		\Rightarrow	Solution to a long-standing open problem	
	M			(Murray-Williams) (15)	$EXP \neq ZPP$	
	An is N			Hirahara '18]	Computing NP "on average" is as hard as computing NP in the "worst-case"	
	A v hav	version of Mo ve <i>n</i> poly(lo	CSP does not gn) circuits	(McKay-Murray- Williams '19)	NP does not have polynomial-size circuits	

Rahul Ilango TCS+ Talk

Is MCSP NP-hard?

Input: function *f* and integer *s*

Is MCSP NP-hard?

Input: function *f* and integer *s*

Is C-MCSP NP-hard?

Circuit class
$$C \in \{DNF\}$$

NP-hard by [Masek '79,..., Khot-Saket '08]

DNF • XOR, ...,
$$AC_d^0$$
, $AC_d^0[2]$ }
NP-hard by
[Hirahara-Oliveira-Santhanam '18]

Main Result

Main Result: Preliminaries

Def

Let $L_d(f) \coloneqq$ min. # leaves in depth-d formula computing f

Constant Depth Formula Model

- Rooted tree of constant depth
- Internal nodes labeled by AND, OR gates of unbounded fan-in
- Leaf nodes labelled by $\{0, 1, x_1, \dots, x_n, \neg x_1, \dots, \neg x_n\}$
- Size of formula = # of leaves (ignoring constant leaves)
- Gates alternate between AND and OR

Note: Computing $L_d(f)$ reduces to (depth-d formula)-MCSP

Main Result

Def

Let $L_d(f) \coloneqq$ min. # leaves in depth-d formula computing f

Theorem

For all $d \ge 2$, computing $L_d(\cdot)$ is NP-hard under quasi-poly time randomized Turing reductions.

Proof Outline: An Inductive Approach

Theorem: Computing $L_d(\cdot)$ is NP-hard for all $d \ge 2$.

Step 1: Restrict to top OR gate

Def: $L_d^{OR}(f) := \min$. leaves in OR-top depth-d formula for f

Thm: If computing $L_d^{OR}(\cdot)$ is NP-hard, then so is computing $L_d(\cdot)$ Step 2: d = 2 Base Case

Thm: "Approx." computing $L_2^{OR}(\cdot)$ is NP-hard

Known from [Masek '79,..., Allender et al. '06, Feldman '06, Khot-Saket '08]

Step 3: $d \ge 3$ Inductive Argument

Thm: "approx." computing $L_d^{OR}(\cdot)$ reduces to "approx." computing $L_{d+1}^{OR}(\cdot)$

Proof Outline: Techniques

Theorem: Computing $L_d(\cdot)$ is NP-hard for all $d \ge 2$.

Reducing depth-d to d+1: Pseudocode

Given f and oracle to $L_{d+1}^{OR}(\cdot)$, estimate $L_d^{AND}(f) = L_d^{OR}(\neg f)$

while True:

Sample (*g*, *error* bound) $\leftarrow \mathcal{D}$ Let $H(x, y) = f(x) \land g(y)$ Set $f_{estimate} = L_{d+1}^{OR}(H) - L_{d+1}^{OR}(g)$ If *f* estimate >> error bound :

I'll try to explain why this quantity roughly estimates $L_d^{AND}(f)$

Output that $L_d^{AND}(f) \approx f_{estimate}$.

Sketch of "Lifting-esque Result"

Intuition $L_{d}^{OR}(\neg f)$ \parallel Want: Given f and oracle access to $L_{d+1}^{OR}(\cdot)$, compute $L_{d}^{AND}(f)$

Idea: Find function H whose optimal depth-(d+1) OR-top formula contains an optimal depth-d AND-top formula for f

How? Switching Lemma??

Direct Sum Idea! $H(x, y) = f(x) \land g(y)$ for some function g

Intuition for *H*

$H(x,y) = f(x) \wedge g(y)$

OR-top depth-(d+1) formulas for H

Naïve family of OR-top depth-(d+1) formulas for *H*:

OR-top depth-(d+1) formulas for f and g $f(x) = \phi(x) = \bigvee_{i \in [t_f]} \phi_i(x)$ $g(y) = \Psi(y) = \bigvee_{j \in [t_g]} \Psi_j(y),$

 $H(x, y) = \bigvee_{(i,j)\in[t_f]\times[t_g]} (\phi_i(x) \wedge \Psi_j(y))$

Size: $t_g \cdot |\phi| + t_f \cdot |\Psi|$

lf

- g is waaaay more complex than f and
- has optimal formulas with $t_g = 1$,

then the size is plausibly minimized by using the smallest ϕ with $t_f = 1$

In which case:

 $L_{d+1}^{OR}(H) = L_{d}^{AND}(f) + L_{d+1}^{OR}(g)$

Is this tight?

Technical Result Preliminaries

- Non-Deterministic Formulas
- One-sided Approximations
- Direct Sum Theorems

Preliminaries: Non-Deterministic Formulas

A non-deterministic (ND) formula Ψ specified by

- an integer *m* specifying the number of "non-deterministic inputs"
- (unrestricted) formula $\phi(x, y)$ on (m + n)-inputs

Non-deterministic input

Regular input

```
Computes n-bit function given by \Psi(y) := \bigvee_x \phi(x, y)
```

Size of non-det. formula $|\Psi| := |\phi|$

Def (Bounded non-det. formula complexity) $L_{ND}(f) := \min \text{ size of ND}$ formula for f with m = n non-det. input bits

Preliminaries: One-Sided Approximation

Let $g, \tilde{g}: \{0,1\}^n \to \{0,1\}.$

Def

 \tilde{g} is an α -one sided approximation of g if

- \tilde{g} rejects all NO instances of g
- \tilde{g} accepts at least an α -fraction of the YES instances of g
 - i.e. $|\tilde{g}^{-1}(1)| \ge \alpha \cdot |g^{-1}(1)|$

Def $L_{ND,\alpha}(g) := \min L_{ND}(\tilde{g})$ over all α -one sided approx \tilde{g} of g

Preliminaries: Direct Sum Theorem

Recall: $H(x, y) = f(x) \land g(y)$

Thm (Folklore?):

Let f, g be non-constant functions. Then $L_d^{OR}(H(x, y)) \ge L_d^{OR}(f) + L_d^{OR}(g).$

Proof

Suppose

• $\phi(x, y) = f(x) \land g(y)$ • $g(y^*) = 1.$

Then restriction $\phi(x, y^*)$ computes f.

 ϕ has $\geq L_d^{OR}(f)$ many x-leaves.

Similarly, ϕ has $\geq L_d^{OR}(g)$ many y-leaves.

What is "expensive"?

$$H(x, y) = f(x) \land g(y)$$

Theorem (Informal): If g is "expensive" compared to f, then $L_{d+1}^{OR}(H) \ge L_d^{AND}(f) + L_{d+1}^{OR}(g).$

g is <u>expensive</u> compared to f if

g takes more inputs than f, and both

• $L_{ND}(g) + L_{ND,\gamma}(g)$ • $2 \cdot L_{ND,\gamma}(g)$

• "ND complexity of g and a weak approx. to g"

"ND complexity of computing strong approx. to g twice"

 γ = "some small number" = 10^{-4}

are greater than $L_d^{AND}(f) + L_{d+1}^{OR}(g)$ — Our desired lower bound

Formal Theorem

Theorem: $L_{d+1}^{OR}(H) \ge L_d^{AND}(f) + L_{d+1}^{OR}(g)$ when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$

and f and g are non-constant and g takes more inputs than f.

Is this tight? $H(x,y) = f(x) \land g(y)$

Theorem: $L_{d+1}^{OR}(H) \ge L_d^{AND}(f) + L_{d+1}^{OR}(g)$ when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$ and f and g are non-constant and g takes more inputs than f.

Trivial Lower Bound: $L_{d+1}^{OR}(H) \ge L_{d+1}^{OR}(f) + L_{d+1}^{OR}(g)$

Trivial Upper Bound: $L_{d+1}^{OR}(H) \le L_d^{AND}(H) = L_d^{AND}(f) + L_d^{AND}(g)$

Best Bounds: $L_d^{AND}(f) + L_{d+1}^{OR}(g) \le L_{d+1}^{OR}(H) \le L_d^{AND}(f) + L_d^{AND}(g)$

Tight if: $L_{d+1}^{OR}(g) = L_d^{AND}(g)$

Is this tight? $H(x,y) = f(x) \land g(y)$

Theorem: $L_{d+1}^{OR}(H) \ge L_d^{AND}(f) + L_{d+1}^{OR}(g)$ when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$ and f and g are non-constant and g takes more inputs than f.

Best Bounds : $L_{d}^{AND}(f) + L_{d+1}^{OR}(g) \le L_{d+1}^{OR}(H) \le L_{d}^{AND}(f) + L_{d}^{AND}(g)$ $L_{d}^{AND}(f) \le L_{d+1}^{OR}(H) - L_{d+1}^{OR}(g) \le L_{d}^{AND}(f) + [L_{d}^{AND}(g) - L_{d+1}^{OR}(g)]$ (1)
(2)

So $L_d^{AND}(f) \approx (1)$ up to additive error (2)

Can build on this to give the desired reduction between depth-d and depth-(d+1)

 $L_{d+1}^{OR}(H) \ge L_{d}^{AND}(f) + L_{d+1}^{OR}(g)$ Theorem: when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$ and f and g are non-constant and g takes more inputs than f.

11

NO inputs f(x)X 00 y

H(x, y)

X

Visualization of the f, g, and Hfunctions

х

 $f(x) \wedge g(y)$ contradicted this

H(x,y)

$L_{d+1}^{OR}(H) \ge L_{d}^{AND}(f) + L_{d+1}^{OR}(g)$ **Theorem:**

when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$

and f and g are non-constant and g takes more inputs than f.

Splitting Claim:

Suppose ϕ computing H(x, y) =Can split ϕ^{ND} into two disjoint subformulas Ψ_L^{ND} and Ψ_R^{ND} that are both (.73)-one sided non-det. approxs of g.

 $|\phi|$

Splitting Claim \Rightarrow done!:

$$| = |\phi^{ND}|$$

$$\geq |\Psi_L^{ND}| + |\Psi_R^{ND}|$$

$$\geq 2 \cdot L_{ND,.73}(g)$$

$$> L_d^{AND}(f) + L_{d+1}^{OR}(g)$$

X

X

Suppose ϕ computing H(x, y) =

H(x,y)

 $v \phi_1^{ND}(x,y)$

 φ_t

X

 $y \phi_t^{ND}$

 $f(x) \wedge g(y)$ contradicted this

Theorem: $L_{d+1}^{OR}(H) \ge L_{d}^{AND}(f) + L_{d+1}^{OR}(g)$

when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$

and f and g are non-constant and g takes more inputs than f.

Splitting Claim:

Can split ϕ^{ND} into two disjoint subformulas Ψ_L^{ND} and Ψ_R^{ND} that are both (.73)-one sided non-det. approxs of g.

Redundancy Claim: Every YES instances y^* of g is non-det. accepted by at least two of ϕ_1^{ND} , ..., ϕ_t^{ND} .

Pf: Suppose y^* is only non-det. accepted by ϕ_1^{ND} Then $\phi_i(x, y^*) = 0$ for all x and $i \ge 2$. But then $\phi_1(x, y^*)$ computes f(x):

 $f(x) = H(x, y^*) = \phi(x, y^*) = \bigvee_i \phi_i(x, y^*) = \phi_1(x, y^*)$

Then **depth-d sub formula** ϕ_1 has $\geq L_d^{AND}(f)$ many x-leaves!

But ϕ has $\geq L_{d+1}^{OR}(g)$ many y-leaves, by setting x to a YES instance of f!

So $|\phi| \ge L_d^{AND}(f) + L_{d+1}^{OR}(g)$

Splitting Claim:

Can split ϕ^{ND} into two disjoint subformulas Ψ_L^{ND} and Ψ_R^{ND} that are both (.73)-one sided non-det. approxs of *g*.

Redundancy Claim: Every YES instances y^* of g is non-det. accepted by at least two of $\phi_1^{ND}, \dots, \phi_t^{ND}$. **Theorem:** $L_{d+1}^{OR}(H) \ge L_d^{AND}(f) + L_{d+1}^{OR}(g)$

when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$

and f and g are non-constant and g takes more inputs than f.

Pf of Splitting Claim:

Pick *L* and *R* to be a **uniformly random** partition of [t]. Let $\Psi_L^{ND}(x, y) = \bigvee_{i \in L} \phi_i^{ND}(x, y)$. Let $\Psi_R^{ND} = \bigvee_{i \in R} \phi_i^{ND}(x, y)$. In expectation Ψ_L^{ND} and Ψ_R^{ND} are .75 one-sided non-det. approx of *g*. Why? Because **Linearity of Expectation**:

Redundancy ⇒ any YES instance y^{*} of g has ≥ 2 chances to get a i ∈ L s.t. φ_i non-det. accepts y^{*}

Splitting Claim:

Can split ϕ^{ND} into two disjoint subformulas Ψ_L^{ND} and Ψ_R^{ND} that are both (.73)-one sided non-det. approxs of *g*.

Redundancy Claim: Every YES instances y^* of g is non-det. accepted by at least two of $\phi_1^{ND}, \dots, \phi_t^{ND}$.

If not, then $|\phi_i^{ND}| \ge L_{ND,\gamma}(g)$

Theorem: $L_{d+1}^{OR}(H) \ge L_{d}^{AND}(f) + L_{d+1}^{OR}(g)$

when $\min\{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)\} > L_d^{AND}(f) + L_{d+1}^{OR}(g)$

and f and g are non-constant and g takes more inputs than f.

Pf of Splitting Claim:

Pick *L* and *R* to be a **uniformly random** partition of [t]. Let $\Psi_L^{ND}(x, y) = \bigvee_{i \in L} \phi_i^{ND}(x, y)$. Let $\Psi_R^{ND} = \bigvee_{i \in R} \phi_i^{ND}(x, y)$. In expectation Ψ_L^{ND} and Ψ_R^{ND} are .75 one-sided non-det. approx of *g*. Why? Because **Linearity of Expectation**:

Redundancy ⇒ any YES instance y^{*} of g has ≥ 2 chances to get a i ∈ L s.t. φ_i non-det. accepts y^{*}

But **expectation not enough**... Need to hold simultaneously

So prove **concentration**! Chebyshev works if one can show:

Each ϕ_i^{ND} accepts $\leq \gamma$ -fraction of g's YES instances

OTOH: Redundancy $\Rightarrow V_{j\neq i} \phi_j^{ND}$ computes g non-det. $\Rightarrow |V_{j\neq i} \phi_j^{ND}| \ge L_{ND}(g)$ But then $|\phi| = |\phi_i^{ND}| + |V_{j\neq i} \phi_j^{ND}| \ge L_{ND}(g) + L_{ND,\gamma}(g) \ge L_d^{AND}(f) + L_{d+1}^{OR}(g)$

Other Consequences

Gaps in Formula Complexity Between Depths

Theorem

There exists an $\epsilon > 0$ s.t. for all $d \ge 2$ there exists a function f such that $L_d(f) - L_{d+1}(f) \ge 2^{\Omega_d(n^{\epsilon})}$

d = 2, 3 cases: Use existing depth hierarchy theorems [Hastad '89] that shows $2^{n^{\Omega(\frac{1}{d})}}$ separation

 $d \ge 4$ case: Use "Lifting-esque Theorem" to "lift" a $L_d(f) - L_{d+1}(f)$ separation into a $L_{d+1}(H) - L_{d+2}(H)$ (cost is a constant in the exponent)

 $H(x, y) = f(x) \land g(y)$

Thanks!

Questions?

Finding good *g*

Suppose you have a f on n-inputs of size sOne can sample a g such that

Finding good *g*

Suppose you have a f on n-inputs of size sOne can sample a g such that

Affects # of inputs to $H(x, y) = f(x) \land g(y)$ \downarrow		ts to Hypothesis of Lifting- $g(y)$ esque Lower Bound \downarrow	$L_{d+1}^{OR}(H) \approx L_{d+1}^{OR}(g) + L_d^{AND}(f)$		
Use	Inputs to <i>g</i>	$\min\{\frac{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)}{> L_{d}^{AND}(f) + L_{d+1}^{OR}(g)}$	Inequality Slack $L_d(f) - L_{d+1}(f)$	How to Sample	
Reduction	poly(n)		$o(s)$ for $d \ge 2$	Depth-2 Subformula of Lupanov's formula for random function	

Finding good *g*

Suppose you have a f on n-inputs of size sOne can sample a g such that

l H	Affects # of input $f(x, y) = f(x) \land \downarrow$	ts to Hypothesis of Lifting- $g(y)$ esque Lower Bound \downarrow	$(H) \approx L_{d+1}^{OR}(g) + L_d^{AN}$	$^{ND}(f)$
Use	Inputs to <i>g</i>	$\min\{\frac{L_{ND}(g) + L_{ND,\gamma}(g), 2 \cdot L_{ND,.73}(g)}{> L_{d}^{AND}(f) + L_{d+1}^{OR}(g)}$	Inequality Slack $L_d(f) - L_{d+1}(f)$	How to Sample
Reductio	on <i>poly(n</i>)		$o(s)$ for $d \ge 2$	Depth-2 Subformula of Lupanov's formula for random function
Gap Theoren	<i>0(n)</i>		$o(s)$ if $d \ge 3$	Biased random function

Depth-2 Subformulas of Lupanov

- $m = n^{100}$
- For each $x \in \{0,1\}^n$, select a random subset $S_x \subseteq [m]$
- $g: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}$
- $g(x, y) = \bigvee_{\tilde{x} \in \{0,1\}^n} 1_{x = \tilde{x}}(x) \wedge 1_{weight(y)=1}(y) \wedge 1_{y \subseteq S_{\tilde{x}}}(y)$