A lifting-esque theorem for constant depth formulas with consequences for MCSP and lower bounds

Rahul Ilango

IIIIT

Talk Goals

Learn something about:

Some problem called MCSP

Proving this "lifting-esque" theorem

Road Map

What's an
"MCSP"?
"Lifting-esque" result for constant-depth formulas

Sketch of Main
Technique

Main Theorem
Statement
Constant-Depth Formula
Minimization is Hard

Other
Consequences

$2^{n^{\epsilon}}$-gaps in formula complexity between depths

What's an
"MCSP"?

Sketch of Main
Technique

Main Theorem
Statement

Other
Consequences

What is MCSP?

The Minimum Circuit Size Problem (MCSP)

Why care about MCSP?

The search for fundamental problems

What problem have we learned the most from? SAT !!
Study of SAT \rightarrow
NP-completeness,
PCPs,
SAT solvers,
Fine-grained complexity
SAT is fundamental because
Natural questions \Rightarrow important (often unexpected) advances
Can we can find more fundamental problems?

A potential fundamental problem?

"MCSP is more fundamental than SAT!"

-- Rahul (Santhanam)

1. Connections to:

Cryptography \quad Learning \quad\begin{tabular}{c}
Structural

Complexity

\quad

Average Case

Complexity

\quad

Circuit

Complexity
\end{tabular}

2. Its complexity is a mystery

Is MCSP NP-complete?
Is MCSP hard to approximate?
Can you beat the naïve bruteforce algorithm?

\mathbf{X} is true about MCSP	\Rightarrow	Solution to a long-standing open problem
MCSP is NP-complete	$\underset{\substack{\text { [Murray-Williams } \\ \text { '15] }}}{\Rightarrow}$	EXP \neq ZPP
An approximation to MCSP is NP-complete	$\underset{\text { [Hirahara '18] }}{\Rightarrow}$	Computing NP "on average" is as hard as computing NP in the "worst-case"
A version of MCSP does not have n poly $(\log n)$ circuits	$\underset{\text { [McKay-Murray- }}{\Rightarrow}$ Williams '19]	NP does not have polynomial-size circuits

\section*{
 Cryptography Learning
 | Average Case | Structural | Circuit |
| :---: | :---: | :---: |
| Complexity | Complexity | Complexity |
 What are these connections?}

\author{

- YouTube Rahul llango TCS+ Talk
}

Is MCSP NP-hard?

Input: function f and integer s

"If it is NP-complete, it would have to require techniques that are not like any polynomial time reduction that we have ever

Is MCSP NP-hard?

Input: function f and integer s

Difficult NO instances of

Deterministic poly-
time reduction
requires breakthrough
[Kabanets-Cai ‘00,
Murray-Williams '16,
Saks-Santhanam '20]

Is \mathcal{C}-MCSP NP-hard?

Don't know
functions requiring

large circuits \longrightarrow| Hard to |
| :--- |
| prove MCSP |
| is NP-hard |

Circuit class $\mathcal{C} \in\{\underline{\mathrm{DNF}}$,
NP-hard by
[Masek '79,..., Khot-Saket ‘08]

DNF $\left.\circ X O R, \ldots, \mathrm{AC}_{\mathrm{d}}^{0}, \mathrm{AC}_{\mathrm{d}}^{0}[2]\right\}$

NP-hard by
[Hirahara-Oliveira-Santhanam '18]

Can we prove C-MCSP is NPhard?

What's an
"MCSP"?

Main Theorem
Statement

Sketch of Main
Technique

Main Result

Main Result: Preliminaries

Def

Let $L_{d}(f):=$ min. \# leaves in depth-d formula computing f

Constant Depth Formula Model

- Rooted tree of constant depth
- Internal nodes labeled by AND, OR gates of unbounded fan-in
- Leaf nodes labelled by $\left\{0,1, x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}\right\}$
- Size of formula = \# of leaves (ignoring constant leaves)
- Gates alternate between AND and OR

Note: Computing $L_{d}(f)$ reduces to (depth-d formula)-MCSP

Main Result

$$
\begin{aligned}
& \text { Def } \\
& \text { Let } L_{d}(f):=\text { min. \# leaves in depth-d formula computing } f
\end{aligned}
$$

Theorem

For all $d \geq 2$, computing $L_{d}(\cdot)$ is NP-hard under quasi-poly time randomized Turing reductions.

Proof Outline: An Inductive Approach

Theorem: Computing $L_{d}(\cdot)$ is NP-hard for all $d \geq 2$.
Step 1: Restrict to top OR gate
Def: $L_{d}^{O R}(f):=\mathrm{min}$. leaves in OR-top depth-d formula for f
Thm: If computing $L_{d}^{O R}(\cdot)$ is NP-hard, then so is computing $L_{d}(\cdot)$
Step 2: $d=2$ Base Case
Thm: "Approx." computing $L_{2}^{O R}(\cdot)$ is NP-hard
Known from [Masek '79,..., Allender et al. ‘06, Feldman ‘06, Khot-Saket ‘08]
Step 3: $d \geq 3$ Inductive Argument
Thm: "approx." computing $L_{d}^{O R}(\cdot)$ reduces to "approx." computing $L_{d+1}^{O R}(\cdot)$

Proof Outline: Techniques

Theorem: Computing $L_{d}(\cdot)$ is NP-hard for all $d \geq 2$.

Reducing depth-d to d+1: Pseudocode

Given f and oracle to $L_{d+1}^{O R}(\cdot)$, estimate $L_{d}^{A N D}(f)=L_{d}^{O R}(\neg f)$
while True:
Sample (g, error_bound $) \leftarrow \mathcal{D}$
Let $H(x, y)=f(x) \wedge g(y)$
Set f_{-}estimate $=L_{d+1}^{O R}(H)-L_{d+1}^{O R}(g)$
I'll try to explain
why this quantity roughly estimates $L_{d}^{A N D}(f)$

What's an
"MCSP"?

Sketch of Main
Technique

Main Theorem
Statement

Other
Consequences

Sketch of "Lifting-esque Result"

Intuition

$$
L_{d}^{O R}(\neg f)
$$

Want: Given f and oracle access to $L_{d+1}^{O R}(\cdot)$, compute $L_{d}^{A N D}(f)$
Idea: Find function H whose optimal depth-(d+1) OR-top formula contains an optimal depth-d AND-top formula for f

How? Switching Lemma??
Direct Sum Idea! $\quad H(x, y)=f(x) \wedge g(y)$ for some function g

Intuition for H

$$
H(x, y)=f(x) \wedge g(y)
$$

Naïve family of OR-top depth-(d+1) formulas for H :

OR-top depth-(d+1) formulas for f and g

$$
\begin{aligned}
& f(x)=\phi(x)=\bigvee_{i \in\left[t_{f}\right]} \phi_{i}(x) \\
& g(y)=\Psi(y)=\bigvee_{j \in\left[t_{g}\right]} \Psi_{j}(y)
\end{aligned}
$$

Size: $t_{g} \cdot|\phi|+t_{f} \cdot|\Psi|$

$$
H(x, y)=\bigvee_{(i, j) \in\left[t_{f}\right] \times\left[t_{g}\right]}\left(\phi_{i}(x) \wedge \Psi_{j}(y)\right)
$$

If

- g is waaaay more complex than f and
- has optimal formulas with $t_{g}=1$,
then the size is plausibly minimized by using the smallest
ϕ with $t_{f}=1$
In which case:

$$
L_{d+1}^{O R}(H)=L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)
$$

Main Technical Result $\quad H(x, y)=f(x) \wedge g(y)$

Is this tight?

Technical Result Preliminaries

- Non-Deterministic Formulas
- One-sided Approximations
- Direct Sum Theorems

Preliminaries: Non-Deterministic Formulas

A non-deterministic (ND) formula Ψ specified by

- an integer m specifying the number of "non-deterministic inputs"
- (unrestricted) formula $\phi(x, y)$ on $(m+n)$-inputs

Computes n-bit function given by $\Psi(y):=\mathrm{V}_{x} \phi(x, y)$
Size of non-det. formula $|\Psi|:=|\phi|$

Def (Bounded non-det. formula complexity)
$L_{N D}(f):=\min$ size of ND formula for f with $m=n$ non-det. input bits

Preliminaries: One-Sided Approximation

Let $g, \tilde{g}:\{0,1\}^{n} \rightarrow\{0,1\}$.

Def

\tilde{g} is an α-one sided approximation of g if

- \tilde{g} rejects all NO instances of g
- \tilde{g} accepts at least an α-fraction of the YES instances of g
- i.e. $\left|\tilde{g}^{-1}(1)\right| \geq \alpha \cdot\left|g^{-1}(1)\right|$

Def

$L_{N D, \alpha}(g):=\min L_{N D}(\tilde{g})$ over all α-one sided approx \tilde{g} of g

Preliminaries: Direct Sum Theorem

Recall: $H(x, y)=f(x) \wedge g(y)$

Thm (Folklore?):

Let f, g be non-constant functions. Then

$$
L_{d}^{O R}(H(x, y)) \geq L_{d}^{O R}(f)+L_{d}^{O R}(g)
$$

Proof
Suppose

- $\phi(x, y)=f(x) \wedge g(y)$
- $g\left(y^{*}\right)=1$.
ϕ has $\geq L_{d}^{O R}(f)$ many x-leaves.

Then restriction $\phi\left(x, y^{\star}\right)$
Similarly, ϕ has $\geq L_{d}^{O R}(g)$ many y-leaves. computes f.

What is "expensive"? $\quad H(x, y)=f(x) \wedge g(y)$

Theorem (Informal): If g is "expensive" compared to f, then

$$
L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)
$$

g is expensive compared to f if
g takes more inputs than f, and both

- $L_{N D}(g)+L_{N D, \gamma}(g) \quad$ "ND complexity of g and a weak approx. to g "
- $2 \cdot L_{N D, .}{ }^{7}(g) \longleftarrow$ "ND complexity of computing strong approx. to g twice"
are greater than $L_{d}^{A N D}(f)+L_{d+1}^{O R}(g) \longleftarrow$ Our desired lower bound

Formal Theorem

$$
H(x, y)=f(x) \wedge g(y)
$$

Theorem: $\quad L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$
when $\min \left\{L_{N D}(g)+L_{N D, \gamma}(g), 2 \cdot L_{N D,}, 73(g)\right\}>L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$ and f and g are non-constant and g takes more inputs than f.

Is this tight?

$$
H(x, y)=f(x) \wedge g(y)
$$

Theorem: $\quad L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$
when $\min \left\{L_{N D}(g)+L_{N D, \gamma}(g), 2 \cdot L_{N D, .73}(g)\right\}>L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$ and f and g are non-constant and g takes more inputs than f.

Trivial Lower Bound: $L_{d+1}^{O R}(H) \geq L_{d+1}^{O R}(f)+L_{d+1}^{O R}(g)$
Trivial Upper Bound: $L_{d+1}^{O R}(H) \leq L_{d}^{A N D}(H)=L_{d}^{A N D}(f)+L_{d}^{A N D}(g)$
Best Bounds: $L_{d}^{A N D}(f)+L_{d+1}^{O R}(g) \leq L_{d+1}^{O R}(H) \leq L_{d}^{A N D}(f)+L_{d}^{A N D}(g)$
Tight if: $L_{d+1}^{O R}(g)=L_{d}^{A N D}(g)$

Is this tight?

$$
H(x, y)=f(x) \wedge g(y)
$$

Theorem: $\quad L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$

when $\min \left\{L_{N D}(g)+L_{N D, \gamma}(g), 2 \cdot L_{N D, .73}(g)\right\}>L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$ and f and g are non-constant and g takes more inputs than f.

Best Bounds: $L_{d}^{A N D}(f)+L_{d+1}^{O R}(g) \leq L_{d+1}^{O R}(H) \leq L_{d}^{A N D}(f)+L_{d}^{A N D}(g)$

$$
L_{d}^{A N D}(f) \leq \underbrace{L_{d+1}^{O R}(H)-L_{d+1}^{O R}(g)}_{(1)} \leq L_{d}^{A N D}(f)+\underbrace{\left[L_{d}^{A N D}(g)-L_{d+1}^{O R}(g)\right]}_{(2)}
$$

So $L_{d}^{A N D}(f) \approx(1)$ up to additive error (2)
Can build on this to give the desired reduction between depth-d and depth-(d+1)

Proof!

```
Theorem: }\quad\mp@subsup{L}{d+1}{OR}(H)\geq\mp@subsup{L}{d}{AND}(f)+\mp@subsup{L}{d+1}{OR}(g
when min{L L ND
and f}\mathrm{ and g}\mathrm{ are non-constant and g takes more inputs than f}\mathrm{ .
```

Visualization of the f, g, and H functions

Proof!

$$
\begin{aligned}
& \text { Theorem: } \quad L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g) \\
& \text { when } \min \left\{L_{N D}(g)+L_{N D, \gamma}(g), 2 \cdot L_{N D,, 73}(g)\right\}>L_{d}^{A D D}(f)+L_{d+1}^{O R}(g) \\
& \text { and } f \text { and } g \text { are non-constant and } g \text { takes more inputs than } f \text {. }
\end{aligned}
$$

Suppose ϕ computing $H(x, y)=$ Splitting Claim: $f(x) \wedge g(y)$ contradicted this

Can split $\phi^{N D}$ into two disjoint subformulas $\Psi_{L}^{N D}$ and $\Psi_{R}^{N D}$ that are both (.73)-one sided non-det. approxs of g.

Splitting Claim \Rightarrow done!:

$$
\begin{aligned}
|\phi| & =\left|\phi^{N D}\right| \\
& \geq\left|\Psi_{L}^{N D}\right|+\left|\Psi_{R}^{N D}\right| \\
& \geq 2 \cdot L_{N D,, 73}(g) \\
& >L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)
\end{aligned}
$$

$y+\underset{x}{4} \underbrace{}_{y \phi_{1}^{N D}(x, y)}$

Proof!

Theorem: $\quad L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$
when $\min \left\{L_{N D}(g)+L_{N D, \gamma}(g), 2 \cdot L_{N D, .73}(g)\right\}>L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$
and f and g are non-constant and g takes more inputs than f.
Suppose ϕ computing $H(x, y)=$ Splitting Claim: $f(x) \wedge g(y)$ contradicted this

Can split $\phi^{N D}$ into two disjoint subformulas $\Psi_{L}^{N D}$ and $\Psi_{R}^{N D}$ that are both (.73)-one sided non-det. approxs of g.

Redundancy Claim: Every YES instances y^{\star} of g is non-det. accepted by at least two of $\phi_{1}^{N D}, \ldots, \phi_{t}^{N D}$.
Pf: Suppose y^{\star} is only non-det. accepted by $\phi_{1}^{N D}$
Then $\phi_{i}\left(x, y^{\star}\right)=0$ for all x and $i \geq 2$.
But then $\phi_{1}\left(x, y^{\star}\right)$ computes $f(x)$:

$$
f(x)=H\left(x, y^{\star}\right)=\phi\left(x, y^{\star}\right)=v_{i} \phi_{i}\left(x, y^{\star}\right)=\phi_{1}\left(x, y^{\star}\right)
$$

Then depth-d sub formula ϕ_{1} has $\geq L_{d}^{A N D}(f)$ many x-leaves!
y

Proof!

Splitting Claim:

Can split $\phi^{N D}$ into two disjoint subformulas $\Psi_{L}^{N D}$ and $\Psi_{R}^{N D}$ that are both (.73)-one sided non-det. approxs of g.

Redundancy Claim: Every YES instances y^{\star} of g is non-det. accepted by at least two of $\phi_{1}^{N D}, \ldots, \phi_{t}^{N D}$.

$$
\begin{aligned}
& \text { Theorem: } \quad L_{d+1}^{O R}(H) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g) \\
& \text { when } \min \left\{L_{N D}(g)+L_{N D, \gamma}(g), 2 \cdot L_{N D, .73}(g)\right\}>L_{d}^{A N D}(f)+L_{d+1}^{O R}(g) \\
& \text { and } f \text { and } g \text { are non-constant and } g \text { takes more inputs than } f .
\end{aligned}
$$

Pf of Splitting Claim:

Pick L and R to be a uniformly random partition of [t .
Let $\Psi_{L}^{N D}(x, y)=V_{i \in L} \phi_{i}^{N D}(x, y)$. Let $\Psi_{R}^{N D}=V_{i \in R} \phi_{i}^{N D}(x, y)$.
In expectation $\Psi_{L}^{N D}$ and $\Psi_{R}^{N D}$ are .75 one-sided non-det. approx of g. Why? Because Linearity of Expectation:

- Redundancy \Rightarrow any YES instance y^{\star} of g has ≥ 2 chances to get a $i \in L$ s.t. ϕ_{i} non-det. accepts y^{\star}

Proof!

Splitting Claim:

Can split $\phi^{N D}$ into two disjoint subformulas $\Psi_{L}^{N D}$ and $\Psi_{R}^{N D}$ that are both (.73)-one sided non-det. approxs of g.

Redundancy Claim: Every YES
instances y^{\star} of g is non-det. accepted by at least two of $\phi_{1}^{N D}, \ldots, \phi_{t}^{N D}$.

Pf of Splitting Claim:

Pick L and R to be a uniformly random partition of [t .
Let $\Psi_{L}^{N D}(x, y)=V_{i \in L} \phi_{i}^{N D}(x, y)$. Let $\Psi_{R}^{N D}=V_{i \in R} \phi_{i}^{N D}(x, y)$.
In expectation $\Psi_{L}^{N D}$ and $\Psi_{R}^{N D}$ are .75 one-sided non-det. approx of g. Why? Because Linearity of Expectation:

- Redundancy \Rightarrow any YES instance y^{\star} of g has ≥ 2 chances to get a $i \in L$ s.t. ϕ_{i} non-det. accepts y^{\star}
But expectation not enough... Need to hold simultaneously
So prove concentration! Chebyshev works if one can show:
Each $\phi_{i}^{N D}$ accepts $\leq \gamma$-fraction of g 's YES instances

If not, then $\left|\phi_{i}^{N D}\right| \geq L_{N D, \gamma}(g)$
OTOH: Redundancy $\Rightarrow \vee_{j \neq i} \phi_{j}^{N D}$ computes g non-det. $\Rightarrow\left|V_{j \neq i} \phi_{j}^{N D}\right| \geq L_{N D}(g)$
But then $|\phi|=\left|\phi_{i}^{N D}\right|+\left|V_{j \neq i} \phi_{j}^{N D}\right| \geq L_{N D}(g)+L_{N D, \gamma}(g) \geq L_{d}^{A N D}(f)+L_{d+1}^{O R}(g)$

What's an
"MCSP"?
Sketch of Main
Technique

Main Theorem
Statement
Other
Consequences

Other Consequences

Gaps in Formula Complexity Between Depths

Theorem

There exists an $\epsilon>0$ s.t. for all $d \geq 2$ there exists a function f such that $L_{d}(f)-L_{d+1}(f) \geq 2^{\Omega_{d}\left(n^{\epsilon}\right)}$
$\boldsymbol{d}=\mathbf{2 , 3}$ cases: Use existing depth hierarchy theorems [Hastad '89] that shows $2^{n^{\Omega\left(\frac{1}{d}\right)}}$ seperation
$d \geq 4$ case:
Use "Lifting-esque Theorem" to "lift" a $L_{d}(f)-L_{d+1}(f)$ separation into a $L_{d+1}(H)-L_{d+2}(H)$ (cost is a constant in the exponent)

$$
H(x, y)=f(x) \wedge g(y)
$$

Thanks!

Questions?

Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Finding good g

Suppose you have a f on n-inputs of size s

One can sample a g such that

Affects \# of inputs to $H(x, y)=f(x) \wedge g(y)$ \downarrow			Hypothesis of Liftingesque Lower Bound$L_{d+1}^{O R}(H) \approx L_{d+1}^{O R}(g)+L_{d}^{A N D}(f)$		
Use	Inputs to g		$\begin{aligned} & (g)+L_{N D, \gamma}(g), 2 \cdot L \\ & (f)+L_{d+1}^{O R}(g) \end{aligned}$	Inequality Slack $L_{d}(f)-L_{d+1}(f)$	How to Sample
Reduction	$\operatorname{poly}(\mathrm{n})$		V	$o(s)$ for $d \geq 2$	Depth-2 Subformula of Lupanov's formula for random function

Finding good g

Suppose you have a f on n-inputs of size s

One can sample a g such that

Depth-2 Subformulas of Lupanov

- $m=n^{100}$
- For each $x \in\{0,1\}^{n}$, select a random subset $S_{x} \subseteq[m]$
- $g:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$
- $g(x, y)=\vee_{\tilde{x} \in\{0,1\}^{n}} 1_{x=\tilde{x}}(x) \wedge 1_{\text {weight }(y)=1}(y) \wedge 1_{y \subseteq S_{\tilde{x}}}(y)$

