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Talk Goals

Learn something about:

Some problem called Proving this “lifting-esque”
MCSP theorem



Road Map

“Lifting-esque” result for
constant-depth formulas

l

What's an Sketch of Main
“MCSP”? Technique
Main Theorem Other
Statement Consequences
Constant-Depth Formula 21 _gaps in formula

Minimization is Hard complexity between depths



What’s an Sketch of Main
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Statement Consequences

What is MICSP?



The Minimum Circuit Size Problem (MCSP)

Input Output

Truth table T of a “size threshold”

Boolean function f s € Nin unary 3 circuit W'th < 5 gates
) computing f?
on . 1m

O™ . QM)

N = 2"

T =

[ NP-complete

NP

Complexity:



Why care about MICSP?



The search for fundamental problems

What problem have we learned the most from?  SAT !

Study of SAT —
NP-completeness,
PCPs,
SAT solvers,
Fine-grained complexity
SAT is fundamental because
Natural questions = important (often unexpected) advances

Can we can find more fundamental problems?



A potential fundamental problem?

“MCSP is more fundamental than SAT!”

-- Rahul (Santhanam)

1. Connections to: 2. Its complexity is a mystery
Is MCSP NP-complete?

Is MCSP hard to approximate?
Cryptography Learning Structural Average Case Circuit

Complexity Complexity Complexity Can y0u beat the na|Ve brute'
force algorithm?

X is true about MCSP — Solution to a long-standing open problem
MCSP is NP-complete [Murrﬁvmiams EXP = ZPP

15]
An approximation to MCSP = Computing NP “on average” is as hard as
is NP-complete [Hirahara “18] computing NP in the “worst-case”
A version of MCSP does not =

NP does not have polynomial-size circuits

. : [McKay-Murray-
have n pOIY(lOg Tl) circuits Williams 19]



Vi s il

EEmEm
Cryptography Learning Average Case Structural Circuit
Complexity Complexity Complexity

What are these connections?

°YOUT|,I|JE Rahul llango TCS+ Talk



s MICSP NP-hard?

Input: function / and integer s

YES
MCSP

{5

NO

|
>

I
|
0

“If it is NP-complete, it
would have to require
techniques that are not like
any polynomial time
reduction that we have ever
seen”

|
S

size of
smallest
circuit
computing [



s MICSP NP-hard?

Input: function / and integer

YES NO size of
| I circuit
0 computing |
4 h L
Difficult NO Functions requiring Deterministic
instances of = large circuits : reduction
. MCSP y requires breakthrough

[Kabanets-Cai ‘00,
Murray-Williams ’16,
Saks-Santhanam ‘20]

Randomized Reductions?



s C-MCSP NP-hard?

(

requiring large

’ )
Don’t know Hard to
functions requiring —) prove MCSP

\Iarge circuits is NP-hard y

Circuit class C € {DNF,

NP-hard by

circuits
\_

\

3 -MCSP is NP-

hard?

J

NP-hard by

[Masek ’79,..., Khot-Saket ‘08] [Hirahara-Oliveira-Santhanam ‘18]

DNF o XOR, ..., AC3 ,ACJ[2]}

\

277



What’s an Sketch of Main
“MCSP”? Technique

Main Theorem Other
Statement Consequences

Main Result



Main Result: Preliminaries

Def
Let L;(f) == min. # leaves in depth-d formula computing f

Constant Depth Formula Model

Rooted tree of constant depth

Internal nodes labeled by AND, OR gates of unbounded fan-in
Leaf nodes labelled by {0,1, x4, ..., X;;, X1, ..., 71Xy}

Size of formula = # of leaves (ignoring constant leaves) ERRENREERIRERIIIIEER
Gates alternate between AND and OR

Note: Computing L, (f) reduces to (depth-d formula)-



Main Result

Def
Let L,;(f) == min. # leaves in depth-d formula computing f

Theorem
For all d = 2, computing L;(+) is NP-hard under quasi-poly time
randomized Turing reductions.




Proof Outline: An Inductive Approach
Theorem: Computing L;(:) is NP-hard foralld = 2.

Step 1: Restrict to top OR gate
Def: .9%(f) := min. leaves in OR-top depth-d formula for f

Thm: If computing L9%(-) is NP-hard, then so is computing L, (+)
Step 2: d = 2 Base Case
Thm: “Approx.” computing LgR(-) is NP-hard

Known from [Masek ’79,..., Allender et al. ‘06, Feldman ‘06, Khot-Saket ‘08]

Step 3: d = 3 Inductive Argument

Thm: ”approx." Computing L(O)ZR() reduces to ”apprOX.” COmpUting L?l}-le-l()



Proof Outline: Technigues
Theorem: Computing L;(:) is NP-hard foralld = 2.

Computing LIR (") is : Computing L9% (") is : Computing L, () is NP-
NP-hard T NP-hard foralld = 2 T hard forall d = 2
Novel “Lifting-esque” DeMorgan’s Laws +
Theorem Direct Sum Rules

(+ Depth Hierarchy Thms)



Reducing depth-d to d+1: Pseudocode
Given f and oracle to L9%, (+), estimate L5"” (f) = LIR(~f)

while True:

Sample (g, error_bound) < D
Let H(x,y) = f(x) Ag(y)

I’ll try to explain

Set f estimate = L9, (H) =LY%, (g)  + why this quantity
roughly estimates
If f_estimate >> error_bound : LAND (£

Output that 157 (f) = f_estimate.



What’s an Sketch of Main
“MCSP”? Technique

Main Theorem Other
Statement Consequences

Sketch of “Lifting-esque Result™



Intuition LOR (S f)
|

Want: Given f and oracle access to L9, (+), compute L5"" (f)

ldea: Find function H whose optimal depth-(d+1) OR-top formula
contains an optimal depth-d AND-top formula for f

How? Switching Lemma??

Direct Sum Ideal H(x,y) = f(x) Ag(y) for some function g



Intuition for H H(x,y) = fx)Agy)
Naive family of OR-top depth-(d+1) formulas for H:

OR-top depth-(d+1) formulas for f and g H OR-top depth-(d+1) formulas for H
Fo) =600 = \/ #i0)
N Hen =\ @@ Ao
s» =y =\/ %, eltrlxe]
j€ltq) f

g is waaaay more complex than f and
* has optimal formulas with t, = 1,
then the size is plausibly minimized by using the smallest

Size: t, - ||+t - [V b with t, — 1

In which case:
L% (H) = LA"P(f) + L9% 1 (9)



Main Technical Result H(x,y) = f(x) A g(y)

What does this
mean?

|

Theorem (Informal): If g is “expensive” compared to [, then
d+1(H) > LAND(f) + Ld+1(g).

Is this tight?




Technical Result Preliminaries

* Non-Deterministic Formulas
* One-sided Approximations
* Direct Sum Theorems



Preliminaries: Non-Deterministic Formulas

A non-deterministic (ND) formula 'V specified by
* an integer m specifying the number of “non-deterministic inputs”

* (unrestricted) formu%x, y) on (m + n)-inputs
(\

Non-deterministic Regular input
input

Computes n-bit function given by W (y) := V., ¢(x,y)

Size of non-det. formula || := ||

Def (Bounded non-det. formula complexity)
Lyp (f) := min size of ND formula for f with@non—det. input bits




Preliminaries: One-Sided Approximation

Let g, 5:{0,1}" — {0,1}.

Def
g isan a-one sided approximation of g if

* g rejects all NO instances of g
* ( accepts at least an a-fraction of the YES instances of g

e gDz g (D)

Def
Lyp (g):=min Lyp(g) over all a-one sided approx g of g




Preliminaries: Direct Sum Theorem

Recall: H(x,v) = f(x) Ag(y)

Thm (Folklore?):

Let f, g be non-constant functions. Then
LG*(H (e )) = LGF () + LG ().

Proof
Suppose
y gb(x;y) =fx)Ag(y) ¢ has = LY%(f) many x-leaves.
gy =1
Then restriction ¢ (x, v") Similarly, ¢ has > L9%(g) many y-leaves.

computes f.



What is “expensive”? H(x,y) = f(x) Ag(y)

Theorem (Informal): If g is “expensive” compared to [, then
d+1(H) = LAND(f) + Ld+1(g).

g is expensive compared to [ if
g takes more inputs than f,

and both
¥ = “some small number” = 10~*
‘ LND (g) + LND,]/ (g) D “ND complexity of g and a weak approx. to g”
* 2- LND .73 (g) +<— “ND complexity of computing strong approx. to g twice”

are greater than 157 (f) + L9%,(g) «— our desired lower bound



Formal Theorem Alxy) =1 Ag0)

Theorem: d+1(H) = LAND (f) + Ld+1(9)

when mln{LND (9) + Lyp,(9), 2+ Lyp, 73(9)} > L () + LY51(9)
and f and g are non-constant and g takes more inputs than f.




s this tight? HC,y) = Ag)

Theorem: d+1(H) = LAND (f) + Ld+1(9)

when mln{LND (9) + Lyp,(9), 2+ Lyp, 73(9)} > L () + LY51(9)
and f and g are non-constant and g takes more inputs than f.

Trivial Lower Bound:L9% , (1) = L9% ., ()+ L9%,(9)

Trivial Upper Bound:L9% (1) < L5"P (1) = LSYP () + L5"P (9)
Best Bounds: ;)" () + Ly, (g) < LIS, (H) < L"P(f) + L7 (9)

Tight if: L35, (9) = 13" (9)



s this tight? HC,y) = Ag)

Theorem: )= L")+ L9 ()

when mln{LND (g) + LND 4(9),2 Lyp, 73(9)} > L () + LY51(9)
and f and g are non-constant and g takes more inputs than f.

Best Bounds :L;)"” () + Ly, (g) < LIS, (H) < L"P(f) + L7 (9)

L) < 1 D = 1350 < 1" () + [ (9) = 1§ ()]

Y Y
(1) (2)

So L5"7(f) = (1) up to additive error (2)
Can build on this to give the desired reduction between depth-d and depth-(d+1)



Proof!

Visualization of
the f, g, and H
functions

H(x,y)

Theorem: L9% (H) = LANP(F) + L9% . (g9)
when min{LND (9) + Lypy(9),2 - Lyp, .73(9)} > LAVP (f) + L%, (9)

and f and g are non-constant and g takes more inputs than f.

11 ¢ @

NO inputs YES inputs ‘
> @ @ @ @ O
g 00 11 0é @
y 9()

|




Proof!

Theorem: O L(H) = LENP () + L9R 1 (9)
when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LE"P(F) + L% 1 (9)

and f and g are non-constant and g takes more inputs than f.

Suppose ¢ computing H (x,y) =  Splitting Claim:

f(x) A g(v) contradicted this

*l

H(x,y)

y o7 (x,y)

both (.73)-one sided non-det. approxs of g.

Splitting Claim = done!:
b || =[NP
= [W)P] + |WRP|
=2 Lyp,73(9)
> La"P (f) + L35, (9)

<

t

\< M
0 e

S @

Can split """ into two disjoint subformulas W/'” and WA

that are



Theorem: O L(H) = LENP () + L9R 1 (9)
P rO Ofl when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LGP () + L35 1 (9)

and f and g are non-constant and g takes more inputs than f.

Suppose ¢ computing H(x,y) = Splitting Claim:
f(x) A EP ) contradicted th)i]s Can split """ into two disjoint subformulas W/'” and WA that are
g both (.73)-one sided non-det. approxs of g.

00 00 H(x,v) Redundancy Claim: Every YES instances y* of g is non-det.
y : : : : ¢ accepted by at least two of V7, ..., pNP,
00060 Pf: Suppose V" is only non-det. accepted by ¢}'”
Y G Then ¢;(x,v") = O forallx and i = 2.
X

But then ¢, (x, ") computes f(x):
f(x) — H(.X',y*) — ¢(X,y*) — Vi ¢i(x;y*) — d)l(xry*)

Then depth-d sub formula ¢, has > L5"?(f) many x-leaves!

b,

<

t

00 00 ¢ 0000 ® But ¢ has > L9%,(g) many y-leaves, by setting x to a
0000 | y ®0 00 | ® yesinstance of /!
0000 | o 0000 | O D
0000 O 0000 4o Solol=Lg"(H+Lgi(9)
M M ND
x y o7 (x,y) x y b



Theorem: d+1(H) = LAND (f) + Ld+1(9)
P rO Ofl when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LGP () + L35 1 (9)

and f and g are non-constant and g takes more inputs than f.

Splitting Claim: Pf of Splitting Claim:
Can split ¢'” into two disjoint Pick L. and R to be a uniformly random partition of [t].
subformulas W/'” and WA'” that Let W/'7 (x,y) = lEL i D(X y). Let WP = V;ep ¢7"° (x, y).
are both (.73)-one sided non-det. In expectation W'’ and W7 are .75 one- S|ded non-det. approx of g.
approxs of g. Why? Because Linearity of Expectation:
* Redundancy = any YES instance y*of g has = 2 chances to
Redundancy Claim: Every YES getail € L s.t. ¢; non-det. accepts y~
instances y”* of g is non-det.
accepted by at least two of 00 00
WD, NP, o000 'V
o0 @0 ¢
0000
M
0000 ¢¢ x o000 to
o000 | ™ b Y|eooe |eo
0000 O 0000 ®
M M
X y qbiVD (.X' y) X y ¢{:VD



Theorem: d+1(H) = LAND (f) + Ld+1(9)
P rO Ofl when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LGP () + L35 1 (9)

and f and g are non-constant and g takes more inputs than f.

Splitting Claim: Pf of Splitting Claim:
Can split ¢'” into two disjoint Pick L. and R to be a uniformly random partition of [t].
subformulas W/'” and WA'” that Let W/'7 (x,y) = lEL i D(X y). Let WP = V;ep ¢7"° (x, y).
are both (.73)-one sided non-det. In expectation W'’ and W7 are .75 one- S|ded non-det. approx of g.
approxs of g. Why? Because Linearity of Expectation:
* Redundancy = any YES instance y*of g has = 2 chances to
Redundancy Claim: Every YES getail € L s.t. ¢; non-det. accepts y~
instances y” of g is non-det. But expectation not enough... Need to hold simultaneously
acﬁgptEd b}\y[/Dat east two of So prove concentration! Chebyshev works if one can show:
1 9 eeey t .

Fach ¢!'" accepts < y-fraction of g’s YES instances
If not, then |¢£VD| = Lypy(9)

OTOH: Redundancy = /., gb]’-VD computes g non-det. = |Vj¢l- qb}VD| = Lyp(9)

Butthen || = || + |V ;0" | = Lyp(9) + Lyp, (9) = LGP (F) + LG5, (9)



What’s an Sketch of Main
“MCSP”? Technique

Main Theorem Other
Statement Consequences

Other Consequences



Gaps in Formula Complexity Between Depths

Theorem
There exists an € > 0 s.t. for all d = 2 there exists a function f such
that Ly (f) — Lgsq (f) = 2%

oL
d =2 3cases: Use existing depth hierarchy theorems [Hastad ‘89] that shows 21 @
seperation
d > 4 case: Use “Lifting-esque Theorem” to “lift” a L ;(f) — L, 41 (f) separation

intoa L, (H) — Ly, (H) (cost is a constant in the exponent)

HG,y) =) Ag(y)



Thanks!

Questions?



Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Affects # of inputs to Hypothesis of Lifting-

AND
x,y)=fx)Ag() esque Lower Bound d+1( ) = Ld+1(g) + Ly (f)
} ! l
Use Inputs to min{Ly,(9) + Lyp,(9),2 - Lyp, 73(9)}  Inequality Slack ~ How to Sample

g > LAVP () + L9% L (9) La(f) = Las1(f)




Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Affects # of inputs to Hypothesis of Lifting- AND
(,y)=fx)Ag(y) esque Lower Bound L5, () = LG5, (g) + L7 (f)
Use Inputs to min{Ly,(9) + Lyp,(9),2 - Lyp, 73(9)}  Inequality Slack ~ How to Sample
g > LAVP () + L9% L (9) La(f) = Las1(f)
Reduction  poly(n) M o(s) ford = 2 Depth-2 Subformula of

Lupanov’s formula for
random function




Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Affects # of inputs to Hypothesis of Lifting- AND
(x,y) =fx)Ag) esque Lower Bound Lot (H) = Lg%, (@) + L3P (f)
Use Inputs to min{Ly,(9) + Lyp,(9),2 - Lyp, 73(9)}  Inequality Slack ~ How to Sample
g > LAVP () + L9% L (9) La(f) = Las1(f)

Reduction  poly(n) M o(s) ford = 2 Depth-2 Subformula of
Lupanov’s formula for
random function

Gap 0(n) | o(s)ifd =3 Biased random function

Theorem




Depth-2 Subformulas of Lupanov

e m = 100

* For each x € {0,1}", select a random subset S,, € [m]
. 9:{0,1}" x {0,1}™ > {0,1)
cg(x,y) = Vizego 1n L=z () A Lyeight(3)=1(Y) A 1ycs (V)



