. UNIVERSITY OF

el A lifting-esque theorem
VYV for constant depth formulas

WARWICK with consequences for MICSP and lower bounds

ERSITY OF WARWICK

H I
Rahul llango IIIII

Talk Goals

Learn something about:

Some problem called Proving this “lifting-esque”
MCSP theorem

Road Map

“Lifting-esque” result for
constant-depth formulas

l

What's an Sketch of Main
“MCSP”? Technique
Main Theorem Other
Statement Consequences
Constant-Depth Formula 21 _gaps in formula

Minimization is Hard complexity between depths

What’s an Sketch of Main

“MCSP”? Technique
Main Theorem Other
Statement Consequences

What is MICSP?

The Minimum Circuit Size Problem (MCSP)

Input Output

Truth table T of a “size threshold”

Boolean function f s € Nin unary 3 circuit W'th < 5 gates
) computing f?
on . 1m

O™ . QM)

N = 2"

T =

[NP-complete

NP

Complexity:

Why care about MICSP?

The search for fundamental problems

What problem have we learned the most from? SAT !

Study of SAT —
NP-completeness,
PCPs,
SAT solvers,
Fine-grained complexity
SAT is fundamental because
Natural questions = important (often unexpected) advances

Can we can find more fundamental problems?

A potential fundamental problem?

“MCSP is more fundamental than SAT!”

-- Rahul (Santhanam)

1. Connections to: 2. Its complexity is a mystery
Is MCSP NP-complete?

Is MCSP hard to approximate?
Cryptography Learning Structural Average Case Circuit

Complexity Complexity Complexity Can y0u beat the na|Ve brute'
force algorithm?

X is true about MCSP — Solution to a long-standing open problem
MCSP is NP-complete [Murrﬁvmiams EXP = ZPP

15]
An approximation to MCSP = Computing NP “on average” is as hard as
is NP-complete [Hirahara “18] computing NP in the “worst-case”
A version of MCSP does not =

NP does not have polynomial-size circuits

. : [McKay-Murray-
have n pOIY(lOg Tl) circuits Williams 19]

Vi s il

EEmEm
Cryptography Learning Average Case Structural Circuit
Complexity Complexity Complexity

What are these connections?

°YOUT|,I|JE Rahul llango TCS+ Talk

s MICSP NP-hard?

Input: function / and integer s

YES
MCSP

{5

NO

|
>

I
|
0

“If it is NP-complete, it
would have to require
techniques that are not like
any polynomial time
reduction that we have ever
seen”

|
S

size of
smallest
circuit
computing [

s MICSP NP-hard?

Input: function / and integer

YES NO size of
| I circuit
0 computing |
4 h L
Difficult NO Functions requiring Deterministic
instances of = large circuits : reduction
. MCSP y requires breakthrough

[Kabanets-Cai ‘00,
Murray-Williams ’16,
Saks-Santhanam ‘20]

Randomized Reductions?

s C-MCSP NP-hard?

(

requiring large

’)
Don’t know Hard to
functions requiring —) prove MCSP

\Iarge circuits is NP-hard y

Circuit class C € {DNF,

NP-hard by

circuits
_

\

3 -MCSP is NP-

hard?

J

NP-hard by

[Masek ’79,..., Khot-Saket ‘08] [Hirahara-Oliveira-Santhanam ‘18]

DNF o XOR, ..., AC3 ,ACJ[2]}

\

277

What’s an Sketch of Main
“MCSP”? Technique

Main Theorem Other
Statement Consequences

Main Result

Main Result: Preliminaries

Def
Let L;(f) == min. # leaves in depth-d formula computing f

Constant Depth Formula Model

Rooted tree of constant depth

Internal nodes labeled by AND, OR gates of unbounded fan-in
Leaf nodes labelled by {0,1, x4, ..., X;;, X1, ..., 71Xy}

Size of formula = # of leaves (ignoring constant leaves) ERRENREERIRERIIIIEER
Gates alternate between AND and OR

Note: Computing L, (f) reduces to (depth-d formula)-

Main Result

Def
Let L,;(f) == min. # leaves in depth-d formula computing f

Theorem
For all d = 2, computing L;(+) is NP-hard under quasi-poly time
randomized Turing reductions.

Proof Outline: An Inductive Approach
Theorem: Computing L;(:) is NP-hard foralld = 2.

Step 1: Restrict to top OR gate
Def: .9%(f) := min. leaves in OR-top depth-d formula for f

Thm: If computing L9%(-) is NP-hard, then so is computing L, (+)
Step 2: d = 2 Base Case
Thm: “Approx.” computing LgR(-) is NP-hard

Known from [Masek ’79,..., Allender et al. ‘06, Feldman ‘06, Khot-Saket ‘08]

Step 3: d = 3 Inductive Argument

Thm: ”approx." Computing L(O)ZR() reduces to ”apprOX.” COmpUting L?l}-le-l()

Proof Outline: Technigues
Theorem: Computing L;(:) is NP-hard foralld = 2.

Computing LIR (") is : Computing L9% (") is : Computing L, () is NP-
NP-hard T NP-hard foralld = 2 T hard forall d = 2
Novel “Lifting-esque” DeMorgan’s Laws +
Theorem Direct Sum Rules

(+ Depth Hierarchy Thms)

Reducing depth-d to d+1: Pseudocode
Given f and oracle to L9%, (+), estimate L5"” (f) = LIR(~f)

while True:

Sample (g, error_bound) < D
Let H(x,y) = f(x) Ag(y)

I’ll try to explain

Set f estimate = L9, (H) =LY%, (g) + why this quantity
roughly estimates
If f_estimate >> error_bound : LAND (£

Output that 157 (f) = f_estimate.

What’s an Sketch of Main
“MCSP”? Technique

Main Theorem Other
Statement Consequences

Sketch of “Lifting-esque Result™

Intuition LOR (S f)
|

Want: Given f and oracle access to L9, (+), compute L5"" (f)

ldea: Find function H whose optimal depth-(d+1) OR-top formula
contains an optimal depth-d AND-top formula for f

How? Switching Lemma??

Direct Sum Ideal H(x,y) = f(x) Ag(y) for some function g

Intuition for H H(x,y) = fx)Agy)
Naive family of OR-top depth-(d+1) formulas for H:

OR-top depth-(d+1) formulas for f and g H OR-top depth-(d+1) formulas for H
Fo) =600 = \/ #i0)
N Hen =\ @@ Ao
s» =y =\/ %, eltrlxe]
j€ltq) f

g is waaaay more complex than f and
* has optimal formulas with t, = 1,
then the size is plausibly minimized by using the smallest

Size: t, - ||+t - [V b with t, — 1

In which case:
L% (H) = LA"P(f) + L9% 1 (9)

Main Technical Result H(x,y) = f(x) A g(y)

What does this
mean?

|

Theorem (Informal): If g is “expensive” compared to [, then
d+1(H) > LAND(f) + Ld+1(g).

Is this tight?

Technical Result Preliminaries

* Non-Deterministic Formulas
* One-sided Approximations
* Direct Sum Theorems

Preliminaries: Non-Deterministic Formulas

A non-deterministic (ND) formula 'V specified by
* an integer m specifying the number of “non-deterministic inputs”

* (unrestricted) formu%x, y) on (m + n)-inputs
(\

Non-deterministic Regular input
input

Computes n-bit function given by W (y) := V., ¢(x,y)

Size of non-det. formula || := ||

Def (Bounded non-det. formula complexity)
Lyp (f) := min size of ND formula for f with@non—det. input bits

Preliminaries: One-Sided Approximation

Let g, 5:{0,1}" — {0,1}.

Def
g isan a-one sided approximation of g if

* g rejects all NO instances of g
* (accepts at least an a-fraction of the YES instances of g

e gDz g (D)

Def
Lyp (g):=min Lyp(g) over all a-one sided approx g of g

Preliminaries: Direct Sum Theorem

Recall: H(x,v) = f(x) Ag(y)

Thm (Folklore?):

Let f, g be non-constant functions. Then
LG*(H (e)) = LGF () + LG ().

Proof
Suppose
y gb(x;y) =fx)Ag(y) ¢ has = LY%(f) many x-leaves.
gy =1
Then restriction ¢ (x, v") Similarly, ¢ has > L9%(g) many y-leaves.

computes f.

What is “expensive”? H(x,y) = f(x) Ag(y)

Theorem (Informal): If g is “expensive” compared to [, then
d+1(H) = LAND(f) + Ld+1(g).

g is expensive compared to [if
g takes more inputs than f,

and both
¥ = “some small number” = 10~*
‘ LND (g) + LND,]/ (g) D “ND complexity of g and a weak approx. to g”
* 2- LND .73 (g) +<— “ND complexity of computing strong approx. to g twice”

are greater than 157 (f) + L9%,(g) «— our desired lower bound

Formal Theorem Alxy) =1 Ag0)

Theorem: d+1(H) = LAND (f) + Ld+1(9)

when mln{LND (9) + Lyp,(9), 2+ Lyp, 73(9)} > L () + LY51(9)
and f and g are non-constant and g takes more inputs than f.

s this tight? HC,y) = Ag)

Theorem: d+1(H) = LAND (f) + Ld+1(9)

when mln{LND (9) + Lyp,(9), 2+ Lyp, 73(9)} > L () + LY51(9)
and f and g are non-constant and g takes more inputs than f.

Trivial Lower Bound:L9% , (1) = L9% ., ()+ L9%,(9)

Trivial Upper Bound:L9% (1) < L5"P (1) = LSYP () + L5"P (9)
Best Bounds: ;)" () + Ly, (g) < LIS, (H) < L"P(f) + L7 (9)

Tight if: L35, (9) = 13" (9)

s this tight? HC,y) = Ag)

Theorem:)= L")+ L9 ()

when mln{LND (g) + LND 4(9),2 Lyp, 73(9)} > L () + LY51(9)
and f and g are non-constant and g takes more inputs than f.

Best Bounds :L;)"” () + Ly, (g) < LIS, (H) < L"P(f) + L7 (9)

L) < 1 D = 1350 < 1" () + [(9) = 1§ ()]

Y Y
(1) (2)

So L5"7(f) = (1) up to additive error (2)
Can build on this to give the desired reduction between depth-d and depth-(d+1)

Proof!

Visualization of
the f, g, and H
functions

H(x,y)

Theorem: L9% (H) = LANP(F) + L9% . (g9)
when min{LND (9) + Lypy(9),2 - Lyp, .73(9)} > LAVP (f) + L%, (9)

and f and g are non-constant and g takes more inputs than f.

11 ¢ @

NO inputs YES inputs ‘
> @ @ @ @ O
g 00 11 0é @
y 9()

|

Proof!

Theorem: O L(H) = LENP () + L9R 1 (9)
when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LE"P(F) + L% 1 (9)

and f and g are non-constant and g takes more inputs than f.

Suppose ¢ computing H (x,y) = Splitting Claim:

f(x) A g(v) contradicted this

*l

H(x,y)

y o7 (x,y)

both (.73)-one sided non-det. approxs of g.

Splitting Claim = done!:
b || =[NP
= [W)P] + |WRP|
=2 Lyp,73(9)
> La"P (f) + L35, (9)

<

t

\< M
0 e

S @

Can split """ into two disjoint subformulas W/'” and WA

that are

Theorem: O L(H) = LENP () + L9R 1 (9)
P rO Ofl when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LGP () + L35 1 (9)

and f and g are non-constant and g takes more inputs than f.

Suppose ¢ computing H(x,y) = Splitting Claim:
f(x) A EP) contradicted th)i]s Can split """ into two disjoint subformulas W/'” and WA that are
g both (.73)-one sided non-det. approxs of g.

00 00 H(x,v) Redundancy Claim: Every YES instances y* of g is non-det.
y : : : : ¢ accepted by at least two of V7, ..., pNP,
00060 Pf: Suppose V" is only non-det. accepted by ¢}'”
Y G Then ¢;(x,v") = O forallx and i = 2.
X

But then ¢, (x, ") computes f(x):
f(x) — H(.X',y*) — ¢(X,y*) — Vi ¢i(x;y*) — d)l(xry*)

Then depth-d sub formula ¢, has > L5"?(f) many x-leaves!

b,

<

t

00 00 ¢ 0000 ® But ¢ has > L9%,(g) many y-leaves, by setting x to a
0000 | y ®0 00 | ® yesinstance of /!
0000 | o 0000 | O D
0000 O 0000 4o Solol=Lg"(H+Lgi(9)
M M ND
x y o7 (x,y) x y b

Theorem: d+1(H) = LAND (f) + Ld+1(9)
P rO Ofl when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LGP () + L35 1 (9)

and f and g are non-constant and g takes more inputs than f.

Splitting Claim: Pf of Splitting Claim:
Can split ¢'” into two disjoint Pick L. and R to be a uniformly random partition of [t].
subformulas W/'” and WA'” that Let W/'7 (x,y) = lEL i D(X y). Let WP = V;ep ¢7"° (x, y).
are both (.73)-one sided non-det. In expectation W'’ and W7 are .75 one- S|ded non-det. approx of g.
approxs of g. Why? Because Linearity of Expectation:
* Redundancy = any YES instance y*of g has = 2 chances to
Redundancy Claim: Every YES getail € L s.t. ¢; non-det. accepts y~
instances y”* of g is non-det.
accepted by at least two of 00 00
WD, NP, o000 'V
o0 @0 ¢
0000
M
0000 ¢¢ x o000 to
o000 | ™ b Y|eooe |eo
0000 O 0000 ®
M M
X y qbiVD (.X' y) X y ¢{:VD

Theorem: d+1(H) = LAND (f) + Ld+1(9)
P rO Ofl when mln{LND(g) + Lypy(9),2 - Lyp, 73(9)} > LGP () + L35 1 (9)

and f and g are non-constant and g takes more inputs than f.

Splitting Claim: Pf of Splitting Claim:
Can split ¢'” into two disjoint Pick L. and R to be a uniformly random partition of [t].
subformulas W/'” and WA'” that Let W/'7 (x,y) = lEL i D(X y). Let WP = V;ep ¢7"° (x, y).
are both (.73)-one sided non-det. In expectation W'’ and W7 are .75 one- S|ded non-det. approx of g.
approxs of g. Why? Because Linearity of Expectation:
* Redundancy = any YES instance y*of g has = 2 chances to
Redundancy Claim: Every YES getail € L s.t. ¢; non-det. accepts y~
instances y” of g is non-det. But expectation not enough... Need to hold simultaneously
acﬁgptEd b}\y[/Dat east two of So prove concentration! Chebyshev works if one can show:
1 9 eeey t .

Fach ¢!'" accepts < y-fraction of g’s YES instances
If not, then |¢£VD| = Lypy(9)

OTOH: Redundancy = /., gb]’-VD computes g non-det. = |Vj¢l- qb}VD| = Lyp(9)

Butthen || = || + |V ;0" | = Lyp(9) + Lyp, (9) = LGP (F) + LG5, (9)

What’s an Sketch of Main
“MCSP”? Technique

Main Theorem Other
Statement Consequences

Other Consequences

Gaps in Formula Complexity Between Depths

Theorem
There exists an € > 0 s.t. for all d = 2 there exists a function f such
that Ly (f) — Lgsq (f) = 2%

oL
d =2 3cases: Use existing depth hierarchy theorems [Hastad ‘89] that shows 21 @
seperation
d > 4 case: Use “Lifting-esque Theorem” to “lift” a L ;(f) — L, 41 (f) separation

intoa L, (H) — Ly, (H) (cost is a constant in the exponent)

HG,y) =) Ag(y)

Thanks!

Questions?

Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Affects # of inputs to Hypothesis of Lifting-

AND
x,y)=fx)Ag() esque Lower Bound d+1() = Ld+1(g) + Ly (f)
} ! l
Use Inputs to min{Ly,(9) + Lyp,(9),2 - Lyp, 73(9)} Inequality Slack ~ How to Sample

g > LAVP () + L9% L (9) La(f) = Las1(f)

Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Affects # of inputs to Hypothesis of Lifting- AND
(,y)=fx)Ag(y) esque Lower Bound L5, () = LG5, (g) + L7 (f)
Use Inputs to min{Ly,(9) + Lyp,(9),2 - Lyp, 73(9)} Inequality Slack ~ How to Sample
g > LAVP () + L9% L (9) La(f) = Las1(f)
Reduction poly(n) M o(s) ford = 2 Depth-2 Subformula of

Lupanov’s formula for
random function

Finding good g

Suppose you have a f on n-inputs of size s
One can sample a g such that

Affects # of inputs to Hypothesis of Lifting- AND
(x,y) =fx)Ag) esque Lower Bound Lot (H) = Lg%, (@) + L3P (f)
Use Inputs to min{Ly,(9) + Lyp,(9),2 - Lyp, 73(9)} Inequality Slack ~ How to Sample
g > LAVP () + L9% L (9) La(f) = Las1(f)

Reduction poly(n) M o(s) ford = 2 Depth-2 Subformula of
Lupanov’s formula for
random function

Gap 0(n) | o(s)ifd =3 Biased random function

Theorem

Depth-2 Subformulas of Lupanov

e m = 100

* For each x € {0,1}", select a random subset S,, € [m]
. 9:{0,1}" x {0,1}™ > {0,1)
cg(x,y) = Vizego 1n L=z () A Lyeight(3)=1(Y) A 1ycs (V)

