
On the consistency of circuit lower bounds
for nondeterministic time

Moritz Müller

Universität Passau

joint work with Albert Atserias and Sam Buss



On the consistency of circuit lower bounds
for nondeterministic time

Moritz Müller

Universität Passau

joint work with Albert Atserias and Sam Buss

Main result NEXP 6⊆ P/poly is consistent with V0
2.



Bounded arithmetics

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV



Bounded arithmetics

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

• PV eliminates sharply bounded quantifiers ∃y<|t(x̄)|, ∀y<|t(x̄)|

• sharply bounded formulas define precisely the sets in P

• Σb
1-formulas define precisely the sets in NP

i.e. form ∃y<t ψ for ψ sharply bounded.

• PV proves induction for quantifier free formulas

ϕ(0) ∧ ¬ϕ(x) → ∃y
(
ϕ(y) ∧ ¬ϕ(y+1)

)
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Bounded arithmetics

Language PV: < plus symbols for polynomial time functions

Theory ∀PV (DeMillo, Lipton 1979)

universal sentences true in the standard model

Theory PV (Cook 1975) is an axiomatized fragment of ∀PV

Herbrand

If PV ` ∃y ϕ(y, x̄) and ϕ(y, x̄) is quantifier free,

then PV ` ϕ(f(x̄), x̄) for some f ∈ PV.

Intuition PV formalizes polynomial time reasoning.

Cook 1975

if one believes that feasibly constructive arguments can be formalized
in PV, then it is worthwhile seeing which parts of mathematics can
be so formalized.
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PV+ quantifier-free induction PV+ bounded induction

P induction PH induction



Bounded arithmetics

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · ·T2

PV + Σb
1 length induction

ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(|x|)
NP induction for small numbers

Σb
1-definable functions: P

Buss’ Witnessing 1985

If S1
2 ` ∃y ϕ(y, x̄) and ϕ(y, x̄) quantifier free,

then PV ` ϕ(f(x̄), x̄) for some f(x̄) ∈ PV.
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PV + Σb
1 induction

ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(x)

NP induction for all numbers

Σb
1-definable functions: PLS



Bounded arithmetics

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · ·T2

PV + Σb
2 length induction

ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(|x|)

NPNP induction for small numbers

Σb
2-definable functions: PNP

Buss’ Witnessing 1985

If S2
2 ` ∃y ϕ(y, x̄) and ϕ(y, x̄) ∈ Πb

1,

then given x̄ a suitable y is computable in PNP.



Bounded arithmetics

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · ·T2

PV + Σb
2 length induction

ϕ(0) ∧ ∀y(ϕ(y)→ ϕ(y+1))→ ϕ(|x|)

NPNP induction for small numbers

Σb
2-definable functions: PNP

Buss’ Witnessing 1985

If S2
2 ` ∃y ϕ(y, x̄) and ϕ(y, x̄) ∈ Πb

1,

then given x̄ a suitable y is computable in PNP.

Kraj́ıček 1993 For S1
2, O(logn) many witness queries suffice.



Bounded arithmetics

Buss’ hierarchy

PV ⊆ S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ · · ·T2

Müller, Pich 2020
formalizes many known circuit lower bounds.

Furst-Saxe-Sipser on AC0

Razborov-Smolensky on AC0[p] (almost)
Razborov on monotone circuits

Kraj́ıček, Oliveira 2017

PV or its mild extensions seem to formalize most of contemporary
complexity theory
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Formalizations

• Direct formalization for a Σb
1-formula ϕ(x): ∃N 1 < n = |N |

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x))

• Direct formalization for an NP-machine M :

αcM := ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

• These are ∀Σb
3. Can get a ∀Σb

2-formula

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

“NP 6⊆ P/poly” :=
{
¬βcM0

| c ∈ N
}

for a universal NP-machine M0.



The consistency question

αcM = ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

βcM = ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

Central question Is “NP 6⊆ P/poly” consistent with PV?

Kraj́ıček 1995 / 2019

[Such models are] not ridiculously pathological structures, and a part
of the difficulty in constructing them stems exactly from the fact that
it is hard to distinguish these structures, by the studied properties,
from natural numbers

The consistency counts towards the validity of H: it is true in a model
of the theory, a structure very close to the standard model from the
point of view of complexity theory.



Earlier consistency results

αcM = ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

βcM = ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

Cook, Kraj́ıček 2007

“NP 6⊆ P/poly” is consistent with S1
2 if PH 6= PNP
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“NP 6⊆ P/poly” is consistent with S2
2 if PH 6= PNP.



Earlier consistency results

αcM = ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃y<2n
d
“y is an accepting computation of M on x”)

βcM = ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀y<2n

d

(C(x) = 0→ ¬ “y is an accepting computation of M on x”) ∧
(C(x) = 1→ “D(x) is an accepting computation of M on x”)

Cook, Kraj́ıček 2007

“NP 6⊆ P/poly” is consistent with S1
2 if PH 6= PNP

tt .

“NP 6⊆ P/poly” is consistent with S2
2 if PH 6= PNP.

Bydžovský, Kraj́ıček, Oliveira 2020 Let c ∈ N.

¬αcM is consistent with S1
2 for some NP-machine M .

¬αcM is consistent with S2
2 for some PNP-machine M .



Two sorted theories

Add set sort variables X,Y, . . . and atoms x ∈ X.

Σ1,b
0 : bounded number sort quantifiers, no set sort quantifiers.

Σ1,b
1 : form ∃Xψ for ψ ∈ Σ1,b

0 . Define the problems in NEXP.

PV ⊆ S1
2 ⊆ T1

2 ⊆ · · ·T2 ⊆ V0
2 ⊆ V1

2

T2 + Σ1,b
0 comprehension

∃Y ∀y (y ∈ Y ↔ y ≤ z ∧ ϕ(X̄, x̄, y))

Set boundedness ∃y ∀x (x ∈ X → x ≤ y)

Extensionality ∀x(x ∈ X ↔ x ∈ Y )→ X = Y

Same number sort consequences as T2



Two sorted theories

Add set sort variables X,Y, . . . and atoms x ∈ X.

Σ1,b
0 : bounded number sort quantifiers, no set sort quantifiers.

Σ1,b
1 : form ∃Xψ for ψ ∈ Σ1,b

0 . Define the problems in NEXP.

PV ⊆ S1
2 ⊆ T1

2 ⊆ · · ·T2 ⊆ V0
2 ⊆ V1

2

T2 + Σ1,b
1 comprehension

∃Y ∀y (y ∈ Y ↔ y ≤ z ∧ ϕ(X̄, x̄, y))

Set boundedness ∃y ∀x (x ∈ X → x ≤ y)

Extensionality ∀x(x ∈ X ↔ x ∈ Y )→ X = Y

Σ1,b
1 -definable functions: EXP.



Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some Σ1,b

1 -formula ϕ(x).



Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some strict Σ1,b

1 -formula ϕ(x).

Proof sketch Let PHP(x) be

¬ ∃X “X codes a bijection from x+ 1 onto x”.

V0
2 proves PHP(x) is inductive: PHP(0) ∧ (PHP(u)→ PHP(u+ 1)).

Assume V0
2 ` αc¬PHP.

Then PHP(u) is equivalent to C(u) = 0 for some circuit C.

Quantifier free induction gives PHP(x). Contradiction. �
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∀x<2n (C(x) = 1↔ ϕ(x)).
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Core idea

Direct formalization:

αcϕ := ∀n∈Log>1 ∃C<2n
c
∀x<2n (C(x) = 1↔ ϕ(x)).

Proposition

{¬αcϕ | c ∈ N} is consistent with V0
2 for some strict Σ1,b

1 -formula ϕ(x).

Faithful?

is there an NEXP-machine not simulated by small circuits in this model?

αcM := ∀n∈Log>1 ∃C<2n
c
∀x<2n

(C(x) = 1↔ ∃Y “Y is an accepting computation of M on x”)

Surprising?

αcϕ has existential set quantifiers. Intuitively, V0
2 only knows trivial sets.

Want

Set-universal formalization for machines.



Easy witness lemma

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M on x”)



Easy witness lemma

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M on x”)

Impagliazzo, Kabanets, Wigderson 2002

The following are equivalent

NEXP 6⊆ P/poly

{¬αcϕ | c ∈ N} is true for some Σ1,b
1 -formula ϕ(x)

{¬αcM | c ∈ N} is true for some for some NEXP-machine M

{¬αcM0
| c ∈ N} is true

{¬βcM | c ∈ N} is true for some NEXP-machine M

{¬βcM0
| c ∈ N} is true



Main result

βcM := ∀n∈Log>1 ∃C,D<2n
c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M on x”)

Theorem

V0
2 is consistent with

{¬αcϕ | c ∈ N} for some Σ1,b
1 -formula ϕ(x)

{¬αcM | c ∈ N} for some NEXP-machine M

{¬αcM0
| c ∈ N}

{¬βcM | c ∈ N} for some NEXP-machine M

{¬βcM0
| c ∈ N} =: “NEXP 6⊆ P/poly”

Proof sketch For all c, ϕ there are d, e,M such that V0
2 proves:

(βcM0
→ βdM) (βdM → αdM) (αdM → αeϕ) . . . �



Slightly superpolynomial time

Theorem

“NTIME[nO(log log logn)] 6⊆ P/poly” is consistent with V0
2.

Set-universal formalization based on:

Murray, Williams 2018

t(n) increasing, time-constructible, superpolynomial.

If NTIME(t(n)O(1)) ⊆ P/poly,

then NTIME(t(n)O(1))-machines have poly-size witness circuits.

Almost settles the central question on the consistency of “NP 6⊆ P/poly”.



General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.



General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Proof idea

Consider a weak theory plus βcM0

βcM0
implies that many sets are coded by small circuits

The weak theory can quantify over and reason with these circuits

The weak theory can implicitly reason with many sets

The weak theory can simulate a strong theory



General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Proof sketch

Y := sets represented by circuits in M

Then (M,Y) |= βcM0
since βcM0

is set-universal.

And (M,Y) |= S1
2(α).

Suffices to show the existence of sets defined by ∃X ψ(x, ȳ,X, Ȳ ) for ψ ∈ Πb
1

Key: set parameters Ȳ from Y can be replaced by circuits: number sort!

Then βcM0
implies the the set is given by a circuit. �



General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.
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2.

Theorem

Let S1
2(α) ⊆ T. Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.



General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Theorem

Let S1
2(α) ⊆ T. Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.

Proof

Else T ` βcM0
for some c ∈ N.

Let V1
2 ` ψ number sort. Let (M,X ) |= T.

To show: M |= ψ.

Clear by lemma. �
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Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Theorem

Let S1
2(α) ⊆ T . Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.

Magnification

If S1
2(α) 6` “NEXP 6⊆ P/poly”, then V1
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General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Theorem

Let S1
2(α) ⊆ T . Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.

Magnification

If S1
2(α) 6` “NEXP 6⊆ P/poly”, then V1

2 6` “NEXP 6⊆ P/poly”.

Proof

Say (M,X ) |= S1
2(α) + βcM0

Lemma: (M,Y) |= V1
2 for some Y ⊆ X .

But (M,Y) |= βcM0
since βcM0

is set-universal. �



General consistency and magnification

Lemma Let (M,X ) |= S1
2(α) + βcM0

for some c ∈ N.

There is Y ⊆ X such that (M,Y) |= V1
2.

Theorem

Let S1
2(α) ⊆ T . Assume T does not prove all number-sort consequences of V1

2.

Then “NEXP 6⊆ P/poly” is consistent with T.

Magnification

If S1
2(α) 6` “NEXP 6⊆ P/poly”, then V1

2 6` “NEXP 6⊆ P/poly”.

Hope to complete Razborov’s program.
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(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)



Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

γcM1
:= ∀n∈Log>1 ∃D<2n

c
∀x<2n number sort

“tt(Dx) is a halting computation of M1 on x” ∀Σb
2

Proposition The following are equivalent.

EXP 6⊆ P/poly{
¬βcM1

| c ∈ N
}

is true{
¬γcM1

| c ∈ N
}

is true



Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

γcM1
:= ∀n∈Log>1 ∃D<2n

c
∀x<2n number sort

“tt(Dx) is a halting computation of M1 on x” ∀Σb
2

Theorem The following are equivalent for T ⊇ T1
2(α):{

¬βcM1
| c ∈ N

}
is consistent with T{

¬γcM1
| c ∈ N

}
is consistent with T



Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

γcM1
:= ∀n∈Log>1 ∃D<2n

c
∀x<2n number sort

“tt(Dx) is a halting computation of M1 on x” ∀Σb
2

Witnessing

Proposition “EXP 6⊆ P/poly” is consistent

with S17
2 if EXP 6⊆∆P

17

with S1
2 if EXP 6⊆ PNP

tt



Question: deterministic computations ?

Open Is “EXP 6⊆ P/poly” consistent with V0
2 ?

Formalization

Let M1 be a suitable EXP-universal machine.

βcM1
:= ∀n∈Log>1 ∃C,D<2n

c
∀x<2n ∀Y

(C(x) = 0→ ¬ “Y is an accepting computation of M1 on x”) ∧
(C(x) = 1→ “ tt(Dx) is an accepting computation of M1 on x”)

γcM1
:= ∀n∈Log>1 ∃D<2n

c
∀x<2n number sort

“tt(Dx) is a halting computation of M1 on x” ∀Σb
2

Witnessing

Proposition “EXP 6⊆ P/poly” is consistent

with S17
2 if EXP 6⊆∆P

17

with S1
2 if EXP 6⊆ PNP

tt
if EXP = NEXP


