On the existence of algebraically natural proofs

Joint work with Prerona Chatterjee, C. Ramya, Ramprasad Saptharishi and Anamay Tengse

Polynomials

- \blacktriangleright Main protagonists: multivariate polynomials over a field ${\mathbb F}$
- $P \in \mathbb{F}[x_1, x_2, \dots, x_n]$, deg(P) = d
- \mathbb{F} : complex numbers

Polynomials

- \blacktriangleright Main protagonists: multivariate polynomials over a field $\mathbb F$
- $P \in \mathbb{F}[x_1, x_2, \dots, x_n], \deg(P) = d$
- \mathbb{F} : complex numbers
- Algebraic complexity: the cost of computing polynomials as formal objects

Polynomials

- \blacktriangleright Main protagonists: multivariate polynomials over a field $\mathbb F$
- $P \in \mathbb{F}[x_1, x_2, \dots, x_n], \deg(P) = d$
- \mathbb{F} : complex numbers
- Algebraic complexity: the cost of computing polynomials as formal objects
- Variables x̄ = {x₁,...,x_n}, constants 𝔽 = 𝔅 Operations - Addition + and multiplication ×.

Algebraic Circuits

Parameters:

Size(C)

- No. of gates

or no. of wires

Depth(C)

- Longest path from

root to a leaf

Algebraic Circuits

Parameters:

Size(C)

- No. of gates

or no. of wires

Depth(C)

- Longest path from

root to a leaf

Parameters: Number of variables - n, degree - dThis talk: $d \sim poly(n)$

Parameters: Number of variables - n, degree - dThis talk: $d \sim poly(n)$

Definition (VP - Easy Polynomials): Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n). E.g. the Determinant.

```
Parameters: Number of variables - n, degree - d
This talk: d \sim poly(n)
```

```
Definition (VP - Easy Polynomials):
```

Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n). E.g. the Determinant.

Definition (VP - Easy Polynomials):

Class of all *n*-variate, degree d = poly(n) polynomials, for which it is reasonably easy to compute the coefficient of any given monomial. E.g. Permanent.

Parameters: Number of variables - n, degree - dThis talk: $d \sim poly(n)$

```
Definition (VP - Easy Polynomials):
```

Class of all *n*-variate, degree d = poly(n) polynomials, computable by circuits of size poly(n). E.g. the Determinant.

Definition (VP - Easy Polynomials):

Class of all *n*-variate, degree d = poly(n) polynomials, for which it is reasonably easy to compute the coefficient of any given monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.

General Lower Bounds:

- General Lower Bounds:
 - Circuits: $\Omega(n \log d)$ [BS83,Smo97]
 - Formulas: $\Omega(n^2)$ [Kal85, SY08, CKSV20]

- General Lower Bounds:
 - Circuits: $\Omega(n \log d)$ [BS83,Smo97]
 - Formulas: $\Omega(n^2)$ [Kal85, SY08, CKSV20]
- Many structured cases:
 - Constant depth circuits [NW95,KST16,GKKS13,...]
 - Multilinear models [Raz09,DMPY12,...]
 - Non-commutative models [Nis91,LMP16,CILM18,...]
 - Monotone models [Yeh19,Sri19]

- General Lower Bounds:
 - Circuits: Ω(n log d) [BS83,Smo97]
 - Formulas: $\Omega(n^2)$ [Kal85, SY08, CKSV20]
- Many structured cases:
 - Constant depth circuits [NW95,KST16,GKKS13,...]
 - Multilinear models [Raz09,DMPY12,...]
 - ► Non-commutative models [Nis91,LMP16,CILM18,...]
 - Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

- General Lower Bounds:
 - Circuits: Ω(n log d) [BS83,Smo97]
 - Formulas: $\Omega(n^2)$ [Kal85, SY08, CKSV20]
- Many structured cases:
 - Constant depth circuits [NW95,KST16,GKKS13,...]
 - Multilinear models [Raz09,DMPY12,...]
 - ► Non-commutative models [Nis91,LMP16,CILM18,...]
 - Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower bounds ?

The Template

Circuit class: $C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$

Circuit class:
$$C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$$

Finding explicit $h \notin C$:

Circuit class:
$$C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$$

Finding explicit $h \notin C$:

► An Equation of C:
If
$$f(t) = at^2 + bt + c \in C$$
, then $b^2 - 4ac = 0$.

Circuit class:
$$C = \{(\alpha t - \beta)^2 : \alpha, \beta \in \mathbb{C}\}.$$

Finding explicit $h \notin C$:

• An Equation of C: If $f(t) = at^2 + bt + c \in C$, then $b^2 - 4ac = 0$.

A Hard Polynomial:

 $h(t) = a't^2 + b't + c'$ such that $b'^2 - 4a'c' \neq 0$.

Theorem

If $x_1 \cdots x_n = L_1^n + L_2^n + \cdots + L_s^n$ for linear forms L_1, L_2, \ldots, L_s , then s is at least $\exp(\Omega(n))$.

Theorem

If $x_1 \cdots x_n = L_1^n + L_2^n + \cdots + L_s^n$ for linear forms L_1, L_2, \ldots, L_s , then s is at least $\exp(\Omega(n))$.

 $C \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_1x_2\cdots x_n$ is not in C.

Theorem

If $x_1 \cdots x_n = L_1^n + L_2^n + \cdots + L_s^n$ for linear forms L_1, L_2, \ldots, L_s , then s is at least $\exp(\Omega(n))$.

 $C \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_1x_2\cdots x_n$ is not in C.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

Theorem

If $x_1 \cdots x_n = L_1^n + L_2^n + \cdots + L_s^n$ for linear forms L_1, L_2, \ldots, L_s , then s is at least $\exp(\Omega(n))$.

 $C \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_1x_2\cdots x_n$ is not in C.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

For C: dimension $\leq O(sn)$ [Chain rule + sub-additivity]

Theorem

If $x_1 \cdots x_n = L_1^n + L_2^n + \cdots + L_s^n$ for linear forms L_1, L_2, \ldots, L_s , then s is at least $\exp(\Omega(n))$.

 $C \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_1x_2\cdots x_n$ is not in C.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

- For C: dimension $\leq O(sn)$ [Chain rule + sub-additivity]
- For the monomial: dimension ≥ exp(Ω(n)) [distinct multilinear monomials]

Theorem

If $x_1 \cdots x_n = L_1^n + L_2^n + \cdots + L_s^n$ for linear forms L_1, L_2, \ldots, L_s , then s is at least $\exp(\Omega(n))$.

 $C \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_1x_2\cdots x_n$ is not in C.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

- For C: dimension $\leq O(sn)$ [Chain rule + sub-additivity]
- For the monomial: dimension ≥ exp(Ω(n)) [distinct multilinear monomials]

So, for the monomial to be in C, we must have $sn \ge \exp(\Omega(n))$.

The partial derivative matrix: rows and columns indexed by monomials

 (α,β) entry = coefficient of the monomial β in the partial derivative $\frac{\partial P}{\partial \alpha}$

- Every entry is linear in the coefficients of P
- Dim of matrix: $N \times N$ for $N = \binom{n+d}{d}$
- \blacktriangleright Partial derivative complexity \equiv rank of this matrix over $\mathbb F$

The partial derivative matrix: rows and columns indexed by monomials

 (α,β) entry = coefficient of the monomial β in the partial derivative $\frac{\partial P}{\partial \alpha}$

- Every entry is linear in the coefficients of P
- Dim of matrix: $N \times N$ for $N = \binom{n+d}{d}$
- \blacktriangleright Partial derivative complexity \equiv rank of this matrix over $\mathbb F$

Previous proof: there exists a submatrix which is full rank for $x_1x_2\cdots x_n$ and is rank deficient for polynomials of small Waring rank

The partial derivative matrix: rows and columns indexed by monomials

 (α,β) entry = coefficient of the monomial β in the partial derivative $\frac{\partial P}{\partial \alpha}$

- Every entry is linear in the coefficients of P
- Dim of matrix: $N \times N$ for $N = \binom{n+d}{d}$
- \blacktriangleright Partial derivative complexity \equiv rank of this matrix over $\mathbb F$

Previous proof: there exists a submatrix which is full rank for $x_1x_2\cdots x_n$ and is rank deficient for polynomials of small Waring rank

In particular: the determinant of this minor vanishes on coefficient vector of every polynomial in C and is non-zero on the coefficient vector of $x_1x_2\cdots x_n$.

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} .

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,\ldots,x_n) = \sum_{m\in\mathcal{M}} f_m \cdot m$$
 $f_m = \operatorname{coeff}_f(m)$

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,\ldots,x_n) = \sum_{m\in\mathcal{M}} f_m \cdot m \qquad f_m = \operatorname{coeff}_f(m)$$

Let coeffs $(f) = [f_{m_1}, f_{m_2}, \ldots, f_{m_N}] \in \mathbb{F}^N$.

Variables $\bar{x} = \{x_1, \dots, x_n\}$, Degree - d, Field \mathbb{F} . \mathcal{M} - monomials in \bar{x} of degree d, $N = |\mathcal{M}| = \binom{n+d}{n}$.

$$f(x_1,\ldots,x_n) = \sum_{m\in\mathcal{M}} f_m \cdot m \qquad f_m = \operatorname{coeff}_f(m)$$

Let
$$\operatorname{coeffs}(f) = [f_{m_1}, f_{m_2}, \dots, f_{m_N}] \in \mathbb{F}^N$$
.

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C$.

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

Natural proof of lower bounds for C: based on showing that C has an efficiently constructible equation,

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

•
$$P(\operatorname{coeffs}(f)) = 0$$
 for all $f \in C_n$.

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

- $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- ▶ *P* is "easy" to compute (e.g. circuit size and degree poly(N)).

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

- $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- ▶ P is "easy" to compute (e.g. circuit size and degree poly(N)).
- $P(\operatorname{coeffs}(g_0)) \neq 0$ for the candidate hard polynomial g_0

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

- $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- ▶ P is "easy" to compute (e.g. circuit size and degree poly(N)).
- P(coeffs(g₀)) ≠ 0 for the candidate hard polynomial g₀(in fact, for most polynomials).

For *n*, *d* and
$$N = \binom{n+d}{n}$$
; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

- Usefulness: $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly(N)).
- ► Largeness: P(coeffs(g₀)) ≠ 0 for the candidate hard polynomial g₀ (in fact, for most polynomials).

Natural proofs of algebraic lower bounds For *n*, *d* and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

Natural proof of lower bound for C: based on showing that C has an efficiently constructible equation, i.e. there is a polynomial $P(Z_1, \ldots, Z_N)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly(N)).
- ► Largeness: P(coeffs(g₀)) ≠ 0 for the candidate hard polynomial g₀ (in fact, for most polynomials).

Q. Can we hope to prove superpolynomial lower bounds for algebraic circuits via natural proofs ?

Natural proofs of algebraic lower bounds For *n*, *d* and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

Natural proof of lower bound for C: based on showing that C has an efficiently constructible equation, i.e. there is a polynomial $P(Z_1, \ldots, Z_N)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly(N)).
- ► Largeness: P(coeffs(g₀)) ≠ 0 for the candidate hard polynomial g₀ (in fact, for most polynomials).

Q. Does VP have an efficiently constructible equations ?[AD,G,FSV,GKSS]

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for *rich enough* classes of Boolean circuits.

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for *rich enough* classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for *rich enough* classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

Unclear if this applies to lower bounds for VP.

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for *rich enough* classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

Unclear if this applies to lower bounds for VP. Pseudorandom functions via algebraic circuits of small size and degree ?

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for *rich enough* classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

- Unclear if this applies to lower bounds for VP. Pseudorandom functions via algebraic circuits of small size and degree ?
- Only need to fool algebraic circuits.

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for *rich enough* classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

- Unclear if this applies to lower bounds for VP. Pseudorandom functions via algebraic circuits of small size and degree ?
- Only need to fool algebraic circuits.
- Not enough evidence, one way or the other.

Natural proofs of algebraic lower bounds For *n*, *d* and $N = \binom{n+d}{n}$; let $\mathcal{U} = \mathbb{F}^N$, $\mathcal{C}_n \subset \mathbb{F}^N$.

Natural proof of lower bound for C: based on showing that C has an efficiently constructible equation, i.e. there is a polynomial $P(Z_1, \ldots, Z_N)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f)) = 0$ for all $f \in C_n$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly(N)).
- ► Largeness: P(coeffs(g₀)) ≠ 0 for g₀ (in fact, for most polynomials g).

Q. Does VP have efficiently constructible equations ?[AD,G,FSV,GKSS]

► Natural Proofs [FSV18]

- Natural Proofs [FSV18]
 - Reformulate this question as a question about succinct derandomization of polynomial identity testing.

- Natural Proofs [FSV18]
 - Reformulate this question as a question about succinct derandomization of polynomial identity testing.
 - For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.

- Natural Proofs [FSV18]
 - Reformulate this question as a question about succinct derandomization of polynomial identity testing.
 - ► For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.

► Variety Membership [BIJL18,BIL+19]

 Hardness of membership testing rules out efficient equations for certain classes.

- Natural Proofs [FSV18]
 - Reformulate this question as a question about succinct derandomization of polynomial identity testing.
 - For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.
- ► Variety Membership [BIJL18,BIL+19]
 - Hardness of membership testing rules out efficient equations for certain classes.
- Rank Methods [EGOW18,GMOW19]
 - ► *Rank-based methods* will not show optimal lower bounds.
 - Tensor rank lower bounds do not lift to higher dimensions.

- Natural Proofs [FSV18]
 - Reformulate this question as a question about succinct derandomization of polynomial identity testing.
 - For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.
- ► Variety Membership [BIJL18,BIL+19]
 - Hardness of membership testing rules out efficient equations for certain classes.
- Rank Methods [EGOW18,GMOW19]
 - ► *Rank-based methods* will not show optimal lower bounds.
 - Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?

Our results

Q. Does VP have efficiently constructible equations ??

Q. Does VP have efficiently constructible equations ??A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Q. Does VP have efficiently constructible equations ??A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Theorem (Equations for $VP'_{\mathbb{C}}$):

For *n*,*d* and $N = \binom{n+d}{n}$, there exists a nonzero $P(Z_1, \ldots, Z_N)$ in VP(*N*) such that

For all f ∈ VP(n, d) with small integer coefficients, P(coeffs(f)) = 0

Q. Does VP have efficiently constructible equations ??A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Theorem (Equations for $VP'_{\mathbb{C}}$):

For *n*,*d* and $N = \binom{n+d}{n}$, there exists a nonzero $P(Z_1, \ldots, Z_N)$ in VP(*N*) such that

- For all f ∈ VP(n, d) with small integer coefficients, P(coeffs(f)) = 0
- ► there exists a polynomial g with small integer coefficients such that P(coeffs(g)) ≠ 0

Q. Does VP have efficiently constructible equations ??A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Theorem (Equations for $VP'_{\mathbb{C}}$):

For *n*,*d* and $N = \binom{n+d}{n}$, there exists a nonzero $P(Z_1, \ldots, Z_N)$ in VP(*N*) such that

- For all f ∈ VP(n, d) with small integer coefficients, P(coeffs(f)) = 0
- ► there exists a polynomial g with small integer coefficients such that P(coeffs(g)) ≠ 0

Restriction **not on circuits** computing the polynomials.

 A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation.

To summarize

A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation. Doesn't seem to say anything about all of VP, but is still seems a bit surprising.

To summarize

- A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation. Doesn't seem to say anything about all of VP, but is still seems a bit surprising.
- For polynomials with small integer coefficients (e.g Permanent), we might still have a lower bound proof which is via a useful and efficiently constructible algebraic property (a constructible equation). But we cannot guarantee largeness.

To summarize

- A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation. Doesn't seem to say anything about all of VP, but is still seems a bit surprising.
- For polynomials with small integer coefficients (e.g Permanent), we might still have a lower bound proof which is via a useful and efficiently constructible algebraic property (a constructible equation). But we cannot guarantee largeness.

Sketch of the Proofs

Hitting sets for VP

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Hitting sets for VP

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d, s) for the class of *n*-variate, degree *d* polynomials that have circuits of size *s*.

Hitting sets for VP

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d, s) for the class of *n*-variate, degree *d* polynomials that have circuits of size *s*.

Moreover, there is a hitting set with small integer points.

Hitting sets for VP

Definition (Hitting Set)

 $\mathcal{H} \subset \mathbb{F}^n$ is a *hitting set* for a class \mathcal{C} of *n*-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d, s) for the class of *n*-variate, degree *d* polynomials that have circuits of size *s*.

Moreover, there is a hitting set with small integer points.

Observation: For a nonzero g, $g(\mathcal{H}) = 0$ is a proof that $g \notin \mathcal{C}$.

From hitting set to equations

 $\mathcal{H} = \{h_1, \ldots, h_r\}$ hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.

From hitting set to equations

 $\mathcal{H} = \{h_1, \dots, h_r\}$ hitting set for \mathcal{C} , $0 \neq g(\bar{x})$ input polynomial.

Given: Vector coeffs $(g) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$

Given: Vector coeffs $(g) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$

 $\operatorname{coeffs}(g) = [g_{m_1}, g_{m_2}, \ldots, g_{m_N}],$

$$\{m_1,\ldots,m_N\}=\mathcal{M}.$$

Given: Vector coeffs $(g) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}]$, $\{m_1, \dots, m_N\} = \mathcal{M}$. Let eval $(h) = [m_1(h), m_2(h), \dots, m_N(h)]$.

Given: Vector coeffs $(g) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}]$, $\{m_1, \dots, m_N\} = \mathcal{M}$. Let eval $(h) = [m_1(h), m_2(h), \dots, m_N(h)]$. Now $g(h) = \langle \text{coeffs}(g), \text{eval}(h) \rangle = \sum_{m \in \mathcal{M}} g_m m(h)$.

Given: Vector coeffs $(g) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}]$, $\{m_1, \dots, m_N\} = \mathcal{M}$. Let eval $(h) = [m_1(h), m_2(h), \dots, m_N(h)]$. Now $g(h) = \langle \text{coeffs}(g), \text{eval}(h) \rangle = \sum_{m \in \mathcal{M}} g_m m(h)$.

Note:

Linear polynomial in coeffs(g).

Given: Vector coeffs $(g) \in \mathbb{F}^N$, point $h \in \mathbb{F}^n$ coeffs $(g) = [g_{m_1}, g_{m_2}, \dots, g_{m_N}]$, $\{m_1, \dots, m_N\} = \mathcal{M}$. Let eval $(h) = [m_1(h), m_2(h), \dots, m_N(h)]$. Now $g(h) = \langle \text{coeffs}(g), \text{eval}(h) \rangle = \sum_{m \in \mathcal{M}} g_m m(h)$.

Note:

- Linear polynomial in coeffs(g).
- We can "hardwire" eval(h) in our circuit, for all $h \in \mathcal{H}$.

Given: Vector coeffs $(g) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$

Given: Vector coeffs $(g) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

Given: Vector coeffs $(g) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial. For all $0 \neq x \in \mathbb{F}_q$, $x^{q-1} - 1 = 0$

Given: Vector coeffs $(g) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial. For all $0 \neq x \in \mathbb{F}_q$, $x^{q-1} - 1 = 0$

Output: $(\langle \operatorname{coeffs}(g), \operatorname{eval}(h) \rangle)^{q-1} - 1.$

Given: Vector coeffs $(g) \in \mathbb{F}_q^N$, point $h \in \mathbb{F}_q^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial. For all $0 \neq x \in \mathbb{F}_q$, $x^{q-1} - 1 = 0$

Output: $(\langle \operatorname{coeffs}(g), \operatorname{eval}(h) \rangle)^{q-1} - 1.$

$$P(ext{coeffs}(g)) pprox \prod_{h \in \mathcal{H}} \left((\langle ext{coeffs}(g), ext{eval}(h)
angle)^{q-1} - 1
ight)$$

 $Degree(P) \le |\mathcal{H}|q \le poly(N),$ $Size(P) \le poly(N).$

Want: f with coefficients in \mathbb{F}_q such that $\forall h \in \mathcal{H}$, f(h) = 0.

Want: f with coefficients in \mathbb{F}_q such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Want: f with coefficients in \mathbb{F}_q such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Many more variables than constraints, so there is a non-zero solution.

Want: f with coefficients in \mathbb{F}_q such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$ Many more variables than constraints, so there is a non-zero solution.

$$P(\operatorname{coeffs}(f)) \approx \prod_{h \in \mathcal{H}} \left((\langle \operatorname{coeffs}(f), \operatorname{eval}(h) \rangle)^{q-1} - 1 \right) \neq 0$$

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R : set of non-zero values that a polynomial in C takes on \mathcal{H} .

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R: set of non-zero values that a polynomial in C takes on \mathcal{H} . Set $Q(y) = \prod_{r \in R} (y - r)$.

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R: set of non-zero values that a polynomial in C takes on \mathcal{H} . Set $Q(y) = \prod_{r \in R} (y - r)$. What about the degree ?

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R: set of non-zero values that a polynomial in C takes on \mathcal{H} . Set $Q(y) = \prod_{r \in R} (y - r)$. What about the degree ?

Estimating |R|: Suppose $|\operatorname{coeffs}(g)| \le L$, $\deg(g) = \operatorname{poly}(n)$, and $|h| \le k$.

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R: set of non-zero values that a polynomial in C takes on \mathcal{H} . Set $Q(y) = \prod_{r \in R} (y - r)$. What about the degree ?

Estimating |R|: Suppose $|\operatorname{coeffs}(g)| \le L$, $\deg(g) = \operatorname{poly}(n)$, and $|h| \le k$. Then $|\operatorname{eval}(h)| \le k^d$, $|g(h)| \approx L \cdot N \cdot k^d$

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R: set of non-zero values that a polynomial in C takes on \mathcal{H} . Set $Q(y) = \prod_{r \in R} (y - r)$. What about the degree ?

Estimating |R|: Suppose $|\operatorname{coeffs}(g)| \le L$, $deg(g) = \operatorname{poly}(n)$, and $|h| \le k$. Then $|\operatorname{eval}(h)| \le k^d$, $|g(h)| \approx L \cdot N \cdot k^d$ For $d \sim n^3$, $N \sim \exp(n \log d)$ and $LNk^d = N^{\omega(1)}$.

Given: Vector coeffs $(g) \in \mathbb{C}^N$, point $h \in \mathbb{C}^n$ **Goal**: Output zero iff $g(h) \neq 0$, using a polynomial.

R: set of non-zero values that a polynomial in C takes on \mathcal{H} . Set $Q(y) = \prod_{r \in R} (y - r)$. What about the degree ?

Estimating |R|: Suppose $|\operatorname{coeffs}(g)| \le L$, $\deg(g) = \operatorname{poly}(n)$, and $|h| \le k$. Then $|\operatorname{eval}(h)| \le k^d$, $|g(h)| \approx L \cdot N \cdot k^d$ For $d \sim n^3$, $N \sim \exp(n \log d)$ and $LNk^d = N^{\omega(1)}$.

Cannot directly work with eval(h).

Goal: Check if g(h) = 0 using a lower degree polynomial.

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem For an integer $-2^{\ell} \le M \le 2^{\ell}$, if $M \mod p_i = 0$ for *distinct* primes $p_1, \ldots, p_{2\ell}$; then M = 0.

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem For an integer $-2^{\ell} \le M \le 2^{\ell}$, if $M \mod p_i = 0$ for *distinct* primes $p_1, \ldots, p_{2\ell}$; then M = 0.

Set
$$\ell = \log(LNk^d) = \operatorname{poly}(d, \log N)$$
. For primes p_1, \ldots, p_ℓ ,
let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$
 $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem For an integer $-2^{\ell} \le M \le 2^{\ell}$, if $M \mod p_i = 0$ for *distinct* primes $p_1, \ldots, p_{2\ell}$; then M = 0.

Set
$$\ell = \log(LNk^d) = \operatorname{poly}(d, \log N)$$
. For primes p_1, \ldots, p_ℓ ,
let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$
 $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$
 $|\operatorname{eval}_i(h)| = \operatorname{poly}(\ell) = \operatorname{poly}(d, \log N)$.

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem For an integer $-2^{\ell} \le M \le 2^{\ell}$, if $M \mod p_i = 0$ for *distinct* primes $p_1, \ldots, p_{2\ell}$; then M = 0.

Set
$$\ell = \log(LNk^d) = \operatorname{poly}(d, \log N)$$
. For primes p_1, \ldots, p_ℓ ,
let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$
 $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$
 $|\operatorname{eval}_i(h)| = \operatorname{poly}(\ell) = \operatorname{poly}(d, \log N)$.

For $|\operatorname{coeffs}(g)| \le L$, $|\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle| \le L \cdot N \cdot \operatorname{poly}(\ell) = \operatorname{poly}(N, L, d) = B$.

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem For an integer $-2^{\ell} \le M \le 2^{\ell}$, if $M \mod p_i = 0$ for *distinct* primes $p_1, \ldots, p_{2\ell}$; then M = 0.

Set
$$\ell = \log(LNk^d) = \operatorname{poly}(d, \log N)$$
. For primes p_1, \ldots, p_ℓ ,
let $\operatorname{eval}_i(h) = \operatorname{eval}(h) \mod p_i$
 $= [m_1(h) \mod p_i, \ldots, m_r(h) \mod p_i] \in \mathbb{C}^N$
 $|\operatorname{eval}_i(h)| = \operatorname{poly}(\ell) = \operatorname{poly}(d, \log N)$.

For $|\operatorname{coeffs}(g)| \le L$, $|\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle| \le L \cdot N \cdot \operatorname{poly}(\ell) = \operatorname{poly}(N, L, d) = B$.

Note: Can "hardwire" eval_i(h) for all $i \in [\ell]$ and $h \in \mathcal{H}$.

$g(h) \neq 0 \iff \exists i \in [\ell] \quad s.t \quad (p_i \nmid \langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle)$

 $g(h) \neq 0 \Longleftrightarrow \exists i \in [\ell] \quad s.t \quad (p_i \nmid \langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle)$

$$g(h) \neq 0 \iff \exists i \in [\ell] \quad s.t \quad \prod_{\substack{-B \leq a \leq B \\ p_i \nmid a}} (\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle - a) = 0$$

 $g(h) \neq 0 \iff \exists i \in [\ell] \quad s.t \quad (p_i \nmid \langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle)$

$$g(h) \neq 0 \iff \exists i \in [\ell] \quad s.t \quad \prod_{\substack{-B \leq a \leq B \\ p_i \nmid a}} (\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle - a) = 0$$

$$g(h) \neq 0 \iff \prod_{i \in [\ell]} \prod_{\substack{-B \leq a \leq B \\ p_i \nmid a}} (\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle - a) = 0$$

Algebraic NOT - Integers

For
$$B = poly(L, N, d) = poly(N)$$
.

Algebraic NOT - Integers

For
$$B = poly(L, N, d) = poly(N)$$
.

Equation for $\mathsf{VP}'_\mathbb{C}$

$$P(\operatorname{coeffs}(g)) pprox \prod_{h \in \mathcal{H}} \prod_{i \in [\ell]} \prod_{\substack{-B \leq a \leq B \\ p_i \nmid a}} (\langle \operatorname{coeffs}(g), \operatorname{eval}_i(h) \rangle - a)$$

 $Deg(P) \le |\mathcal{H}| poly(n) poly(N) \le poly(N)$ $Size(P) \le poly(N).$

Want: *f* with with small coefficients such that $\forall h \in \mathcal{H}$, f(h) = 0.

Want: *f* with with small coefficients such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Want: f with with small coefficients such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Many more variables than constraints, so there is a non-zero solution.

Want: f with with small coefficients such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Many more variables than constraints, so there is a non-zero solution.

Not enough: Want a solution with small integer coordinates.

Want: f with with small coefficients such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Many more variables than constraints, so there is a non-zero solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

Want: f with with small coefficients such that $\forall h \in \mathcal{H}$, f(h) = 0.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h) = 0$

Many more variables than constraints, so there is a non-zero solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.

Results for VP

Theorem (Equations for $VP'_{\mathbb{C}}$)

For n,d and $N = \binom{n+d}{n}$,

There exists a nonzero $P(Z_1, ..., Z_N) \in VP(N)$ such that for all $f \in VP_{\mathbb{C}}(n, d)$ with coefficients in $\{-N, ..., N\}$, P(coeffs(f)) = 0.

Moreover, there is a g with small coefficients such that P(coeffs(g)) = 0.

Results for VNP

Theorem (Equations for $VNP'_{\mathbb{C}}$) For n,d and $N = \binom{n+d}{n}$, There exists a nonzero $Q(Z_1, \ldots, Z_N) \in VP(N)$ such that for all $f \in VNP_{\mathbb{C}}(n,d)$ with coefficients in $\{-N, \ldots, N\}$, Q(coeffs(f)) = 0.

Moreover, there is a g with small coefficients such that P(coeffs(g)) = 0.

 Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.
- The restriction is only on the polynomials, circuits can use any constants. Well-studied natural polynomials have small coefficients.

e.g. Determinant, Permanent, ...

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.
- The restriction is only on the polynomials, circuits can use any constants. Well-studied natural polynomials have small coefficients.

e.g. Determinant, Permanent, ...

We can still hope to prove lower bounds for these polynomial families via constructible equations

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.
- The restriction is only on the polynomials, circuits can use any constants. Well-studied natural polynomials have small coefficients.

e.g. Determinant, Permanent, ...

We can still hope to prove lower bounds for these polynomial families via constructible equations, but cannot guarantee the *largeness* criterion.

Does all of VP have efficiently constructible equations?

- Does all of VP have efficiently constructible equations?
 - Unlikely that out proof technique extends.

Questions

- Does all of VP have efficiently constructible equations?
 - Unlikely that out proof technique extends.
 - ► How about Constant free versions of VP and VNP.

Questions

- Does all of VP have efficiently constructible equations?
 - Unlikely that out proof technique extends.
 - How about Constant free versions of VP and VNP.
- How about seemingly simpler models...formulas/constant depth circuits?

Questions

- Does all of VP have efficiently constructible equations?
 - Unlikely that out proof technique extends.
 - How about Constant free versions of VP and VNP.
- How about seemingly simpler models...formulas/constant depth circuits?
- Limitations on what can be proved via algebraically natural proofs ?

Thanks!