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I Algebraic complexity: the cost of computing polynomials as
formal objects

I Variables - x̄ = {x1, . . . , xn}, constants - F = C
Operations - Addition + and multiplication ×.
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Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree - d
This talk: d ∼ poly(n)

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, computable
by circuits of size poly(n). E.g. the Determinant.
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Class of all n-variate, degree d = poly(n) polynomials, for which it
is reasonably easy to compute the coefficient of any given
monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.
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Finding Hard Polynomials

I General Lower Bounds:

I Circuits: Ω(n log d) [BS83,Smo97]
I Formulas: Ω(n2) [Kal85, SY08, CKSV20]

I Many structured cases:
I Constant depth circuits [NW95,KST16,GKKS13,. . .]
I Multilinear models [Raz09,DMPY12,. . .]
I Non-commutative models [Nis91,LMP16,CILM18,. . .]
I Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower
bounds ?
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The template: a toy case

Circuit class: C = {(αt − β)2 : α, β ∈ C}.

Finding explicit h 6∈ C:

I An Equation of C:
If f (t) = at2 + bt + c ∈ C, then b2 − 4ac = 0.

I A Hard Polynomial:
h(t) = a′t2 + b′t + c ′ such that b′2 − 4a′c ′ 6= 0.
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Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).
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Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by
monomials
(α, β) entry = coefficient of the monomial β in the partial
derivative ∂P

∂α

I Every entry is linear in the coefficients of P

I Dim of matrix: N × N for N =
(n+d

d

)
I Partial derivative complexity ≡ rank of this matrix over F

Previous proof: there exists a submatrix which is full rank for
x1x2 · · · xn and is rank deficient for polynomials of small Waring
rank
In particular: the determinant of this minor vanishes on coefficient
vector of every polynomial in C and is non-zero on the coefficient
vector of x1x2 · · · xn.
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Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.
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Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation,

i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0

(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bound for C: based on showing that C has
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I Usefulness: P(coeffs(f )) = 0 for all f ∈ Cn.

I Constructivity: P is “easy” to compute (e.g. circuit size and
degree poly(N)).
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Natural proofs of algebraic lower bounds
For n, d and N =
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Natural proof of lower bound for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I Usefulness: P(coeffs(f )) = 0 for all f ∈ Cn.

I Constructivity: P is “easy” to compute (e.g. circuit size and
degree poly(N)).

I Largeness: P(coeffs(g0)) 6= 0 for the candidate hard
polynomial g0 (in fact, for most polynomials).

Q. Can we hope to prove superpolynomial lower bounds for
algebraic circuits via natural proofs ?
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Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP. Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.
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What do we know ?

I Natural Proofs [FSV18]

I Reformulate this question as a question about succinct
derandomization of polynomial identity testing.

I For more structured notions of constructivity (sparsity/Waring
rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.
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Main Theorem

Q. Does VP have efficiently constructible equations ??

A. For a natural special case: polynomials with small integer
coefficients, the answer is YES.

Theorem (Equations for VP′C):

For n,d and N =
(n+d

n

)
, there exists a nonzero P(Z1, . . . ,ZN) in

VP(N) such that

I for all f ∈ VP(n, d) with small integer coefficients,
P(coeffs(f )) = 0

I there exists a polynomial g with small integer coefficients
such that P(coeffs(g)) 6= 0

Restriction not on circuits computing the polynomials.
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To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.

Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.
Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.
Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.
Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



Sketch of the Proofs



Hitting sets for VP

Definition (Hitting Set)

H ⊂ Fn is a hitting set for a class C of n-variate polynomials,

if for all 0 6= f ∈ C, there exists an h ∈ H such that f (h) 6= 0.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d , s) for the class of
n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.

Observation: For a nonzero g , g(H) = 0 is a proof that g 6∈ C.
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From hitting set to equations

H = {h1, . . . , hr} hitting set for C, 0 6= g(x̄) input polynomial.

coeffs(g)

g(h1) g(h2) · · · g(hr−1) g(hr )

NOT NOT · · · NOT NOT

×

P(coeffs(g))

NOT(0) =nonzero NOT(nonzero)= 0



From hitting set to equations

H = {h1, . . . , hr} hitting set for C, 0 6= g(x̄) input polynomial.

coeffs(g)

g(h1) g(h2) · · · g(hr−1) g(hr )

NOT NOT · · · NOT NOT

×

P(coeffs(g))

NOT(0) =nonzero NOT(nonzero)= 0



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.
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Algebraic NOT - Finite Fields

Given: Vector coeffs(g) ∈ FN
q , point h ∈ Fn

q

Goal: Output zero iff g(h) 6= 0, using a polynomial.

For all 0 6= x ∈ Fq, xq−1 − 1 = 0

Output: (〈coeffs(g), eval(h)〉)q−1 − 1.

P(coeffs(g)) ≈
∏
h∈H

(
(〈coeffs(g), eval(h)〉)q−1 − 1

)

Degree(P) ≤ |H|q ≤ poly(N), Size(P) ≤ poly(N).
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Finite Fields: a hard polynomial

Want: f with coefficients in Fq such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

P(coeffs(f )) ≈
∏
h∈H

(
(〈coeffs(f ), eval(h)〉)q−1 − 1

)
6= 0
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Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.

Set Q(y) =
∏

r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r).

What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.
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Algebraic NOT - Integers

For B = poly(L,N, d) = poly(N).

Equation for VP′C

P(coeffs(g)) ≈
∏
h∈H

∏
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∏
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Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.
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Results for VP

Theorem (Equations for VP′C)

For n,d and N =
(n+d

n

)
,

There exists a nonzero P(Z1, . . . ,ZN) ∈ VP(N) such that

for all f ∈ VPC(n, d) with coefficients in {−N, . . . ,N},
P(coeffs(f )) = 0.

Moreover, there is a g with small coefficients such that
P(coeffs(g)) = 0.



Results for VNP

Theorem (Equations for VNP′C)

For n,d and N =
(n+d

n

)
,

There exists a nonzero Q(Z1, . . . ,ZN) ∈ VP(N) such that

for all f ∈ VNPC(n, d) with coefficients in {−N, . . . ,N},
Q(coeffs(f )) = 0.

Moreover, there is a g with small coefficients such that
P(coeffs(g)) = 0.



To summarize

I Efficiently constructible equations exist for polynomials with
“small” coefficients, in both VP and VNP.

I The restriction is only on the polynomials, circuits can use any
constants. Well-studied natural polynomials have small

coefficients.

e.g. Determinant, Permanent, . . .

I We can still hope to prove lower bounds for these polynomial
families via constructible equations, but cannot guarantee the
largeness criterion.
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Questions

I Does all of VP have efficiently constructible equations?

I Unlikely that out proof technique extends.
I How about Constant free versions of VP and VNP.

I How about seemingly simpler models...formulas/constant
depth circuits?

I Limitations on what can be proved via algebraically natural
proofs ?
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Thanks!
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