
On the existence of algebraically natural

proofs

Joint work with Prerona Chatterjee, C. Ramya,
Ramprasad Saptharishi and Anamay Tengse



Polynomials

I Main protagonists: multivariate polynomials over a field F
I P ∈ F[x1, x2, . . . , xn], deg(P) = d

I F : complex numbers

I Algebraic complexity: the cost of computing polynomials as
formal objects

I Variables - x̄ = {x1, . . . , xn}, constants - F = C
Operations - Addition + and multiplication ×.



Polynomials

I Main protagonists: multivariate polynomials over a field F
I P ∈ F[x1, x2, . . . , xn], deg(P) = d

I F : complex numbers

I Algebraic complexity: the cost of computing polynomials as
formal objects

I Variables - x̄ = {x1, . . . , xn}, constants - F = C
Operations - Addition + and multiplication ×.



Polynomials

I Main protagonists: multivariate polynomials over a field F
I P ∈ F[x1, x2, . . . , xn], deg(P) = d

I F : complex numbers

I Algebraic complexity: the cost of computing polynomials as
formal objects

I Variables - x̄ = {x1, . . . , xn}, constants - F = C
Operations - Addition + and multiplication ×.



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x̄) ∈ F[x̄ ]

C

Parameters:

Size(C )

- No. of gates

or no. of wires

Depth(C )

- Longest path from

root to a leaf



Algebraic Circuits

x1 x2 . . . xn a1 . . . ar

+

×

f (x̄) ∈ F[x̄ ]

C

Parameters:

Size(C )

- No. of gates

or no. of wires

Depth(C )

- Longest path from

root to a leaf



Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree - d
This talk: d ∼ poly(n)

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, computable
by circuits of size poly(n). E.g. the Determinant.

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, for which it
is reasonably easy to compute the coefficient of any given
monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.



Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree - d
This talk: d ∼ poly(n)

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, computable
by circuits of size poly(n). E.g. the Determinant.

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, for which it
is reasonably easy to compute the coefficient of any given
monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.



Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree - d
This talk: d ∼ poly(n)

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, computable
by circuits of size poly(n). E.g. the Determinant.

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, for which it
is reasonably easy to compute the coefficient of any given
monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.



Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree - d
This talk: d ∼ poly(n)

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, computable
by circuits of size poly(n). E.g. the Determinant.

Definition (VP - Easy Polynomials):

Class of all n-variate, degree d = poly(n) polynomials, for which it
is reasonably easy to compute the coefficient of any given
monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.



Finding Hard Polynomials

I General Lower Bounds:

I Circuits: Ω(n log d) [BS83,Smo97]
I Formulas: Ω(n2) [Kal85, SY08, CKSV20]

I Many structured cases:
I Constant depth circuits [NW95,KST16,GKKS13,. . .]
I Multilinear models [Raz09,DMPY12,. . .]
I Non-commutative models [Nis91,LMP16,CILM18,. . .]
I Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower
bounds ?



Finding Hard Polynomials

I General Lower Bounds:
I Circuits: Ω(n log d) [BS83,Smo97]
I Formulas: Ω(n2) [Kal85, SY08, CKSV20]

I Many structured cases:
I Constant depth circuits [NW95,KST16,GKKS13,. . .]
I Multilinear models [Raz09,DMPY12,. . .]
I Non-commutative models [Nis91,LMP16,CILM18,. . .]
I Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower
bounds ?



Finding Hard Polynomials

I General Lower Bounds:
I Circuits: Ω(n log d) [BS83,Smo97]
I Formulas: Ω(n2) [Kal85, SY08, CKSV20]

I Many structured cases:
I Constant depth circuits [NW95,KST16,GKKS13,. . .]
I Multilinear models [Raz09,DMPY12,. . .]
I Non-commutative models [Nis91,LMP16,CILM18,. . .]
I Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower
bounds ?



Finding Hard Polynomials

I General Lower Bounds:
I Circuits: Ω(n log d) [BS83,Smo97]
I Formulas: Ω(n2) [Kal85, SY08, CKSV20]

I Many structured cases:
I Constant depth circuits [NW95,KST16,GKKS13,. . .]
I Multilinear models [Raz09,DMPY12,. . .]
I Non-commutative models [Nis91,LMP16,CILM18,. . .]
I Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower
bounds ?



Finding Hard Polynomials

I General Lower Bounds:
I Circuits: Ω(n log d) [BS83,Smo97]
I Formulas: Ω(n2) [Kal85, SY08, CKSV20]

I Many structured cases:
I Constant depth circuits [NW95,KST16,GKKS13,. . .]
I Multilinear models [Raz09,DMPY12,. . .]
I Non-commutative models [Nis91,LMP16,CILM18,. . .]
I Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower
bounds ?



The Template



The template: a toy case

Circuit class: C = {(αt − β)2 : α, β ∈ C}.

Finding explicit h 6∈ C:

I An Equation of C:
If f (t) = at2 + bt + c ∈ C, then b2 − 4ac = 0.

I A Hard Polynomial:
h(t) = a′t2 + b′t + c ′ such that b′2 − 4a′c ′ 6= 0.



The template: a toy case

Circuit class: C = {(αt − β)2 : α, β ∈ C}.

Finding explicit h 6∈ C:

I An Equation of C:
If f (t) = at2 + bt + c ∈ C, then b2 − 4ac = 0.

I A Hard Polynomial:
h(t) = a′t2 + b′t + c ′ such that b′2 − 4a′c ′ 6= 0.



The template: a toy case

Circuit class: C = {(αt − β)2 : α, β ∈ C}.

Finding explicit h 6∈ C:

I An Equation of C:
If f (t) = at2 + bt + c ∈ C, then b2 − 4ac = 0.

I A Hard Polynomial:
h(t) = a′t2 + b′t + c ′ such that b′2 − 4a′c ′ 6= 0.



The template: a toy case

Circuit class: C = {(αt − β)2 : α, β ∈ C}.

Finding explicit h 6∈ C:

I An Equation of C:
If f (t) = at2 + bt + c ∈ C, then b2 − 4ac = 0.

I A Hard Polynomial:
h(t) = a′t2 + b′t + c ′ such that b′2 − 4a′c ′ 6= 0.



Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).



Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).



Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).



Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).



Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).



Waring rank: a real world example

Theorem
If x1 · · · xn = Ln1 + Ln2 + · · ·+ Lns for linear forms L1, L2, . . . , Ls , then
s is at least exp(Ω(n)).

C ≡ Polynomials with small waring rank. The goal is to show that
the monomial x1x2 · · · xn is not in C.

Partial derivatives complexity: dimension of the linear space
spanned by partial derivatives

I For C: dimension ≤ O(sn) [Chain rule + sub-additivity]

I For the monomial: dimension ≥ exp(Ω(n)) [distinct
multilinear monomials]

So, for the monomial to be in C, we must have sn ≥ exp(Ω(n)).



Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by
monomials
(α, β) entry = coefficient of the monomial β in the partial
derivative ∂P

∂α

I Every entry is linear in the coefficients of P

I Dim of matrix: N × N for N =
(n+d

d

)
I Partial derivative complexity ≡ rank of this matrix over F

Previous proof: there exists a submatrix which is full rank for
x1x2 · · · xn and is rank deficient for polynomials of small Waring
rank
In particular: the determinant of this minor vanishes on coefficient
vector of every polynomial in C and is non-zero on the coefficient
vector of x1x2 · · · xn.



Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by
monomials
(α, β) entry = coefficient of the monomial β in the partial
derivative ∂P

∂α

I Every entry is linear in the coefficients of P

I Dim of matrix: N × N for N =
(n+d

d

)
I Partial derivative complexity ≡ rank of this matrix over F

Previous proof: there exists a submatrix which is full rank for
x1x2 · · · xn and is rank deficient for polynomials of small Waring
rank

In particular: the determinant of this minor vanishes on coefficient
vector of every polynomial in C and is non-zero on the coefficient
vector of x1x2 · · · xn.



Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by
monomials
(α, β) entry = coefficient of the monomial β in the partial
derivative ∂P

∂α

I Every entry is linear in the coefficients of P

I Dim of matrix: N × N for N =
(n+d

d

)
I Partial derivative complexity ≡ rank of this matrix over F

Previous proof: there exists a submatrix which is full rank for
x1x2 · · · xn and is rank deficient for polynomials of small Waring
rank
In particular: the determinant of this minor vanishes on coefficient
vector of every polynomial in C and is non-zero on the coefficient
vector of x1x2 · · · xn.



Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.



Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.



Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.



Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.



Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.



Natural proofs of algebraic lower bounds

Variables x̄ = {x1, . . . , xn}, Degree - d , Field F.

M - monomials in x̄ of degree d , N = |M| =
(n+d

n

)
.

f (x1, . . . , xn) =
∑
m∈M

fm ·m fm = coefff (m)

Let coeffs(f ) = [fm1 , fm2 , . . . , fmN
] ∈ FN .

Definition (Equation)

A non-zero polynomial P is said to be an equation for a class C, if
P(coeffs(f )) = 0 for all f ∈ C.



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation,

i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0

(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bounds for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I P(coeffs(f )) = 0 for all f ∈ Cn.

I P is “easy” to compute (e.g. circuit size and degree poly(N)).

I P(coeffs(g0)) 6= 0 for the candidate hard polynomial g0(in
fact, for most polynomials).



Natural proofs of algebraic lower bounds

For n, d and N =
(n+d

n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bound for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I Usefulness: P(coeffs(f )) = 0 for all f ∈ Cn.

I Constructivity: P is “easy” to compute (e.g. circuit size and
degree poly(N)).

I Largeness: P(coeffs(g0)) 6= 0 for the candidate hard
polynomial g0 (in fact, for most polynomials).



Natural proofs of algebraic lower bounds
For n, d and N =

(n+d
n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bound for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I Usefulness: P(coeffs(f )) = 0 for all f ∈ Cn.

I Constructivity: P is “easy” to compute (e.g. circuit size and
degree poly(N)).

I Largeness: P(coeffs(g0)) 6= 0 for the candidate hard
polynomial g0 (in fact, for most polynomials).

Q. Can we hope to prove superpolynomial lower bounds for
algebraic circuits via natural proofs ?



Natural proofs of algebraic lower bounds
For n, d and N =

(n+d
n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bound for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I Usefulness: P(coeffs(f )) = 0 for all f ∈ Cn.

I Constructivity: P is “easy” to compute (e.g. circuit size and
degree poly(N)).

I Largeness: P(coeffs(g0)) 6= 0 for the candidate hard
polynomial g0 (in fact, for most polynomials).

Q. Does VP have an efficiently constructible equations
?[AD,G,FSV,GKSS]



Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP. Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.



Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP. Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.



Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP.

Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.



Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP. Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.



Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP. Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.



Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs
cannot yield lower bounds for rich enough classes of Boolean
circuits.

Rich enough : Candidate construction of pseudorandom
functions in the class.

I Unclear if this applies to lower bounds for VP. Pseudorandom
functions via algebraic circuits of small size and degree ?

I Only need to fool algebraic circuits.

I Not enough evidence, one way or the other.



Natural proofs of algebraic lower bounds
For n, d and N =

(n+d
n

)
; let U = FN , Cn ⊂ FN .

Natural proof of lower bound for C: based on showing that C has
an efficiently constructible equation, i.e. there is a polynomial
P(Z1, . . . ,ZN) such that:

I Usefulness: P(coeffs(f )) = 0 for all f ∈ Cn.

I Constructivity: P is “easy” to compute (e.g. circuit size and
degree poly(N)).

I Largeness: P(coeffs(g0)) 6= 0 for g0 (in fact, for most
polynomials g).

Q. Does VP have efficiently constructible equations
?[AD,G,FSV,GKSS]



What do we know ?

I Natural Proofs [FSV18]

I Reformulate this question as a question about succinct
derandomization of polynomial identity testing.

I For more structured notions of constructivity (sparsity/Waring
rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?



What do we know ?

I Natural Proofs [FSV18]
I Reformulate this question as a question about succinct

derandomization of polynomial identity testing.

I For more structured notions of constructivity (sparsity/Waring
rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?



What do we know ?

I Natural Proofs [FSV18]
I Reformulate this question as a question about succinct

derandomization of polynomial identity testing.
I For more structured notions of constructivity (sparsity/Waring

rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?



What do we know ?

I Natural Proofs [FSV18]
I Reformulate this question as a question about succinct

derandomization of polynomial identity testing.
I For more structured notions of constructivity (sparsity/Waring

rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?



What do we know ?

I Natural Proofs [FSV18]
I Reformulate this question as a question about succinct

derandomization of polynomial identity testing.
I For more structured notions of constructivity (sparsity/Waring

rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?



What do we know ?

I Natural Proofs [FSV18]
I Reformulate this question as a question about succinct

derandomization of polynomial identity testing.
I For more structured notions of constructivity (sparsity/Waring

rank), the answer is negative.

I Variety Membership [BIJL18,BIL+19]

I Hardness of membership testing rules out efficient equations
for certain classes.

I Rank Methods [EGOW18,GMOW19]

I Rank-based methods will not show optimal lower bounds.
I Tensor rank lower bounds do not lift to higher dimensions.

Q. Does VP have efficiently constructible equations ?



Our results



Main Theorem

Q. Does VP have efficiently constructible equations ??

A. For a natural special case: polynomials with small integer
coefficients, the answer is YES.

Theorem (Equations for VP′C):

For n,d and N =
(n+d

n

)
, there exists a nonzero P(Z1, . . . ,ZN) in

VP(N) such that

I for all f ∈ VP(n, d) with small integer coefficients,
P(coeffs(f )) = 0

I there exists a polynomial g with small integer coefficients
such that P(coeffs(g)) 6= 0

Restriction not on circuits computing the polynomials.



Main Theorem

Q. Does VP have efficiently constructible equations ??

A. For a natural special case: polynomials with small integer
coefficients, the answer is YES.

Theorem (Equations for VP′C):

For n,d and N =
(n+d

n

)
, there exists a nonzero P(Z1, . . . ,ZN) in

VP(N) such that

I for all f ∈ VP(n, d) with small integer coefficients,
P(coeffs(f )) = 0

I there exists a polynomial g with small integer coefficients
such that P(coeffs(g)) 6= 0

Restriction not on circuits computing the polynomials.



Main Theorem

Q. Does VP have efficiently constructible equations ??

A. For a natural special case: polynomials with small integer
coefficients, the answer is YES.

Theorem (Equations for VP′C):

For n,d and N =
(n+d

n

)
, there exists a nonzero P(Z1, . . . ,ZN) in

VP(N) such that

I for all f ∈ VP(n, d) with small integer coefficients,
P(coeffs(f )) = 0

I there exists a polynomial g with small integer coefficients
such that P(coeffs(g)) 6= 0

Restriction not on circuits computing the polynomials.



Main Theorem

Q. Does VP have efficiently constructible equations ??

A. For a natural special case: polynomials with small integer
coefficients, the answer is YES.

Theorem (Equations for VP′C):

For n,d and N =
(n+d

n

)
, there exists a nonzero P(Z1, . . . ,ZN) in

VP(N) such that

I for all f ∈ VP(n, d) with small integer coefficients,
P(coeffs(f )) = 0

I there exists a polynomial g with small integer coefficients
such that P(coeffs(g)) 6= 0

Restriction not on circuits computing the polynomials.



Main Theorem

Q. Does VP have efficiently constructible equations ??

A. For a natural special case: polynomials with small integer
coefficients, the answer is YES.

Theorem (Equations for VP′C):

For n,d and N =
(n+d

n

)
, there exists a nonzero P(Z1, . . . ,ZN) in

VP(N) such that

I for all f ∈ VP(n, d) with small integer coefficients,
P(coeffs(f )) = 0

I there exists a polynomial g with small integer coefficients
such that P(coeffs(g)) 6= 0

Restriction not on circuits computing the polynomials.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.

Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.
Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.
Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



To summarize

I A natural, rich and computationally interesting (although
finite) subset of VP has an efficiently constructible equation.
Doesn’t seem to say anything about all of VP, but is still
seems a bit surprising.

I For polynomials with small integer coefficients (e.g
Permanent), we might still have a lower bound proof which is
via a useful and efficiently constructible algebraic property (a
constructible equation). But we cannot guarantee largeness.



Sketch of the Proofs



Hitting sets for VP

Definition (Hitting Set)

H ⊂ Fn is a hitting set for a class C of n-variate polynomials,

if for all 0 6= f ∈ C, there exists an h ∈ H such that f (h) 6= 0.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d , s) for the class of
n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.

Observation: For a nonzero g , g(H) = 0 is a proof that g 6∈ C.



Hitting sets for VP

Definition (Hitting Set)

H ⊂ Fn is a hitting set for a class C of n-variate polynomials,

if for all 0 6= f ∈ C, there exists an h ∈ H such that f (h) 6= 0.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d , s) for the class of
n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.

Observation: For a nonzero g , g(H) = 0 is a proof that g 6∈ C.



Hitting sets for VP

Definition (Hitting Set)

H ⊂ Fn is a hitting set for a class C of n-variate polynomials,

if for all 0 6= f ∈ C, there exists an h ∈ H such that f (h) 6= 0.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d , s) for the class of
n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.

Observation: For a nonzero g , g(H) = 0 is a proof that g 6∈ C.



Hitting sets for VP

Definition (Hitting Set)

H ⊂ Fn is a hitting set for a class C of n-variate polynomials,

if for all 0 6= f ∈ C, there exists an h ∈ H such that f (h) 6= 0.

Theorem [HS80,For14]

There exist hitting sets of size poly(n, d , s) for the class of
n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.

Observation: For a nonzero g , g(H) = 0 is a proof that g 6∈ C.



From hitting set to equations

H = {h1, . . . , hr} hitting set for C, 0 6= g(x̄) input polynomial.

coeffs(g)

g(h1) g(h2) · · · g(hr−1) g(hr )

NOT NOT · · · NOT NOT

×

P(coeffs(g))

NOT(0) =nonzero NOT(nonzero)= 0



From hitting set to equations

H = {h1, . . . , hr} hitting set for C, 0 6= g(x̄) input polynomial.

coeffs(g)

g(h1) g(h2) · · · g(hr−1) g(hr )

NOT NOT · · · NOT NOT

×

P(coeffs(g))

NOT(0) =nonzero NOT(nonzero)= 0



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.



Evaluating at a point

Given: Vector coeffs(g) ∈ FN , point h ∈ Fn

coeffs(g) = [gm1 , gm2 , . . . , gmN
], {m1, . . . ,mN} =M.

Let eval(h) = [m1(h),m2(h), . . . ,mN(h)].

Now g(h) = 〈coeffs(g), eval(h)〉 =
∑

m∈M gmm(h).

Note:

I Linear polynomial in coeffs(g).

I We can “hardwire” eval(h) in our circuit, for all h ∈ H.



Algebraic NOT - Finite Fields

Given: Vector coeffs(g) ∈ FN
q , point h ∈ Fn

q

Goal: Output zero iff g(h) 6= 0, using a polynomial.

For all 0 6= x ∈ Fq, xq−1 − 1 = 0

Output: (〈coeffs(g), eval(h)〉)q−1 − 1.

P(coeffs(g)) ≈
∏
h∈H

(
(〈coeffs(g), eval(h)〉)q−1 − 1

)

Degree(P) ≤ |H|q ≤ poly(N), Size(P) ≤ poly(N).



Algebraic NOT - Finite Fields

Given: Vector coeffs(g) ∈ FN
q , point h ∈ Fn

q

Goal: Output zero iff g(h) 6= 0, using a polynomial.

For all 0 6= x ∈ Fq, xq−1 − 1 = 0

Output: (〈coeffs(g), eval(h)〉)q−1 − 1.

P(coeffs(g)) ≈
∏
h∈H

(
(〈coeffs(g), eval(h)〉)q−1 − 1

)

Degree(P) ≤ |H|q ≤ poly(N), Size(P) ≤ poly(N).



Algebraic NOT - Finite Fields

Given: Vector coeffs(g) ∈ FN
q , point h ∈ Fn

q

Goal: Output zero iff g(h) 6= 0, using a polynomial.

For all 0 6= x ∈ Fq, xq−1 − 1 = 0

Output: (〈coeffs(g), eval(h)〉)q−1 − 1.

P(coeffs(g)) ≈
∏
h∈H

(
(〈coeffs(g), eval(h)〉)q−1 − 1

)

Degree(P) ≤ |H|q ≤ poly(N), Size(P) ≤ poly(N).



Algebraic NOT - Finite Fields

Given: Vector coeffs(g) ∈ FN
q , point h ∈ Fn

q

Goal: Output zero iff g(h) 6= 0, using a polynomial.

For all 0 6= x ∈ Fq, xq−1 − 1 = 0

Output: (〈coeffs(g), eval(h)〉)q−1 − 1.

P(coeffs(g)) ≈
∏
h∈H

(
(〈coeffs(g), eval(h)〉)q−1 − 1

)

Degree(P) ≤ |H|q ≤ poly(N), Size(P) ≤ poly(N).



Algebraic NOT - Finite Fields

Given: Vector coeffs(g) ∈ FN
q , point h ∈ Fn

q

Goal: Output zero iff g(h) 6= 0, using a polynomial.

For all 0 6= x ∈ Fq, xq−1 − 1 = 0

Output: (〈coeffs(g), eval(h)〉)q−1 − 1.

P(coeffs(g)) ≈
∏
h∈H

(
(〈coeffs(g), eval(h)〉)q−1 − 1

)

Degree(P) ≤ |H|q ≤ poly(N), Size(P) ≤ poly(N).



Finite Fields: a hard polynomial

Want: f with coefficients in Fq such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

P(coeffs(f )) ≈
∏
h∈H

(
(〈coeffs(f ), eval(h)〉)q−1 − 1

)
6= 0



Finite Fields: a hard polynomial

Want: f with coefficients in Fq such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

P(coeffs(f )) ≈
∏
h∈H

(
(〈coeffs(f ), eval(h)〉)q−1 − 1

)
6= 0



Finite Fields: a hard polynomial

Want: f with coefficients in Fq such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

P(coeffs(f )) ≈
∏
h∈H

(
(〈coeffs(f ), eval(h)〉)q−1 − 1

)
6= 0



Finite Fields: a hard polynomial

Want: f with coefficients in Fq such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

P(coeffs(f )) ≈
∏
h∈H

(
(〈coeffs(f ), eval(h)〉)q−1 − 1

)
6= 0



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.

Set Q(y) =
∏

r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r).

What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Given: Vector coeffs(g) ∈ CN , point h ∈ Cn

Goal: Output zero iff g(h) 6= 0, using a polynomial.

R : set of non-zero values that a polynomial in C takes on H.
Set Q(y) =

∏
r∈R(y − r). What about the degree ?

Estimating |R|:
Suppose | coeffs(g)| ≤ L, deg(g) = poly(n), and |h| ≤ k .

Then | eval(h)| ≤ kd , |g(h)| ≈ L · N · kd

For d ∼ n3, N ∼ exp(n log d) and LNkd = Nω(1).

Cannot directly work with eval(h).



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.



Algebraic NOT - Integers

Goal: Check if g(h) = 0 using a lower degree polynomial.

Chinese Remainder Theorem
For an integer −2` ≤ M ≤ 2`,
if M mod pi = 0 for distinct primes p1, . . . , p2`; then M = 0.

Set ` = log(LNkd) = poly(d , logN). For primes p1, . . . , p`,
let evali (h) = eval(h) mod pi

= [m1(h) mod pi , . . . ,mr (h) mod pi ] ∈ CN

| evali (h)| = poly(`) = poly(d , logN).

For | coeffs(g)| ≤ L,
|〈coeffs(g), evali (h)〉| ≤ L · N · poly(`) = poly(N, L, d) = B.

Note: Can “hardwire” evali (h) for all i ∈ [`] and h ∈ H.



Algebraic NOT - Integers

g(h) 6= 0⇐⇒ ∃i ∈ [`] s.t (pi - 〈coeffs(g), evali (h)〉)

g(h) 6= 0⇐⇒ ∃i ∈ [`] s.t
∏

−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a) = 0

g(h) 6= 0⇐⇒
∏
i∈[`]

∏
−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a) = 0



Algebraic NOT - Integers

g(h) 6= 0⇐⇒ ∃i ∈ [`] s.t (pi - 〈coeffs(g), evali (h)〉)

g(h) 6= 0⇐⇒ ∃i ∈ [`] s.t
∏

−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a) = 0

g(h) 6= 0⇐⇒
∏
i∈[`]

∏
−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a) = 0



Algebraic NOT - Integers

g(h) 6= 0⇐⇒ ∃i ∈ [`] s.t (pi - 〈coeffs(g), evali (h)〉)

g(h) 6= 0⇐⇒ ∃i ∈ [`] s.t
∏

−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a) = 0

g(h) 6= 0⇐⇒
∏
i∈[`]

∏
−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a) = 0



Algebraic NOT - Integers

For B = poly(L,N, d) = poly(N).

Equation for VP′C

P(coeffs(g)) ≈
∏
h∈H

∏
i∈[`]

∏
−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a)

Deg(P) ≤ |H| poly(n) poly(N) ≤ poly(N)

Size(P) ≤ poly(N).



Algebraic NOT - Integers

For B = poly(L,N, d) = poly(N).

Equation for VP′C

P(coeffs(g)) ≈
∏
h∈H

∏
i∈[`]

∏
−B≤a≤B

pi -a

(〈coeffs(g), evali (h)〉 − a)

Deg(P) ≤ |H| poly(n) poly(N) ≤ poly(N)

Size(P) ≤ poly(N).



Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.



Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.



Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.



Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.



Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.



Integers: a hard polynomial

Want: f with with small coefficients such that ∀h ∈ H, f (h) = 0.

Linear system in the coefficients of f : ∀h ∈ H, f (h) = 0

Many more variables than constraints, so there is a non-zero
solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.



Results for VP

Theorem (Equations for VP′C)

For n,d and N =
(n+d

n

)
,

There exists a nonzero P(Z1, . . . ,ZN) ∈ VP(N) such that

for all f ∈ VPC(n, d) with coefficients in {−N, . . . ,N},
P(coeffs(f )) = 0.

Moreover, there is a g with small coefficients such that
P(coeffs(g)) = 0.



Results for VNP

Theorem (Equations for VNP′C)

For n,d and N =
(n+d

n

)
,

There exists a nonzero Q(Z1, . . . ,ZN) ∈ VP(N) such that

for all f ∈ VNPC(n, d) with coefficients in {−N, . . . ,N},
Q(coeffs(f )) = 0.

Moreover, there is a g with small coefficients such that
P(coeffs(g)) = 0.



To summarize

I Efficiently constructible equations exist for polynomials with
“small” coefficients, in both VP and VNP.

I The restriction is only on the polynomials, circuits can use any
constants. Well-studied natural polynomials have small

coefficients.

e.g. Determinant, Permanent, . . .

I We can still hope to prove lower bounds for these polynomial
families via constructible equations, but cannot guarantee the
largeness criterion.



To summarize

I Efficiently constructible equations exist for polynomials with
“small” coefficients, in both VP and VNP.

I The restriction is only on the polynomials, circuits can use any
constants. Well-studied natural polynomials have small

coefficients.

e.g. Determinant, Permanent, . . .

I We can still hope to prove lower bounds for these polynomial
families via constructible equations, but cannot guarantee the
largeness criterion.



To summarize

I Efficiently constructible equations exist for polynomials with
“small” coefficients, in both VP and VNP.

I The restriction is only on the polynomials, circuits can use any
constants. Well-studied natural polynomials have small

coefficients.

e.g. Determinant, Permanent, . . .

I We can still hope to prove lower bounds for these polynomial
families via constructible equations

, but cannot guarantee the
largeness criterion.



To summarize

I Efficiently constructible equations exist for polynomials with
“small” coefficients, in both VP and VNP.

I The restriction is only on the polynomials, circuits can use any
constants. Well-studied natural polynomials have small

coefficients.

e.g. Determinant, Permanent, . . .

I We can still hope to prove lower bounds for these polynomial
families via constructible equations, but cannot guarantee the
largeness criterion.



Questions

I Does all of VP have efficiently constructible equations?

I Unlikely that out proof technique extends.
I How about Constant free versions of VP and VNP.

I How about seemingly simpler models...formulas/constant
depth circuits?

I Limitations on what can be proved via algebraically natural
proofs ?



Questions

I Does all of VP have efficiently constructible equations?
I Unlikely that out proof technique extends.

I How about Constant free versions of VP and VNP.

I How about seemingly simpler models...formulas/constant
depth circuits?

I Limitations on what can be proved via algebraically natural
proofs ?



Questions

I Does all of VP have efficiently constructible equations?
I Unlikely that out proof technique extends.
I How about Constant free versions of VP and VNP.

I How about seemingly simpler models...formulas/constant
depth circuits?

I Limitations on what can be proved via algebraically natural
proofs ?



Questions

I Does all of VP have efficiently constructible equations?
I Unlikely that out proof technique extends.
I How about Constant free versions of VP and VNP.

I How about seemingly simpler models...formulas/constant
depth circuits?

I Limitations on what can be proved via algebraically natural
proofs ?



Questions

I Does all of VP have efficiently constructible equations?
I Unlikely that out proof technique extends.
I How about Constant free versions of VP and VNP.

I How about seemingly simpler models...formulas/constant
depth circuits?

I Limitations on what can be proved via algebraically natural
proofs ?



Thanks!


	Introduction
	Basics
	Natural Proof Strategies

	Question and Results
	Algebraically Natural Proofs and Equations
	Our Results

	Proof Ideas
	Equations via hitting sets
	Algebraization of NOR

	Discussion and Open Questions
	Discussion
	Open Questions


