On the existence of algebraically natural proofs

Joint work with Prerona Chatterjee, C. Ramya, Ramprasad Saptharishi and Anamay Tengse

Polynomials

- Main protagonists: multivariate polynomials over a field \mathbb{F}
- $P \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right], \operatorname{deg}(P)=d$
- \mathbb{F} : complex numbers

Polynomials

- Main protagonists: multivariate polynomials over a field \mathbb{F}
- $P \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right], \operatorname{deg}(P)=d$
- \mathbb{F} : complex numbers
- Algebraic complexity: the cost of computing polynomials as formal objects

Polynomials

- Main protagonists: multivariate polynomials over a field \mathbb{F}
- $P \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right], \operatorname{deg}(P)=d$
- \mathbb{F} : complex numbers
- Algebraic complexity: the cost of computing polynomials as formal objects
- Variables $-\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}$, constants - $\mathbb{F}=\mathbb{C}$ Operations - Addition + and multiplication \times.

Algebraic Circuits

Parameters:

Size (C)

- No. of gates
or no. of wires
Depth (C)
- Longest path from root to a leaf

Algebraic Circuits

Parameters:

Size (C)

- No. of gates
or no. of wires
Depth (C)
- Longest path from root to a leaf

Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree - d This talk: $d \sim \operatorname{poly}(n)$

Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree $-d$ This talk: $d \sim \operatorname{poly}(n)$

Definition (VP - Easy Polynomials):
Class of all n-variate, degree $d=\operatorname{poly}(n)$ polynomials, computable by circuits of size poly (n). E.g. the Determinant.

Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree $-d$
This talk: $d \sim \operatorname{poly}(n)$
Definition (VP - Easy Polynomials):
Class of all n-variate, degree $d=\operatorname{poly}(n)$ polynomials, computable by circuits of size poly (n). E.g. the Determinant.

Definition (VP - Easy Polynomials):
Class of all n-variate, degree $d=\operatorname{poly}(n)$ polynomials, for which it is reasonably easy to compute the coefficient of any given monomial. E.g. Permanent.

Easy and Hard Polynomials [Val79]

Parameters: Number of variables - n, degree $-d$
This talk: $d \sim \operatorname{poly}(n)$
Definition (VP - Easy Polynomials):
Class of all n-variate, degree $d=\operatorname{poly}(n)$ polynomials, computable by circuits of size poly (n). E.g. the Determinant.

Definition (VP - Easy Polynomials):
Class of all n-variate, degree $d=\operatorname{poly}(n)$ polynomials, for which it is reasonably easy to compute the coefficient of any given monomial. E.g. Permanent.

VP vs VNP: Lower bounds for explicit polynomials.

Finding Hard Polynomials

- General Lower Bounds:

Finding Hard Polynomials

- General Lower Bounds:
- Circuits: $\Omega(n \log d)$ [BS83,Smo97]
- Formulas: $\Omega\left(n^{2}\right)$ [Kal85, SY08, CKSV20]

Finding Hard Polynomials

- General Lower Bounds:
- Circuits: $\Omega(n \log d)$ [BS83,Smo97]
- Formulas: $\Omega\left(n^{2}\right)$ [Kal85, SY08, CKSV20]
- Many structured cases:
- Constant depth circuits [NW95,KST16,GKKS13,...]
- Multilinear models [Raz09,DMPY12,...]
- Non-commutative models [Nis91,LMP16,CILM18,...]
- Monotone models [Yeh19,Sri19]

Finding Hard Polynomials

- General Lower Bounds:
- Circuits: $\Omega(n \log d)$ [BS83,Smo97]
- Formulas: $\Omega\left(n^{2}\right)$ [Kal85, SY08, CKSV20]
- Many structured cases:
- Constant depth circuits [NW95,KST16,GKKS13,...]
- Multilinear models [Raz09,DMPY12,...]
- Non-commutative models [Nis91,LMP16,CILM18,...]
- Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Finding Hard Polynomials

- General Lower Bounds:
- Circuits: $\Omega(n \log d)$ [BS83,Smo97]
- Formulas: $\Omega\left(n^{2}\right)$ [Kal85, SY08, CKSV20]
- Many structured cases:
- Constant depth circuits [NW95,KST16,GKKS13,...]
- Multilinear models [Raz09,DMPY12,...]
- Non-commutative models [Nis91,LMP16,CILM18,...]
- Monotone models [Yeh19,Sri19]

Observation: Most of the proofs follow a certain template.

Can proofs based on this template yield strong lower bounds ?

The Template

The template: a toy case

Circuit class:

$$
\mathcal{C}=\left\{(\alpha t-\beta)^{2}: \alpha, \beta \in \mathbb{C}\right\} .
$$

The template: a toy case

Circuit class: $\quad \mathcal{C}=\left\{(\alpha t-\beta)^{2}: \alpha, \beta \in \mathbb{C}\right\}$.
Finding explicit $h \notin \mathcal{C}$:

The template: a toy case

Circuit class: $\quad \mathcal{C}=\left\{(\alpha t-\beta)^{2}: \alpha, \beta \in \mathbb{C}\right\}$.
Finding explicit $h \notin \mathcal{C}$:

- An Equation of \mathcal{C} :

$$
\text { If } f(t)=a t^{2}+b t+c \in \mathcal{C}, \text { then } b^{2}-4 a c=0
$$

The template: a toy case

$$
\text { Circuit class: } \quad \mathcal{C}=\left\{(\alpha t-\beta)^{2}: \alpha, \beta \in \mathbb{C}\right\} .
$$

Finding explicit $h \notin \mathcal{C}$:

- An Equation of \mathcal{C} :

$$
\text { If } f(t)=a t^{2}+b t+c \in \mathcal{C} \text {, then } b^{2}-4 a c=0 .
$$

- A Hard Polynomial:

$$
h(t)=a^{\prime} t^{2}+b^{\prime} t+c^{\prime} \text { such that } b^{\prime 2}-4 a^{\prime} c^{\prime} \neq 0
$$

Waring rank: a real world example

Theorem
If $x_{1} \cdots x_{n}=L_{1}^{n}+L_{2}^{n}+\cdots+L_{s}^{n}$ for linear forms $L_{1}, L_{2}, \ldots, L_{s}$, then s is at least $\exp (\Omega(n))$.

Waring rank: a real world example

Theorem
If $x_{1} \cdots x_{n}=L_{1}^{n}+L_{2}^{n}+\cdots+L_{s}^{n}$ for linear forms $L_{1}, L_{2}, \ldots, L_{s}$, then s is at least $\exp (\Omega(n))$.
$\mathcal{C} \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_{1} x_{2} \cdots x_{n}$ is not in \mathcal{C}.

Waring rank: a real world example

Theorem
If $x_{1} \cdots x_{n}=L_{1}^{n}+L_{2}^{n}+\cdots+L_{s}^{n}$ for linear forms $L_{1}, L_{2}, \ldots, L_{s}$, then s is at least $\exp (\Omega(n))$.
$\mathcal{C} \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_{1} x_{2} \cdots x_{n}$ is not in \mathcal{C}.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

Waring rank: a real world example

Theorem
If $x_{1} \cdots x_{n}=L_{1}^{n}+L_{2}^{n}+\cdots+L_{s}^{n}$ for linear forms $L_{1}, L_{2}, \ldots, L_{s}$, then s is at least $\exp (\Omega(n))$.
$\mathcal{C} \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_{1} x_{2} \cdots x_{n}$ is not in \mathcal{C}.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

- For \mathcal{C} : dimension $\leq O(s n)$ [Chain rule + sub-additivity]

Waring rank: a real world example

Theorem
If $x_{1} \cdots x_{n}=L_{1}^{n}+L_{2}^{n}+\cdots+L_{s}^{n}$ for linear forms $L_{1}, L_{2}, \ldots, L_{s}$, then s is at least $\exp (\Omega(n))$.
$\mathcal{C} \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_{1} x_{2} \cdots x_{n}$ is not in \mathcal{C}.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

- For \mathcal{C} : dimension $\leq O(s n)$ [Chain rule + sub-additivity]
- For the monomial: dimension $\geq \exp (\Omega(n))$ [distinct multilinear monomials]

Waring rank: a real world example

Theorem
If $x_{1} \cdots x_{n}=L_{1}^{n}+L_{2}^{n}+\cdots+L_{s}^{n}$ for linear forms $L_{1}, L_{2}, \ldots, L_{s}$, then s is at least $\exp (\Omega(n))$.
$\mathcal{C} \equiv$ Polynomials with small waring rank. The goal is to show that the monomial $x_{1} x_{2} \cdots x_{n}$ is not in \mathcal{C}.

Partial derivatives complexity: dimension of the linear space spanned by partial derivatives

- For \mathcal{C} : dimension $\leq O(s n)$ [Chain rule + sub-additivity]
- For the monomial: dimension $\geq \exp (\Omega(n))$ [distinct multilinear monomials]
So, for the monomial to be in \mathcal{C}, we must have $s n \geq \exp (\Omega(n))$.

Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by monomials
(α, β) entry $=$ coefficient of the monomial β in the partial derivative $\frac{\partial P}{\partial \alpha}$

- Every entry is linear in the coefficients of P
- Dim of matrix: $N \times N$ for $N=\binom{n+d}{d}$
- Partial derivative complexity \equiv rank of this matrix over \mathbb{F}

Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by monomials
(α, β) entry $=$ coefficient of the monomial β in the partial derivative $\frac{\partial P}{\partial \alpha}$

- Every entry is linear in the coefficients of P
- Dim of matrix: $N \times N$ for $N=\binom{n+d}{d}$
- Partial derivative complexity \equiv rank of this matrix over \mathbb{F}

Previous proof: there exists a submatrix which is full rank for $x_{1} x_{2} \cdots x_{n}$ and is rank deficient for polynomials of small Waring rank

Waring rank: a real world example

The partial derivative matrix: rows and columns indexed by monomials
(α, β) entry $=$ coefficient of the monomial β in the partial derivative $\frac{\partial P}{\partial \alpha}$

- Every entry is linear in the coefficients of P
- Dim of matrix: $N \times N$ for $N=\binom{n+d}{d}$
- Partial derivative complexity \equiv rank of this matrix over \mathbb{F}

Previous proof: there exists a submatrix which is full rank for $x_{1} x_{2} \cdots x_{n}$ and is rank deficient for polynomials of small Waring rank
In particular: the determinant of this minor vanishes on coefficient vector of every polynomial in \mathcal{C} and is non-zero on the coefficient vector of $x_{1} x_{2} \cdots x_{n}$.

Natural proofs of algebraic lower bounds

Natural proofs of algebraic lower bounds

Variables $\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}, \quad$ Degree $-d, \quad$ Field \mathbb{F}.

Natural proofs of algebraic lower bounds

$$
\begin{aligned}
& \text { Variables } \bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}, \quad \text { Degree }-d, \quad \text { Field } \mathbb{F} \text {. } \\
& \mathcal{M} \text { - monomials in } \bar{x} \text { of degree } d, \quad N=|\mathcal{M}|=\binom{n+d}{n} .
\end{aligned}
$$

Natural proofs of algebraic lower bounds

Variables $\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}, \quad$ Degree $-d, \quad$ Field \mathbb{F}. \mathcal{M} - monomials in \bar{x} of degree $d, \quad N=|\mathcal{M}|=\binom{n+d}{n}$.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{m \in \mathcal{M}} f_{m} \cdot m \quad f_{m}=\operatorname{coeff}_{f}(m)
$$

Natural proofs of algebraic lower bounds

Variables $\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}, \quad$ Degree $-d, \quad$ Field \mathbb{F}. \mathcal{M} - monomials in \bar{x} of degree $d, \quad N=|\mathcal{M}|=\binom{n+d}{n}$.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{m \in \mathcal{M}} f_{m} \cdot m \quad f_{m}=\operatorname{coeff}_{f}(m)
$$

Let coeffs $(f)=\left[f_{m_{1}}, f_{m_{2}}, \ldots, f_{m_{N}}\right] \in \mathbb{F}^{N}$.

Natural proofs of algebraic lower bounds

Variables $\bar{x}=\left\{x_{1}, \ldots, x_{n}\right\}, \quad$ Degree $-d, \quad$ Field \mathbb{F}.
\mathcal{M} - monomials in \bar{x} of degree $d, \quad N=|\mathcal{M}|=\binom{n+d}{n}$.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{m \in \mathcal{M}} f_{m} \cdot m \quad f_{m}=\operatorname{coeff}_{f}(m)
$$

Let coeffs $(f)=\left[f_{m_{1}}, f_{m_{2}}, \ldots, f_{m_{N}}\right] \in \mathbb{F}^{N}$.
Definition (Equation)
A non-zero polynomial P is said to be an equation for a class \mathcal{C}, if $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}$.

Natural proofs of algebraic lower bounds

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bounds for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation,

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bounds for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bounds for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bounds for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- P is "easy" to compute (e.g. circuit size and degree poly (N)).

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bounds for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- P is "easy" to compute (e.g. circuit size and degree poly (N)).
- $P\left(\operatorname{coeffs}\left(g_{0}\right)\right) \neq 0$ for the candidate hard polynomial g_{0}

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bounds for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- P is "easy" to compute (e.g. circuit size and degree poly (N)).
- $P\left(\operatorname{coeffs}\left(g_{0}\right)\right) \neq 0$ for the candidate hard polynomial $g_{0}($ in fact, for most polynomials).

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bound for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly(N)).
- Largeness: $P\left(\operatorname{coeffs}\left(g_{0}\right)\right) \neq 0$ for the candidate hard polynomial g_{0} (in fact, for most polynomials).

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bound for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly (N)).
- Largeness: $P\left(\operatorname{coeffs}\left(g_{0}\right)\right) \neq 0$ for the candidate hard polynomial g_{0} (in fact, for most polynomials).
Q. Can we hope to prove superpolynomial lower bounds for algebraic circuits via natural proofs ?

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bound for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly (N)).
- Largeness: $P\left(\operatorname{coeffs}\left(g_{0}\right)\right) \neq 0$ for the candidate hard polynomial g_{0} (in fact, for most polynomials).
Q. Does VP have an efficiently constructible equations ?[AD,G,FSV,GKSS]

Boolean vs Algebraic Natural proofs

Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for rich enough classes of Boolean circuits.

Boolean vs Algebraic Natural proofs

> Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for rich enough classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

Boolean vs Algebraic Natural proofs

> Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for rich enough classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

- Unclear if this applies to lower bounds for VP.

Boolean vs Algebraic Natural proofs

> Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for rich enough classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

- Unclear if this applies to lower bounds for VP. Pseudorandom functions via algebraic circuits of small size and degree?

Boolean vs Algebraic Natural proofs

> Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for rich enough classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

- Unclear if this applies to lower bounds for VP. Pseudorandom functions via algebraic circuits of small size and degree?
- Only need to fool algebraic circuits.

Boolean vs Algebraic Natural proofs

> Razborov-Rudich: (Under standard assumptions) Natural proofs cannot yield lower bounds for rich enough classes of Boolean circuits.

Rich enough : Candidate construction of pseudorandom functions in the class.

- Unclear if this applies to lower bounds for VP. Pseudorandom functions via algebraic circuits of small size and degree?
- Only need to fool algebraic circuits.
- Not enough evidence, one way or the other.

Natural proofs of algebraic lower bounds

For n, d and $N=\binom{n+d}{n} ; \quad$ let $\mathcal{U}=\mathbb{F}^{N}, \mathcal{C}_{n} \subset \mathbb{F}^{N}$.

Natural proof of lower bound for \mathcal{C} : based on showing that \mathcal{C} has an efficiently constructible equation, i.e. there is a polynomial $P\left(Z_{1}, \ldots, Z_{N}\right)$ such that:

- Usefulness: $P(\operatorname{coeffs}(f))=0$ for all $f \in \mathcal{C}_{n}$.
- Constructivity: P is "easy" to compute (e.g. circuit size and degree poly (N)).
- Largeness: $P\left(\operatorname{coeffs}\left(g_{0}\right)\right) \neq 0$ for g_{0} (in fact, for most polynomials g).
Q. Does VP have efficiently constructible equations ?[AD,G,FSV,GKSS]

What do we know ?

- Natural Proofs [FSV18]

What do we know ?

- Natural Proofs [FSV18]
- Reformulate this question as a question about succinct derandomization of polynomial identity testing.

What do we know ?

- Natural Proofs [FSV18]
- Reformulate this question as a question about succinct derandomization of polynomial identity testing.
- For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.

What do we know ?

- Natural Proofs [FSV18]
- Reformulate this question as a question about succinct derandomization of polynomial identity testing.
- For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.
- Variety Membership [BIJL18,BIL+19]
- Hardness of membership testing rules out efficient equations for certain classes.

What do we know ?

- Natural Proofs [FSV18]
- Reformulate this question as a question about succinct derandomization of polynomial identity testing.
- For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.
- Variety Membership [BIJL18,BIL+19]
- Hardness of membership testing rules out efficient equations for certain classes.
- Rank Methods [EGOW18,GMOW19]
- Rank-based methods will not show optimal lower bounds.
- Tensor rank lower bounds do not lift to higher dimensions.

What do we know ?

- Natural Proofs [FSV18]
- Reformulate this question as a question about succinct derandomization of polynomial identity testing.
- For more structured notions of constructivity (sparsity/Waring rank), the answer is negative.
- Variety Membership [BIJL18,BIL+19]
- Hardness of membership testing rules out efficient equations for certain classes.
- Rank Methods [EGOW18,GMOW19]
- Rank-based methods will not show optimal lower bounds.
- Tensor rank lower bounds do not lift to higher dimensions.
Q. Does VP have efficiently constructible equations ?

Our results

Main Theorem

Q. Does VP have efficiently constructible equations ??

Main Theorem

Q. Does VP have efficiently constructible equations ??
A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Main Theorem

Q. Does VP have efficiently constructible equations ??
A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Theorem (Equations for $\mathrm{VP}_{\mathbb{C}}^{\prime}$):
For n, d and $N=\binom{n+d}{n}$, there exists a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right)$ in $\mathrm{VP}(N)$ such that

- for all $f \in \operatorname{VP}(n, d)$ with small integer coefficients, $P(\operatorname{coeffs}(f))=0$

Main Theorem

Q. Does VP have efficiently constructible equations ??
A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Theorem (Equations for $\mathrm{VP}_{\mathbb{C}}^{\prime}$):
For n, d and $N=\binom{n+d}{n}$, there exists a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right)$ in $\mathrm{VP}(N)$ such that

- for all $f \in \operatorname{VP}(n, d)$ with small integer coefficients, $P(\operatorname{coeffs}(f))=0$
- there exists a polynomial g with small integer coefficients such that $P(\operatorname{coeffs}(g)) \neq 0$

Main Theorem

Q. Does VP have efficiently constructible equations ??
A. For a natural special case: polynomials with small integer coefficients, the answer is YES.

Theorem (Equations for $\mathrm{VP}_{\mathbb{C}}^{\prime}$):
For n, d and $N=\binom{n+d}{n}$, there exists a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right)$ in $\mathrm{VP}(N)$ such that

- for all $f \in \mathrm{VP}(n, d)$ with small integer coefficients, $P(\operatorname{coeffs}(f))=0$
- there exists a polynomial g with small integer coefficients such that $P(\operatorname{coeffs}(g)) \neq 0$

Restriction not on circuits computing the polynomials.

To summarize

- A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation.

To summarize

- A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation. Doesn't seem to say anything about all of VP, but is still seems a bit surprising.

To summarize

- A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation. Doesn't seem to say anything about all of VP, but is still seems a bit surprising.
- For polynomials with small integer coefficients (e.g Permanent), we might still have a lower bound proof which is via a useful and efficiently constructible algebraic property (a constructible equation). But we cannot guarantee largeness.

To summarize

- A natural, rich and computationally interesting (although finite) subset of VP has an efficiently constructible equation. Doesn't seem to say anything about all of VP, but is still seems a bit surprising.
- For polynomials with small integer coefficients (e.g Permanent), we might still have a lower bound proof which is via a useful and efficiently constructible algebraic property (a constructible equation). But we cannot guarantee largeness.

Sketch of the Proofs

Hitting sets for VP

Definition (Hitting Set)
$\mathcal{H} \subset \mathbb{F}^{n}$ is a hitting set for a class \mathcal{C} of n-variate polynomials,
if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Hitting sets for VP

Definition (Hitting Set)
$\mathcal{H} \subset \mathbb{F}^{n}$ is a hitting set for a class \mathcal{C} of n-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]
There exist hitting sets of size poly (n, d, s) for the class of n-variate, degree d polynomials that have circuits of size s.

Hitting sets for VP

Definition (Hitting Set)
$\mathcal{H} \subset \mathbb{F}^{n}$ is a hitting set for a class \mathcal{C} of n-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]
There exist hitting sets of size poly (n, d, s) for the class of n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.

Hitting sets for VP

Definition (Hitting Set)
$\mathcal{H} \subset \mathbb{F}^{n}$ is a hitting set for a class \mathcal{C} of n-variate polynomials, if for all $0 \neq f \in \mathcal{C}$, there exists an $h \in \mathcal{H}$ such that $f(h) \neq 0$.

Theorem [HS80,For14]

There exist hitting sets of size poly (n, d, s) for the class of n-variate, degree d polynomials that have circuits of size s.

Moreover, there is a hitting set with small integer points.
Observation: For a nonzero $g, g(\mathcal{H})=0$ is a proof that $g \notin \mathcal{C}$.

From hitting set to equations

$\mathcal{H}=\left\{h_{1}, \ldots, h_{r}\right\}$ hitting set for $\mathcal{C}, \quad 0 \neq g(\bar{x})$ input polynomial.

From hitting set to equations

$\mathcal{H}=\left\{h_{1}, \ldots, h_{r}\right\}$ hitting set for $\mathcal{C}, \quad 0 \neq g(\bar{x})$ input polynomial.

$\operatorname{NOT}(0)=$ nonzero $\quad \operatorname{NOT}($ nonzero $)=0$

Evaluating at a point

Given: Vector coeffs $(g) \in \mathbb{F}^{N}, \quad$ point $h \in \mathbb{F}^{n}$

Evaluating at a point

Given: Vector coeffs $(g) \in \mathbb{F}^{N}$, $\operatorname{coeffs}(g)=\left[g_{m_{1}}, g_{m_{2}}, \ldots, g_{m_{N}}\right]$,
point $h \in \mathbb{F}^{n}$
$\left\{m_{1}, \ldots, m_{N}\right\}=\mathcal{M}$.

Evaluating at a point

Given: Vector coeffs $(g) \in \mathbb{F}^{N}, \quad$ point $h \in \mathbb{F}^{n}$ $\operatorname{coeffs}(g)=\left[g_{m_{1}}, g_{m_{2}}, \ldots, g_{m_{N}}\right], \quad\left\{m_{1}, \ldots, m_{N}\right\}=\mathcal{M}$.

Let $\operatorname{eval}(h)=\left[m_{1}(h), m_{2}(h), \ldots, m_{N}(h)\right]$.

Evaluating at a point

Given: Vector coeffs $(g) \in \mathbb{F}^{N}, \quad$ point $h \in \mathbb{F}^{n}$ $\operatorname{coeffs}(g)=\left[g_{m_{1}}, g_{m_{2}}, \ldots, g_{m_{N}}\right], \quad\left\{m_{1}, \ldots, m_{N}\right\}=\mathcal{M}$.

Let $\operatorname{eval}(h)=\left[m_{1}(h), m_{2}(h), \ldots, m_{N}(h)\right]$.
Now $g(h)=\langle\operatorname{coeffs}(g), \operatorname{eval}(h)\rangle=\sum_{m \in \mathcal{M}} g_{m} m(h)$.

Evaluating at a point

Given: Vector coeffs $(g) \in \mathbb{F}^{N}, \quad$ point $h \in \mathbb{F}^{n}$ $\operatorname{coeffs}(g)=\left[g_{m_{1}}, g_{m_{2}}, \ldots, g_{m_{N}}\right], \quad\left\{m_{1}, \ldots, m_{N}\right\}=\mathcal{M}$.

Let $\operatorname{eval}(h)=\left[m_{1}(h), m_{2}(h), \ldots, m_{N}(h)\right]$.
Now $g(h)=\langle\operatorname{coeffs}(g), \operatorname{eval}(h)\rangle=\sum_{m \in \mathcal{M}} g_{m} m(h)$.
Note:

- Linear polynomial in coeffs (g).

Evaluating at a point

Given: Vector coeffs $(g) \in \mathbb{F}^{N}, \quad$ point $h \in \mathbb{F}^{n}$ $\operatorname{coeffs}(g)=\left[g_{m_{1}}, g_{m_{2}}, \ldots, g_{m_{N}}\right], \quad\left\{m_{1}, \ldots, m_{N}\right\}=\mathcal{M}$.

Let $\operatorname{eval}(h)=\left[m_{1}(h), m_{2}(h), \ldots, m_{N}(h)\right]$.
Now $g(h)=\langle\operatorname{coeffs}(g), \operatorname{eval}(h)\rangle=\sum_{m \in \mathcal{M}} g_{m} m(h)$.
Note:

- Linear polynomial in coeffs (g).
- We can "hardwire" eval(h) in our circuit, for all $h \in \mathcal{H}$.

Algebraic NOT - Finite Fields

Given: Vector coeffs $(g) \in \mathbb{F}_{q}^{N}, \quad$ point $h \in \mathbb{F}_{q}^{n}$

Algebraic NOT - Finite Fields

Given: Vector coeffs $(g) \in \mathbb{F}_{q}^{N}, \quad$ point $h \in \mathbb{F}_{q}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.

Algebraic NOT - Finite Fields

Given: Vector coeffs $(g) \in \mathbb{F}_{q}^{N}, \quad$ point $h \in \mathbb{F}_{q}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.

$$
\text { For all } 0 \neq x \in \mathbb{F}_{q}, x^{q-1}-1=0
$$

Algebraic NOT - Finite Fields

Given: Vector coeffs $(g) \in \mathbb{F}_{q}^{N}, \quad$ point $h \in \mathbb{F}_{q}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.

$$
\text { For all } 0 \neq x \in \mathbb{F}_{q}, x^{q-1}-1=0
$$

Output: $(\langle\operatorname{coeffs}(g), \operatorname{eval}(h)\rangle)^{q-1}-1$.

Algebraic NOT - Finite Fields

Given: Vector coeffs $(g) \in \mathbb{F}_{q}^{N}, \quad$ point $h \in \mathbb{F}_{q}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.

$$
\text { For all } 0 \neq x \in \mathbb{F}_{q}, x^{q-1}-1=0
$$

Output: $(\langle\operatorname{coeffs}(g), \text { eval }(h)\rangle)^{q-1}-1$.

$$
P(\operatorname{coeffs}(g)) \approx \prod_{h \in \mathcal{H}}\left((\langle\operatorname{coeffs}(g), \operatorname{eval}(h)\rangle)^{q-1}-1\right)
$$

Degree $(P) \leq|\mathcal{H}| q \leq \operatorname{poly}(N), \quad \operatorname{Size}(P) \leq \operatorname{poly}(N)$.

Finite Fields: a hard polynomial

Want: f with coefficients in \mathbb{F}_{q} such that $\forall h \in \mathcal{H}, f(h)=0$.

Finite Fields: a hard polynomial

Want: f with coefficients in \mathbb{F}_{q} such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$

Finite Fields: a hard polynomial

Want: f with coefficients in \mathbb{F}_{q} such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$
Many more variables than constraints, so there is a non-zero solution.

Finite Fields: a hard polynomial

Want: f with coefficients in \mathbb{F}_{q} such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$
Many more variables than constraints, so there is a non-zero solution.

$$
P(\operatorname{coeffs}(f)) \approx \prod_{h \in \mathcal{H}}\left((\langle\operatorname{coeffs}(f), \operatorname{eval}(h)\rangle)^{q-1}-1\right) \neq 0
$$

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}.

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}. Set $Q(y)=\prod_{r \in R}(y-r)$.

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}.
Set $Q(y)=\prod_{r \in R}(y-r)$. What about the degree ?

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}.
Set $Q(y)=\prod_{r \in R}(y-r)$. What about the degree ?
Estimating $|R|$:
Suppose $|\operatorname{coeffs}(g)| \leq L, \quad \operatorname{deg}(g)=\operatorname{poly}(n), \quad$ and $|h| \leq k$.

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}.
Set $Q(y)=\prod_{r \in R}(y-r)$. What about the degree ?
Estimating $|R|$:
Suppose $|\operatorname{coeffs}(g)| \leq L, \quad \operatorname{deg}(g)=\operatorname{poly}(n), \quad$ and $|h| \leq k$.
Then $|\operatorname{eval}(h)| \leq k^{d}, \quad|g(h)| \approx L \cdot N \cdot k^{d}$

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}.
Set $Q(y)=\prod_{r \in R}(y-r)$. What about the degree ?
Estimating $|R|$:
Suppose $|\operatorname{coeffs}(g)| \leq L, \quad \operatorname{deg}(g)=\operatorname{poly}(n), \quad$ and $|h| \leq k$.
Then $|\operatorname{eval}(h)| \leq k^{d}, \quad|g(h)| \approx L \cdot N \cdot k^{d}$
For $d \sim n^{3}, N \sim \exp (n \log d)$ and $L N k^{d}=N^{\omega(1)}$.

Algebraic NOT - Integers

Given: Vector coeffs $(g) \in \mathbb{C}^{N}, \quad$ point $h \in \mathbb{C}^{n}$
Goal: Output zero iff $g(h) \neq 0$, using a polynomial.
R : set of non-zero values that a polynomial in \mathcal{C} takes on \mathcal{H}.
Set $Q(y)=\prod_{r \in R}(y-r)$. What about the degree ?
Estimating $|R|$:
Suppose $|\operatorname{coeffs}(g)| \leq L, \quad \operatorname{deg}(g)=\operatorname{poly}(n), \quad$ and $|h| \leq k$.
Then $|\operatorname{eval}(h)| \leq k^{d}, \quad|g(h)| \approx L \cdot N \cdot k^{d}$
For $d \sim n^{3}, N \sim \exp (n \log d)$ and $L N k^{d}=N^{\omega(1)}$.
Cannot directly work with eval (h).

Algebraic NOT - Integers

Goal: Check if $g(h)=0$ using a lower degree polynomial.

Algebraic NOT - Integers

Goal: Check if $g(h)=0$ using a lower degree polynomial.
Chinese Remainder Theorem
For an integer $-2^{\ell} \leq M \leq 2^{\ell}$,
if $M \bmod p_{i}=0$ for distinct primes $p_{1}, \ldots, p_{2 \ell}$; then $M=0$.

Algebraic NOT - Integers

Goal: Check if $g(h)=0$ using a lower degree polynomial.
Chinese Remainder Theorem
For an integer $-2^{\ell} \leq M \leq 2^{\ell}$,
if $M \bmod p_{i}=0$ for distinct primes $p_{1}, \ldots, p_{2 \ell}$; then $M=0$.
Set $\ell=\log \left(L N k^{d}\right)=\operatorname{poly}(d, \log N)$. For primes p_{1}, \ldots, p_{ℓ}, let $\operatorname{eval}_{i}(h)=\operatorname{eval}(h) \bmod p_{i}$

$$
=\left[m_{1}(h) \bmod p_{i}, \ldots, m_{r}(h) \bmod p_{i}\right] \in \mathbb{C}^{N}
$$

Algebraic NOT - Integers

Goal: Check if $g(h)=0$ using a lower degree polynomial.
Chinese Remainder Theorem
For an integer $-2^{\ell} \leq M \leq 2^{\ell}$,
if $M \bmod p_{i}=0$ for distinct primes $p_{1}, \ldots, p_{2 \ell}$; then $M=0$.
Set $\ell=\log \left(L N k^{d}\right)=\operatorname{poly}(d, \log N)$. For primes p_{1}, \ldots, p_{ℓ}, let $\operatorname{eval}_{i}(h)=\operatorname{eval}(h) \bmod p_{i}$

$$
=\left[m_{1}(h) \bmod p_{i}, \ldots, m_{r}(h) \bmod p_{i}\right] \in \mathbb{C}^{N}
$$

$\left|\operatorname{eval}_{i}(h)\right|=\operatorname{poly}(\ell)=\operatorname{poly}(d, \log N)$.

Algebraic NOT - Integers

Goal: Check if $g(h)=0$ using a lower degree polynomial.
Chinese Remainder Theorem
For an integer $-2^{\ell} \leq M \leq 2^{\ell}$,
if $M \bmod p_{i}=0$ for distinct primes $p_{1}, \ldots, p_{2 \ell}$; then $M=0$.
Set $\ell=\log \left(L N k^{d}\right)=\operatorname{poly}(d, \log N)$. For primes p_{1}, \ldots, p_{ℓ}, let $\operatorname{eval}_{i}(h)=\operatorname{eval}(h) \bmod p_{i}$

$$
=\left[m_{1}(h) \bmod p_{i}, \ldots, m_{r}(h) \bmod p_{i}\right] \in \mathbb{C}^{N}
$$

$\left|\operatorname{eval}_{i}(h)\right|=\operatorname{poly}(\ell)=\operatorname{poly}(d, \log N)$.
For $|\operatorname{coeffs}(g)| \leq L$,
$\left|\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle\right| \leq L \cdot N \cdot \operatorname{poly}(\ell)=\operatorname{poly}(N, L, d)=B$.

Algebraic NOT - Integers

Goal: Check if $g(h)=0$ using a lower degree polynomial.
Chinese Remainder Theorem
For an integer $-2^{\ell} \leq M \leq 2^{\ell}$,
if $M \bmod p_{i}=0$ for distinct primes $p_{1}, \ldots, p_{2 \ell}$; then $M=0$.
Set $\ell=\log \left(L N k^{d}\right)=\operatorname{poly}(d, \log N)$. For primes p_{1}, \ldots, p_{ℓ}, let $\operatorname{eval}_{i}(h)=\operatorname{eval}(h) \bmod p_{i}$

$$
=\left[m_{1}(h) \bmod p_{i}, \ldots, m_{r}(h) \bmod p_{i}\right] \in \mathbb{C}^{N}
$$

$\left|\operatorname{eval}_{i}(h)\right|=\operatorname{poly}(\ell)=\operatorname{poly}(d, \log N)$.
For \mid coeffs $(g) \mid \leq L$,
$\left|\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle\right| \leq L \cdot N \cdot \operatorname{poly}(\ell)=\operatorname{poly}(N, L, d)=B$.
Note: Can "hardwire" $\operatorname{eval}_{i}(h)$ for all $i \in[\ell]$ and $h \in \mathcal{H}$.

Algebraic NOT - Integers

$$
g(h) \neq 0 \Longleftrightarrow \exists i \in[\ell] \quad \text { s.t } \quad\left(p_{i} \nmid\left\langle\operatorname{coeffs}(g), \text { eval }_{i}(h)\right\rangle\right)
$$

Algebraic NOT - Integers

$$
g(h) \neq 0 \Longleftrightarrow \exists i \in[\ell] \quad \text { s.t } \quad\left(p_{i} \nmid\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle\right)
$$

$$
g(h) \neq 0 \Longleftrightarrow \exists i \in[\ell] \quad \text { s.t } \quad \prod_{\substack{B \leq a \leq B \\ p_{i} \dagger a}}\left(\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle-a\right)=0
$$

Algebraic NOT - Integers

$$
g(h) \neq 0 \Longleftrightarrow \exists i \in[\ell] \quad \text { s.t } \quad\left(p_{i} \nmid\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle\right)
$$

$$
g(h) \neq 0 \Longleftrightarrow \exists i \in[\ell] \quad \text { s.t } \quad \prod_{\substack{-B \leq a \leq B \\ p_{i} \nmid a}}\left(\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle-a\right)=0
$$

$$
g(h) \neq 0 \Longleftrightarrow \prod_{i \in[\ell]} \prod_{\substack{B \leq \leq \leq B \\ p_{i} \nmid a}}\left(\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle-a\right)=0
$$

Algebraic NOT - Integers

For $B=\operatorname{poly}(L, N, d)=\operatorname{poly}(N)$.

Algebraic NOT - Integers

For $B=\operatorname{poly}(L, N, d)=\operatorname{poly}(N)$.
Equation for $\mathrm{VP}_{\mathbb{C}}^{\prime}$

$$
P(\operatorname{coeffs}(g)) \approx \prod_{h \in \mathcal{H}} \prod_{i \in[\ell]} \prod_{\substack{B \leq a \leq B \\ p_{i} \nmid a}}\left(\left\langle\operatorname{coeffs}(g), \operatorname{eval}_{i}(h)\right\rangle-a\right)
$$

$\operatorname{Deg}(P) \leq|\mathcal{H}| \operatorname{poly}(n) \operatorname{poly}(N) \leq \operatorname{poly}(N)$
Size $(P) \leq \operatorname{poly}(N)$.

Integers: a hard polynomial

Want: f with with small coefficients such that $\forall h \in \mathcal{H}, f(h)=0$.

Integers: a hard polynomial

Want: f with with small coefficients such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$

Integers: a hard polynomial

Want: f with with small coefficients such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$
Many more variables than constraints, so there is a non-zero solution.

Integers: a hard polynomial

Want: f with with small coefficients such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$
Many more variables than constraints, so there is a non-zero solution.

Not enough: Want a solution with small integer coordinates.

Integers: a hard polynomial

Want: f with with small coefficients such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$
Many more variables than constraints, so there is a non-zero solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

Integers: a hard polynomial

Want: f with with small coefficients such that $\forall h \in \mathcal{H}, f(h)=0$.

Linear system in the coefficients of $f: \forall h \in \mathcal{H}, f(h)=0$
Many more variables than constraints, so there is a non-zero solution.

Not enough: Want a solution with small integer coordinates.

Siegel : There exists such a solution!

This ensures non-triviality of the equations obtained earlier.

Results for VP

Theorem (Equations for $\mathrm{VP}_{\mathbb{C}}^{\prime}$)

For n, d and $N=\binom{n+d}{n}$,
There exists a nonzero $P\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$ such that for all $f \in \mathrm{VP}_{\mathbb{C}}(n, d)$ with coefficients in $\{-N, \ldots, N\}$, $P(\operatorname{coeffs}(f))=0$.
Moreover, there is a g with small coefficients such that $P(\operatorname{coeffs}(g))=0$.

Results for VNP

Theorem (Equations for $\mathrm{VNP}_{\mathbb{C}}^{\prime}$)
For n, d and $N=\binom{n+d}{n}$,
There exists a nonzero $Q\left(Z_{1}, \ldots, Z_{N}\right) \in \operatorname{VP}(N)$ such that for all $f \in \operatorname{VNP}_{\mathbb{C}}(n, d)$ with coefficients in $\{-N, \ldots, N\}$, $Q(\operatorname{coeffs}(f))=0$.
Moreover, there is a g with small coefficients such that $P(\operatorname{coeffs}(g))=0$.

To summarize

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.

To summarize

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.
- The restriction is only on the polynomials, circuits can use any constants. Well-studied natural polynomials have small coefficients.
e.g. Determinant, Permanent, ...

To summarize

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.
- The restriction is only on the polynomials, circuits can use any constants. Well-studied natural polynomials have small coefficients.
e.g. Determinant, Permanent, ...
- We can still hope to prove lower bounds for these polynomial families via constructible equations

To summarize

- Efficiently constructible equations exist for polynomials with "small" coefficients, in both VP and VNP.
- The restriction is only on the polynomials, circuits can use any constants. Well-studied natural polynomials have small coefficients.
e.g. Determinant, Permanent, ...
- We can still hope to prove lower bounds for these polynomial families via constructible equations, but cannot guarantee the largeness criterion.

Questions

- Does all of VP have efficiently constructible equations?

Questions

- Does all of VP have efficiently constructible equations?
- Unlikely that out proof technique extends.

Questions

- Does all of VP have efficiently constructible equations?
- Unlikely that out proof technique extends.
- How about Constant free versions of VP and VNP.

Questions

- Does all of VP have efficiently constructible equations?
- Unlikely that out proof technique extends.
- How about Constant free versions of VP and VNP.
- How about seemingly simpler models...formulas/constant depth circuits?

Questions

- Does all of VP have efficiently constructible equations?
- Unlikely that out proof technique extends.
- How about Constant free versions of VP and VNP.
- How about seemingly simpler models...formulas/constant depth circuits?
- Limitations on what can be proved via algebraically natural proofs ?

Thanks!

