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Depth

There is always a depth  Resolution proof (but may have size ) n 2n

n

2n

Many strong proof systems can be balanced — depth is always at most log of the size 
 Resolution (Res(k), Cutting Planes) cannot always be balanced→

Resolution proofs capture the complexity of modern algorithms for SAT 
 Size lower bounds runtime 
 Depth lower bounds parallelizability 

→
→
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There is a CNF formula  on  variables such that 


- There is a weakly exponential size -proof of 


- Any subexponential-size -proof of  must have weakly exponential 
depth

F n
P F

P F

exp(nδ)

For any Resolution, Res(k), Cutting PlanesP ∈ { }
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This Work
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Caveat:  has  many clauses — We’ll come back to this later! F nO(c)
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Lifting (Composition)

Typically 


•  is a “weak” proof system


•  is a “strong” proof system
P
Q

A lifting theorem shows that the most efficient -proof of  is to simulate the 
most efficient -proof of  (with some extra overhead to handle )

Q F ∘ g
P F g
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Our Lifting 
Does the opposite! — Lifts depth lower bounds on a strong proof system to 
(much stronger) depth lower bounds on weak proof system


•  is Resolution


•  is size-bounded Resolution
P
Q

Proof Idea:  
Find a gadget  such that 

1. The number of variables  of  will be much smaller than 

2. Any small-size Resolution proof of  will require the same depth as proving 

g
n F ∘ g N

F ∘ g F
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Our gadget will be the XOR function


 … With a twist! F(𝖷𝖮𝖱(x1), …, 𝖷𝖮𝖱(xN))

The variable sets  will no longer be disjoint!x1, …, xN

 Composing will reduce the total number of variables to → n ≪ N
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Idea: If the edges of  are sufficiently “spread out”  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G
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The Gadget 

Idea: If the edges of  are sufficiently “spread out” G

Boundary:  of  is the number of “unique neighbours” of   
 Number of variables that occur in exactly one XOR in 

δ(U) U ⊆ [N] U
→ U

x1

x2

x3

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

U

δ(U)

-(Boundary) Expander:  If every  with  has  (r, c) U ⊆ [N] |U | ≤ r |δ(U) | ≥ c |U |

z5

z2

z3

z4

z1

Let  be an  bipartite graph


 replaces  

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

 Our gadget  will be  for expanding → g 𝖷𝖮𝖱G G
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Depth Condensation Theorem: ([Razborov16] stated for tree-Res) 
Let  be an -boundary expander,  any unsatisfiable formula.  
If  is a Resolution proof of  with  then 

G (r,2) F
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Depth Condensation

Depth Condensation Theorem: ([Razborov16] stated for tree-Res) 
Let  be an -boundary expander,  any unsatisfiable formula.  
If  is a Resolution proof of  with  then 

G (r,2) F
Π F ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

 Combine this with the width-to-size lifting theorem to prove our main tradeoff! →
 We give a simple proof→

Main workhorse behind our tradeoff: 



Main Tradeoff (For Resolution)

Main Theorem: There is a CNF formula  on  variables such that 

1. There is a -proof of  of size 

2. If  is a -proof of  with  then

F n
P F nc ⋅ 2O(c)

Π P F 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω ( nc

c log n )

Let , let  be real-valued parameterε > 0 c ≥ 1
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Idea: Set . Take a formula on  variables which requires large depth but 
small size — Pebbling requires  depth but has size  proofs


 Compose with  and the depth condensation theorem to compress 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Main Tradeoff (For Resolution)

Pf: Set .  requires  depth but has size  proofsN = nc 𝖯𝖾𝖻N Ω(N/log N) N

1. There is a Resolution proof of  of size 
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Depth Condensation Theorem
Depth Condensation Theorem:  
Let  be an -boundary expander,  any unsatisfiable formula.  
If  is a Resolution proof of  with  then 

G (r,2) F
Π F ∘ XORG 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))
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Open Questions
Supercritical size/depth tradeoffs for monotone circuits? Q .

 For any , a Cutting Planes proof of  implies a monotone circuits computing an 
associated function  with the same topology [P96, HP17, FPPR17]. 

 However, the number of variables of  is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ F F
fF

→ fF F
⟹

 If no, then supercritical size/depth tradeoffs for monotone circuits follow from 
the lifting theorem of [GGKS18].
→

Does every formula  on  clauses have a Resolution proof of depth ?Q . F m O(m)


