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Introduction

Let P(x1,...,xn) € F[xq,. .., xn] be a polynomial.

An algebraic circuit is a model of computation which computes
polynomials.
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Called > ][> circuits.



Introduction

Let P(x1,...,xn) € F[xq, ..., xn] be a polynomial.

An algebraic circuit is a model of computation which computes
polynomials.

f(x1, %2, x3)

product-depth =1

Size = Number of operations. In this case 8.

A formula is a circuit with tree as the underlying DAG.



Algebraic Complexity Theory

Study of polynomials.
> P(xi,. . xn) = Y oscpn [ Lies xi- Uses O(2V) operations.
> P(x1,...sxn) = [Tigqn (1 + Xi). Uses O(N) operations.

How many operations are needed for computing a polynomial?



Algebraic Complexity Theory

Lower bounds for algebraic circuits

> Algorithm design and lower bounds are duals of each other.

> A step towards P vs. NP

» Algebraic circuits syntactic objects computing formal
polynomials.

» Algebraic circuit lower bounds formally easier than Boolean
circuit lower bounds.



Algebraic circuit lower bounds

Boolean circuit lower bounds.

Strong lower bounds for constant-depth Boolean circuits
known since the 80s.

[Ajtai 83, FSS 84, Hastad 86, Razborov 86, Smolensky 87].

Algebraic circuit lower bounds.

The best known lower bound for > [ > circuits is
Q(N3/ log? N) [KST2016].

The best known lower bound for " [T >" []circuits is Q(N??)
[GST2020].

No superpolynomial lower bounds even for product-depth 1
circuits.



Our Main Result

The first superpolynomial lower bound for constant-depth algebraic
circuits.

Let N, d, A be growing parameters with d = o(log N).
Assume F is characteristic 0.

There is an explicit polynomial Py 4(x1, ..., xy) that any

algebraic circuits of product-depth A computing it must

. exp(—O(A
have size N9 Pl )).




Explicit Polynomial Py 4

The hard polynomial is IMM,, 4.

]

Xi X X4

IMM,, 4 is defined over variable sets Xi, ..., X4, each of size n?.
Each X; thought of as an n X n matrix.

IMM,, 4 is the (1, 1)th entry of product Xy - X5 - ... - Xg.



Other Results
Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-
size circuit C computing a polynomial P(x, ..., xn) over
characteristic 0, there is a deterministic algorithm for
checking whether P = 0 that runs in subexponential
time.




Other Results
Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-
size circuit C computing a polynomial P(x, ..., xy) over
characteristic 0, there is a deterministic algorithm for
checking whether P = 0 that runs in subexponential
time.

Prior to this deterministic n(k) time algorithm known for

Z[k] [1>° circuits. [SS 2012]

Algebraic hardness vs. randomness (by [CKS 2018]) 4 our
lower bound.

[CKS 2018] builds on [KI 2004], [DSY 2009].



Other Results
Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-
size circuit C computing a polynomial P(x, ..., xy) over
characteristic 0, there is a deterministic algorithm for
checking whether P = 0 that runs in subexponential
time.

Depth Hierarchy Theorem

Depth Hierarchy

Assume fields of characteristic 0. For every constant I >
2 and growing parameter s, there is a polynomial Q  of
depth I and size s such that any depth (I — 1) circuit
computing it must have size s*().




Our Main Result

The first superpolynomial lower bound for constant-depth algebraic
circuits.

Let N, d, A be growing parameters with d = o(log N).
Assume F is characteristic 0.

There is an explicit polynomial Py 4(x1, ..., xy) that any

algebraic circuits of product-depth A computing it must

. exp(—O(A
have size N9 Pl )).




General lower bounds

Escalation

Weaker lower bounds



Restricted Classes of Polynomials

Homogeneous, multilinear and set-multilinear polynomials

» A polynomial P(xq, ..., xy) is homogeneous if every monomial
in it has the same degree.

» A polynomial is called multilinear if every monomial has at
most one occurrence of any variable.

> Let the variable set be partitioned into sets (X1, Xz, . . ., X4).

A polynomial is called set-multilinear with respect to the
partition (Xi, ..., Xy) if every monomial has exactly one
variable from each set.

IMM,, 4 is a set-multilinear polynomial with variable partition
(X1, ... Xq).



Restricted Models of Computation

Restricted classes of formulas.

> A formula is called homogeneous if every gate in the circuit
computes a homogeneous polynomial.

> A multiliear formula is defined in the same way.

> A formula is set-multilinear if every gate in the formula
computes a set-multilinear polynomial in a subset of
X1, ..o Xg



Hardness Escalation Results
Let P(x1,...,xn) be a set-multilinear polynomial of degree d.

[Raz 2009]
Formula of size s computing P

Efficient conversion

Set-multilinear formula computing P

of size poly(s) - (log 5)°(?)



Hardness Escalation Results

Let P(x1,...,xn) be a set-multilinear polynomial of degree
d = O(log N/ log log N).

[Raz 2009]
Formula of size poly(N) computing P

Efficient conversion

Set-multilinear formula computing P
of size poly(N)



Hardness Escalation Results

Let P(x1,...,xn) be a set-multilinear polynomial of degree
d = O(log N/ log log N).

[Raz 2009]
Any formula computing P needs superpolynomial size

Escalation

Set-multilinear formula computing P
needs size Nw(1)



Non-FPT Lower Bounds

Known lower bounds

Known set-multiliear formula lower bounds for constant
product-depth. [NW 95, Raz 2009, RY 2009]

Q(f(d) - poly(N))

For escalation to work, we need.

NA()

We call these non-FPT bounds.



Our Non-FPT Lower Bound

Our non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d < O(logn). For any A > 1 any set-multilinear

formula C computing IMM,, 4 of product-depth A must

. exp(—O(A
have size n® A )).




Efficient Conversion

Let P(x1,...,xy) be a set-multilinear polynomial of degree d.

General Formula
size s depth A

J Char 0

Homogeneous formula
size poly(s) - 29(4) depth 2A

J Any Char

Set-multilinear formula
size poly(s) - d(9) depth 2A



Escalation

Let P(x1,...,xn) be a set-multilinear polynomial of degree d.

General formula
needs superpolynomial size A depth

W Char 0

Homogeneous formula
needs size N“4(1) depth 2A

[ Any Char

Set-multilinear formula
needs size N“4(1) depth 2A



Our Non-FPT Lower Bounds + Escalations

Our non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d < O(logn). For any A > 1 any set-multilinear
formula C computing IMM,, 4 of product-depth A must

have size n@* "’
Let P(x1,...,xn) be a set-multilinear polynomial of degree d.
Efficient conversions Escalation
General Formula General formula
size s depth A needs superpolynomial size A depth
J Char 0 I Char 0
Homogeneous formula Homogeneous formula
size poly(s) - 2°(9) depth 2A needs size N4(1) depth 2A
J Any Char I Any Char
Set-multilinear formula Set-multilinear formula

size poly(s) - d9) depth 2A needs size Nd(1) depth 2A



Non-FPT Lower Bounds

Our non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d < O(logn). For any A > 1 any set-multilinear

formula C computing IMM,, 4 of product-depth A must

have size nd"*" %)

» At A =2, thatisfor > [[D_[]>_ set-multilinear formulas, we
get a the first tight n2(Vd) lower bound for IMM,, 4.

» For A = 1 we get a lower bound of n2Vd) for general
formulas. Tighness of [GKKS 2014] depth reduction.



Techniques



A typical lower bound proof

The lower bound proof outline.
» Come up with a measure 1 : F[xq,...,xy] = R.

» Show that u(IMM, ) is large.

» Show that u(s. m. D [[D_T1>0) is small.

We will prove that p(s. m. > [[D>_[]>]) is small.



Partial Derivative Measure
Nisan and Wigderson [NW 95]
Partition [d] into P and N.

MP multilinear monomials over (X; : i € P).
MV multilinear monomials over (Xi:ieN).

For a polynomial f, define matrix My as follows.

M ——

MP my Coeff of my - my in f

m



Partial Derivative Measure
Nisan and Wigderson [NW 95]
Partition [d] into P and NV.

MP multilinear monomials over (X; : i € P).
MV multilinear monomials over (Xi:ieN).

For a polynomial f, define matrix My as follows.

M ——

MP my Coeff of my - my in f

m

» The Partial Derivative Measure is the rank(My). Denoted rk(f).



Y T1> . set-multilinear formulas

Let (Xi,..., Xy) be a partition of variables.

s d
FO) =>_ [T 4ix)

i=1 j=1

each /; ; homogeneous linear polynomial over X;.
Foreach i € [s],j € [d], rk(¢; ;(X;)) at most 1.

For each i € [s], rk (Hj‘.i:1 E,-J(Xj)) at most 1.
By subadditivity of rank, rk(F(X)) at most s.

For P = {i|iodd} and N = {i | i even},
rk(IMM,, 4) = nX(9).

s> 2(d)



S°TT1> . I1 set-multilinear formulas

Product of Inner Products Polynomial.
Let Xj = {xj1,...,X;m} forj € [d].

d/Z m
PIP(X:,..., X4) =[] <Z Xoj_1 k- X2j,k>
k=1

J=1

PIP has product-depth 2 set-multilinear formula of size O(md).

For P ={i|iodd} and N' = {i | i even},

Mpp is a permutation matrix.

rk(PIP) = m(9),



Y°T1D> . I set-multilinear formulas

Shifted Partial Derivative Measure [Kayal 2012]

Any set-multilinear > [[ > [] formula computing IMM,, 4
must have size n2V9).

[GKKS 2014, FLMS 2014, KS 2014, KLSS 2014].

Not clear how to use it to prove lower bounds for > [[> ][>

set-multilinear formulas.



. PARTIAL ’SH"'THI‘"-
SDERIVATIVES PARTIALS

L*‘immu DERIVATIVES
¥ DIFFERENT SET SIZES




Different set sizes

Xi X, X;

X1 Xepz o Xigs

Xd

melts in each set (m'=%)elts in each set

P={1,2,....t}and N ={t+1,t+2,...,d}.
For a = 1/v/d and t chosen to ensure |MP| = |MV|



S TID . TIDC set-multilinear formulas
F
> (ILOCTI0)

~—
Fj

Focus on one term F, whichis F; < F, % ... % F.

Each Fjisa (D[] ) ) set-multilinear formula.

We show that for any term F
» Case 1 Either one of Fjs has sufficiently low rank.

» Case 2 All F;s have moderately low ranks.

Then use sub-additivity of ranks.



S TID . TIDC set-multilinear formulas
F
ILOCTI>)

~—
Fj

Case 1 There is an F; with degree > \@/2
Use the low-rankness of (> [ > ).
Case 2 All Fjs have degree < /d/2.

We get an imbalance between # rows and # columns in Mg!
(Thanks to choice of a.)



Choice of «

Simple intuition.
Suppose A= {—-1,—-1,...,—1} and
B:{(1 _%)7(1 _%)7"'7(1_%)}'

Let S C AU Bsuch that |S| < p/2.

For any such S, the summation of its elements never be 0.

As the fractional part will not cancel for small |S].

This results in an imbalance, which helps in rank upper bounds.



Choice of a for A =2

Choice of a for A = 2.

Crucial when in Case 2.
F:F1><F2x...xF,<
Degree of each F; is at most v/d/2.

Say Mg, has m" rows and m(1=2)¢ columns.
Here, r and c are integers and r + ¢ < \/3/2
Sr=((1—=a) )] =Q(a-c)aslongas o = 1/V/d.

That is, Mg, is not a square matrix.



Choice of « for higher depths

Choice of « for higher A.
We choose @ = 1/4/2 in this case.
This is motivated by Diophantine Approximations.

A similar case analysis as in the A = 2 works out.
d—Vd—d"/*. ..

Can handle depths up to o(log log d).



Open Questions

Can the lower bound be improved? What about n2d/%)7

Can we improve the escalation? For example, can we remove
the Char 0 restriction?

The lower bound neatly gave an efficient PIT. Can we get
anything for reconstruction?

Can we get algebraic proof system lower bounds?

Can combining known measures give better lower bounds?



Thank You!



