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Introduction
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial.

An algebraic circuit is a model of computation which computes
polynomials.

depth = 3

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Called
∑∏∑

circuits.



Introduction
Let P(x1, . . . , xN) ∈ F[x1, . . . , xN ] be a polynomial.

An algebraic circuit is a model of computation which computes
polynomials.

product-depth = 1

x1 x2 x3

+ + + +

× × ×

+

f (x1, x2, x3)

Size = Number of operations. In this case 8.

A formula is a circuit with tree as the underlying DAG.



Algebraic Complexity Theory

Study of polynomials.

I P(x1, . . . , xN) =
∑

S⊆[N]

∏
i∈S xi . Uses O(2N) operations.

I P(x1, . . . , xN) =
∏

i∈[N](1 + xi). Uses O(N) operations.

How many operations are needed for computing a polynomial?



Algebraic Complexity Theory

Lower bounds for algebraic circuits

I Algorithm design and lower bounds are duals of each other.

I A step towards P vs. NP

I Algebraic circuits syntactic objects computing formal
polynomials.

I Algebraic circuit lower bounds formally easier than Boolean
circuit lower bounds.



Algebraic circuit lower bounds
Boolean circuit lower bounds.

Strong lower bounds for constant-depth Boolean circuits
known since the 80s.

[Ajtai 83, FSS 84, Håstad 86, Razborov 86, Smolensky 87].

Algebraic circuit lower bounds.

The best known lower bound for
∑∏∑

circuits is
Ω(N3/ log2 N) [KST2016].

The best known lower bound for
∑∏∑∏

circuits is Ω(N2.5)
[GST2020].

No superpolynomial lower bounds even for product-depth 1
circuits.



Our Main Result

The first superpolynomial lower bound for constant-depth algebraic
circuits.

Main Theorem

Let N , d,∆ be growing parameters with d = o(logN).
Assume F is characteristic 0.

There is an explicit polynomial PN,d(x1, . . . , xN) that any
algebraic circuits of product-depth ∆ computing it must
have size Ndexp(−O(∆))

.



Explicit Polynomial PN ,d

The hard polynomial is IMMn,d .


A
 =


 ×


 × . . . ×




A X1 X2 Xd

IMMn,d is defined over variable sets X1, . . . ,Xd , each of size n2.

Each Xi thought of as an n× n matrix.

IMMn,d is the (1, 1)th entry of product X1 · X2 · . . . · Xd .



Other Results
Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-
size circuit C computing a polynomial P(x1, . . . , xN) over
characteristic 0, there is a deterministic algorithm for
checking whether P ≡ 0 that runs in subexponential
time.



Other Results
Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-
size circuit C computing a polynomial P(x1, . . . , xN) over
characteristic 0, there is a deterministic algorithm for
checking whether P ≡ 0 that runs in subexponential
time.

Prior to this deterministic nO(k) time algorithm known for∑[k]∏∑ circuits. [SS 2012]

Algebraic hardness vs. randomness (by [CKS 2018]) + our
lower bound.

[CKS 2018] builds on [KI 2004], [DSY 2009].



Other Results
Polynomial Identity Testing

Subexponential time PIT

Given black-box access to a constant-depth poly(N)-
size circuit C computing a polynomial P(x1, . . . , xN) over
characteristic 0, there is a deterministic algorithm for
checking whether P ≡ 0 that runs in subexponential
time.

Depth Hierarchy Theorem

Depth Hierarchy

Assume fields of characteristic 0. For every constant Γ ≥
2 and growing parameter s , there is a polynomial Q Γ of
depth Γ and size s such that any depth (Γ − 1) circuit
computing it must have size sω(1).



Our Main Result

The first superpolynomial lower bound for constant-depth algebraic
circuits.

Main Theorem

Let N , d,∆ be growing parameters with d = o(logN).
Assume F is characteristic 0.

There is an explicit polynomial PN,d(x1, . . . , xN) that any
algebraic circuits of product-depth ∆ computing it must
have size Ndexp(−O(∆))

.



Weaker lower bounds

General lower bounds

Escalation



Restricted Classes of Polynomials

Homogeneous, multilinear and set-multilinear polynomials
I A polynomial P(x1, . . . , xN) is homogeneous if every monomial

in it has the same degree.

I A polynomial is called multilinear if every monomial has at
most one occurrence of any variable.

I Let the variable set be partitioned into sets (X1,X2, . . . ,Xd).

A polynomial is called set-multilinear with respect to the
partition (X1, . . . ,Xd) if every monomial has exactly one
variable from each set.

IMMn,d is a set-multilinear polynomial with variable partition
(X1, . . . ,Xd).



Restricted Models of Computation

Restricted classes of formulas.
I A formula is called homogeneous if every gate in the circuit

computes a homogeneous polynomial.

I A multiliear formula is defined in the same way.

I A formula is set-multilinear if every gate in the formula
computes a set-multilinear polynomial in a subset of
X1, . . . ,Xd .



Hardness Escalation Results
Let P(x1, . . . , xN) be a set-multilinear polynomial of degree d .

[Raz 2009]

Set-multilinear formula computing P
of size poly(s) · (log s)O(d)

Formula of size s computing P

E�icient conversion



Hardness Escalation Results
Let P(x1, . . . , xN) be a set-multilinear polynomial of degree
d = O(logN/ log logN).

[Raz 2009]

Set-multilinear formula computing P
of size poly(N)

Formula of size poly(N) computing P

E�icient conversion



Hardness Escalation Results
Let P(x1, . . . , xN) be a set-multilinear polynomial of degree
d = O(logN/ log logN).

[Raz 2009]

Set-multilinear formula computing P
needs size Nωd(1)

Any formula computing P needs superpolynomial size

Escalation



Non-FPT Lower Bounds

Known lower bounds

Known set-multiliear formula lower bounds for constant
product-depth. [NW 95, Raz 2009, RY 2009]

Ω(f (d) · poly(N))

For escalation to work, we need.

NΩ(f (d))

We call these non-FPT bounds.



Our Non-FPT Lower Bound

Our non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d ≤ O(log n). For any ∆ ≥ 1 any set-multilinear
formula C computing IMMn,d of product-depth ∆ must
have size nd

exp(−O(∆))
.



E�icient Conversion

Let P(x1, . . . , xN) be a set-multilinear polynomial of degree d .

Homogeneous formula
size poly(s) · 2O(d) depth 2∆

General Formula
size s depth ∆

Char 0

Any Char

Set-multilinear formula
size poly(s) · dO(d) depth 2∆



Escalation

Let P(x1, . . . , xN) be a set-multilinear polynomial of degree d .

Set-multilinear formula
needs size Nωd(1) depth 2∆

Homogeneous formula
needs size Nωd(1) depth 2∆

Any Char

General formula
needs superpolynomial size ∆ depth

Char 0



Our Non-FPT Lower Bounds + Escalations
Our non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d ≤ O(log n). For any ∆ ≥ 1 any set-multilinear
formula C computing IMMn,d of product-depth ∆ must
have size nd

exp(−O(∆))
.

Let P(x1, . . . , xN) be a set-multilinear polynomial of degree d .

E�icient conversions

Set-multilinear formula
size poly(s) · dO(d) depth 2∆

Homogeneous formula
size poly(s) · 2O(d) depth 2∆

General Formula
size s depth ∆

Any Char

Char 0

Escalation

Set-multilinear formula
needs size Nωd(1) depth 2∆

Homogeneous formula
needs size Nωd(1) depth 2∆

General formula
needs superpolynomial size ∆ depth

Any Char

Char 0



Non-FPT Lower Bounds

Our non-FPT lower bound for set-multilinear formulas.

Set-multilinear formula lower bound

Let d ≤ O(log n). For any ∆ ≥ 1 any set-multilinear
formula C computing IMMn,d of product-depth ∆ must
have size nd

exp(−O(∆))
.

I At ∆ = 2, that is for
∑∏∑∏∑

set-multilinear formulas, we
get a the first tight nΩ(

√
d) lower bound for IMMn,d .

I For ∆ = 1 we get a lower bound of nΩ(
√
d) for general

formulas. Tighness of [GKKS 2014] depth reduction.



Techniques



A typical lower bound proof

The lower bound proof outline.

I Come up with a measure µ : F[x1, . . . , xN ]→ R.

I Show that µ(IMMn,d) is large.

I Show that µ(s. m.
∑∏∑∏∑

) is small.

We will prove that µ(s. m.
∑∏∑∏∑

) is small.



Partial Derivative Measure
Nisan and Wigderson [NW 95]

Partition [d] into P and N .

MP multilinear monomials over (Xi : i ∈ P).
MN multilinear monomials over (Xi : i ∈ N ).

For a polynomial f , define matrix Mf as follows.

a





MP
MN

m1

m2 Coe� of m1 ·m2 in f



Partial Derivative Measure
Nisan and Wigderson [NW 95]

Partition [d] into P and N .

MP multilinear monomials over (Xi : i ∈ P).
MN multilinear monomials over (Xi : i ∈ N ).

For a polynomial f , define matrix Mf as follows.

a





MP
MN

m1

m2 Coe� of m1 ·m2 in f

I The Partial Derivative Measure is the rank(Mf ). Denoted rk(f ).



∑∏∑
set-multilinear formulas

Let (X1, . . . ,Xd) be a partition of variables.

F (X) =
s∑

i=1

d∏
j=1

`i,j(Xj)

each `i,j homogeneous linear polynomial over Xj .

For each i ∈ [s], j ∈ [d], rk(`i,j(Xj)) at most 1.

For each i ∈ [s], rk
(∏d

j=1 `i,j(Xj)
)

at most 1.

By subadditivity of rank, rk(F (X)) at most s.

For P = {i | i odd} and N = {i | i even},
rk(IMMn,d) = nΩ(d).

s ≥ nΩ(d)



∑∏∑∏
set-multilinear formulas

Product of Inner Products Polynomial.

Let Xj = {xj,1, . . . , xj,m} for j ∈ [d].

PIP(X1, . . . ,Xd) =

d/2∏
j=1

(
m∑

k=1

x2j−1,k · x2j,k

)

PIP has product-depth 2 set-multilinear formula of size O(md).

For P = {i | i odd} and N = {i | i even},
MPIP is a permutation matrix.

rk(PIP) = mΩ(d).



∑∏∑∏
set-multilinear formulas

Shi�ed Partial Derivative Measure [Kayal 2012]

Any set-multilinear
∑∏∑∏

formula computing IMMn,d

must have size nΩ(
√
d).

[GKKS 2014, FLMS 2014, KS 2014, KLSS 2014].

Not clear how to use it to prove lower bounds for
∑∏∑∏∑

set-multilinear formulas.





Di�erent set sizes

X1 X2

. . .

Xt
Xt+1 Xt+2 Xt+3

. . .

Xd

m elts in each set (m1−α)elts in each set

P = {1, 2, . . . , t} and N = {t + 1, t + 2, . . . , d}.
For α = 1/

√
d and t chosen to ensure |MP | = |MN |



∑∏∑∏∑
set-multilinear formulas

∑ ∏
j (
∑∏∑

)

Fj

F

Focus on one term F , which is F1 × F2 × . . .× Fk .

Each Fj is a (
∑∏∑

) set-multilinear formula.

We show that for any term F
I Case 1 Either one of Fjs has su�iciently low rank.

I Case 2 All Fjs have moderately low ranks.

Then use sub-additivity of ranks.



∑∏∑∏∑
set-multilinear formulas

∏
j (
∑∏∑

)

Fj

F

Case 1 There is an Fj with degree ≥
√
d/2.

Use the low-rankness of (
∑∏∑

).

Case 2 All Fjs have degree <
√
d/2.

We get an imbalance between # rows and # columns in MFj !
(Thanks to choice of α.)



Choice of α

Simple intuition.

Suppose A = {−1,−1, . . . ,−1} and
B = {(1− 1

p), (1− 1
p), . . . , (1− 1

p)}.
Let S ⊂ A ∪ B such that |S| < p/2.

For any such S, the summation of its elements never be 0.

As the fractional part will not cancel for small |S|.

This results in an imbalance, which helps in rank upper bounds.



Choice of α for ∆ = 2

Choice of α for ∆ = 2.

Crucial when in Case 2.
F = F1 × F2 × . . .× Fk
Degree of each Fj is at most

√
d/2.

Say MFj has mr rows and m(1−α)·c columns.

Here, r and c are integers and r + c <
√
d/2.

∴ |r − ((1− α) · c)| = Ω(α · c) as long as α = 1/
√
d .

That is, MFj is not a square matrix.



Choice of α for higher depths

Choice of α for higher ∆.

We choose α = 1/
√

2 in this case.

This is motivated by Diophantine Approximations.

A similar case analysis as in the ∆ = 2 works out.
d −→

√
d −→ d1/4 . . ..

Can handle depths up to o(log log d).



Open �estions

Can the lower bound be improved? What about nΩ(d1/∆)?

Can we improve the escalation? For example, can we remove
the Char 0 restriction?

The lower bound neatly gave an e�icient PIT. Can we get
anything for reconstruction?

Can we get algebraic proof system lower bounds?

Can combining known measures give be�er lower bounds?



Thank You!


