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U P versus NP. Proving P # NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

O Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

U In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

> [t is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P # NP, namely VP # VNP.

> [t defines Border Complexity, which was independently defined by
Biirgisser (2001). We will consider ‘algebraic’ notion of border complexity.

> [t proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

a [P ! NP, Aronson 2011] calls GCT “The String Theory of Computer Science”.
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Computationally ‘easy’ polynomials

VP = ‘“easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (f,(X1, . ..,Xn))n>1
such that size(f,), deg(f,) are both bounded by n® for some constant c.
Examples:
> fy = Xq-e-Xp
> f, = xf+...+x,,.

> fp = l_[x/- = ﬁ(1+x,-).
i=1

scin]jes
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Q Let Xp = [xj,j]1<ij<p be an X nmatrix of distinct variables x; ;. Let

Spi={n| m:{1,...,n} — {1,...,n} such that  is bijective }. Define
n
fnp = det(Xp) = Z sgn(rm) l_lx,-’,r(,-) .
nES, i=1

Q det is universal, i.e. any polynomial f(x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree < 1.

O The minimum dimension of the matrix to compute f, is called the
determinantal complexity dc(f).

Q E.g. dc(xq ---xp) = n, since

Xq 0 0

0 X2 ... 0
Xq -+ Xp =det
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Another ‘easy’ class VBP

U VBP: The class VBP is defined as the set of all sequences of polynomials (f,),
with polynomially bounded dc(fy).

U VBP C VP. Itis open whether VBP z VP.
O Often we will say f has a small ABP. This just means dc(f) is small.

U Connections: Linear algebra, Volume, counting planar matchings.
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‘Hard’ polynomials?

O Are there hard polynomial families (f,), such that it cannot be computed by an
n®-size circuit, for every constant ¢? i.e. size(fp) = nw()q

Q A random polynomial with 0-1 coefficient is hard [Hrubes-Yehudayoff ToC 11].
Challenge: Find an explicit one!

O Candidate hard polynomial:

n

perm(X,) = Z rlx,-’,r(,-).

eSSy, i=1
QO perm is universal, i.e. any polynomial f(x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree < 1.

U The minimum dimension of the matrix to compute f, is called the permanental
complexity pc(f).
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Valiant’s Conjecture

VNP = “hard to compute?”’

The class VNP is defined as the set of all sequences of polynomials
(fa(X1, - - -, Xn))n>1 such that pc(f,)is bounded by n® for some constant c.

O Connections: Enumeration, counting matchings, Bosons etc.
0 VBP C VP C VNP.

Valiant’s Conjecture

VBP # VNP & VP # VNP. Equivalently, dc(perm,,) and size(perm,,) are both ne(.
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Connections to Boolean circuit complexity

O Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Biirgisser 1998]:

> P/poly £ NP/poly = VBP # VNP and VP # VNP (over finite fields).

> Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.
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Summary

Q A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the
first superpolynomial lower bound for general constant-depth algebraic circuits!

O Can there be ‘algebraic natural proofs’ to prove VP # VNP? Some
answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020,

Kumar-Ramya-Saptharishi-Tengse 2020].
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O Can ‘approximations’ also help in algebraic computational models?
Q An important measure is Waring rank, denoted WR(+).

Waring Rank

The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms £, i.e. h = 3, fl.d.

Q Recall: h=3g, o, @e,.... e,,X161 - -x,?”, is called homogeneous degree d
polynomial if 3’ e; = d, for every tupple (eq, ..., ep) such that ae, .. e, # 0.

O Recall: A linear form ¢ is of the form aixy +. .. + anxp.

O For any homogeneous polynomial h, WR(h) is finite.

0 WR(h) <risdenotedash e Sl A (homogeneous depth-3 diagonal circuits).
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U 0 o U

Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) =1.

Let h(x,y) = ax? + bxy + cy?.
X1 ={h|WR(h) =1} = {(a,b,c) | b? — 4ac = 0}.
It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1,0) ¢ Xj.

Such f = b? — 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

Xy is a closed set. If there are three sequences (ap, bp, Cp) such that
an — a,bp, — b,cp — ¢, i.e. limits exist, such that (an, bp, cy) € Xj, then
(a,b,c) € Xq.
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Approximation helps

QO Example: WR(x%y) < 3, because

2

1 3 1 3 1 3
= — . + — — o — — — o .
Xy = ¢ (x+y) 5 (x-y) =Y

Q Prove: WR(x2y) = 3.
Q Lethe := 5= ((x +ey)d —x3)
0
=x%y +exy? + %Zya = x2y =i h (coefficient-wise).

Q Note: WR(h¢) < 2, for any fixed non-zero €. But WR(h) = 3!

WR(h) < 4 (WR(h) <3 @WR(h) < 2
2

X"y
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Border Waring rank

O The subtlety: If a continuous function (separating polynomial) f vanishes on
all h with WR(h) < 2, then f should also vanishes on x°y.

Q To prove WR(x%y) > 2, we need to find a discontinuous function f which
vanishes on WR(h) < 2 but does not vanish on x2y.

Border Waring rank

The border Waring rank m(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank < n.

0 WR(x%y) = 2 but WR(x2y) = 3.
Q The subtlety is gone: X, := {h | WR(h) < n}, is now a closed set.

Q On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ¢ Xp, i.e. find a continuous function f that vanishes on X, but not on p.
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Border complexity

O Replace Waring rank by any sensible measure I". It can be size, dc, pc and so on.

Q For any I', we can define the border complexity measure T" via:
T'(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials he (x) with I'(he) < n. In other words,

lim he = h (coefficient-wise) .
e—0

U Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
w [Bini 1980, Coppersmith-Winograd 1990].
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Approximative circuits

O Coeflicients in the earlier definition can be arbitrary depending on the parameter
€. Can it be ‘nicer’?

Q Yes! Via ‘approximative circuits’.
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F(e) = {23 | p.q € Fle],q(e) # 0}
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Algebraic approximation

O Suppose, we assume the following:

> g(x,€) € F[xq,...,xn, €], i.e. it is a polynomial of the form

M
g(x.€) = > ikt xn) - €,
i=0

> (Can we say anything about the complexity of gg?
U Obvious attempt:

> Since, g(x,0) = gg, why not just set € = 0?! Setting € = 0 may not be
‘legal’ as it could be using 1/e€ in the wire. Though it is well-defined!

U Summary: g is really something non-trivial and being ‘approximated’ by the
circuit since lim¢_,0 g(x, €) = go.
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Algebraic Approximation [Biirgisser 2004]

A polynomial h(x) € F[x] approximative complexity s, if there is a

g(x, €) € F(e)[x], of size s, over F(¢), and a polynomial S(x, €) € F[€][x] such that
g(x,€) = h(x) + € - S(x, €). In other words, lim¢_,09 = h.

Q size(h) < size(h).

Q If g has circuit of size s over F(€), then one can assume that the highest degree

of € in g can be exponentially large 2s? [Biirgisser 2004, 2020].
Q Let us assume that g(x, €) = Z?ﬁo gi€', where M = 25° . Note: do = h.
> Pick M + 1 many distinct values from F randomly and interpolate;
> size(h) < exp(size(h)).

Q size(h) < size(h) < exp(size(h))



De-bordering

U De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
“nice’ class D such that C € D?



De-bordering

U De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
“nice’ class D such that C € D?

Q Take C € {VBP,VP,Z A X, VNP, --- }.



De-bordering

U De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
“nice’ class D such that C € D?

Q Take C € {VBP,VP,Z A X, VNP, --- }.

O Major open questions from [Mulmuley Sohoni 2001] and [Biirgisser 2001]:

20



De-bordering

U De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
“nice’ class D such that C € D?

Q Take C € {VBP,VP,Z A X, VNP, --- }.

O Major open questions from [Mulmuley Sohoni 2001] and [Biirgisser 2001]:

VBP < VBP, VP = VP, VNP = VNP.

20
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Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]
VNP ¢ VBP & VNP ¢ VP. Equivalently, dc(perm,,) and size(perm,,) are both n®(1).

U Both det and perm have ‘nice’ symmetries.

O Symmetry-characterization avoids the Razborov—Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!
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De-bordering results and their importance

O A few known de-bordering results:

> VBPnon-com = VBPnon-com. in the noncommutative world [Nisan 1991].
> Y AZ C VBP [Forbes 2016, Blaser-Dorfler-Ikenmeyer 2021].

> 310 = 20817 and 191 S = 1195,
O Upper bounds and lower bounds are dual to each other.

U Further potential applications in identity testing and understanding its
‘robustness’.

22
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Depth-3 circuits

O Depth-3 circuits with top fan-in k, are denoted as >l s. Thus, the size is
trivially bounded by O(knd).

QO They compute polynomials of the form Z;‘ﬂ [—[/q:1 tjj, where {j; are linear
polynomials (i.e. ag + a1xq + ... + anxp, for a; € F).

O How powerful are Al circuits? Are they universal?

Q No. E.g. the Inner Product polynomial (X, y) = X1y1 +. ..+ Xk+1Yk+1 cannot be
written as a TIKIT1191s, circuit, regardless of the product fan-in d'!
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Power of border depth-3 circuits

Q What about ZIKITII9TE circuits?
Q Recall: h € ZIKITIIAI T of size s if there exists a polynomial g such that
g(x,€) = h(x) +e€-S(x,e) ,

where g can be computed by a sy circuit, over F(e), of size s.
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Power of border depth-3 circuits

0 What about ZIKITTA]S circuits?
Q Recall: h e slkinldly of size s if there exists a polynomial g such that
g(x,€) =h(x)+e-S(x,¢),
where g can be computed by a sy circuit, over F(e), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P € X[21T1[P]%,
where D := exp(n, d).
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De-bordering 2T circuits

Q If his approximated by a s[RIy circuit with d = poly(n), what’s the exact
complexity of h?
> s it even explicit? If yes, Z[21TI[9]E c VNP?

Theorem 1 (Border of polynomial-sized depth-3 top-fanin-2 circuits are ’easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

>[2111ld1y ¢ VBP, for d = poly(n). In particular, any polynomial in the border of
top-fanin-2 size-s depth-3 circuits, can also be exactly computed by a linear
projection of a poly(s) x poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Why k = 2 is hard to analyze?

O Non-trivial cancellations for k = 2 make things harder.

3 3

Q Eg, Ty =€ 3(1+ex1+€2X0+€3x3+...), To i= € 3(1+€x1 +€2Xo+€3X4+. . ).
g, Ty 1 2 3 2 1

Note, lime_9 (T4 = To) = (X3 — Xx4).
O Note x2 = (x — M2 . a)(x + eM/2 . 2) mod €M, forany a € F.
U Moreover,
lim lM . (x2 —- (x—€eM?.a)(x+eM/? »a)) = a°.

e—0 €

Q Infinitely many factorizations may give infinitely many limits.
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O Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.
Q Apply a map @, defined by @ : x; — z - x; + @;, where a; € F are random.
> The variable z is the “degree counter”,
> q; to make sure: If € | T;, then ®(£)|,—0 = {(aq,...,an) € F(e)\{0}.

O It suffices to show that ®(f) has small ABP.
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Proof sketch for k = 2

Q Ty +To=f(x)+e-S(x,e), where T; € [IZ € F(e)[x]. Assume deg(f) =d.
O Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.
Q Apply a map @, defined by @ : x; — z - x; + @;, where a; € F are random.
> The variable z is the “degree counter”,
> q; to make sure: If € | Tj, then ®(€)|,—9 = €(ay,...,an) € F(e)\{0}.
O It suffices to show that ®(f) has small ABP.

O We devise a technique called DiDIL - Divide, Derive, Interpolate with Limit.
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Q vale (+) denotes the highest power of € dividing it.
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k = 2 proof continued: Divide and Derive

Q Let ®(T;) =: €% - T, for i € [2], where a; = val¢ (®(T7)).
Q vale (+) denotes the highest power of € dividing it.

U Divide and Derive:

f+e-S= Ti+To
= O(f)+e-D(S)= O(Ty) +D(To)
= O(f)/To + €-O(S)/Ta= €2 + O(Ty)/T»

— 3 (@(0/Tz) + €0z (@(8)/T2) = 0 (@(T0)/Ta) = g1 (1)

Q limeggy = 1/t - 8, (D(f)), where to == lim¢_q To.
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O First target: compute lim¢_,0 g1 = 1/ta - 92 (D(f)).
Q Logarithmic derivative: dlog,(h) := d,(h)/h.
U dlog linearizes product: dlog(hyhs) = dlog(hy) + dlog(hs). Note:

8z (©(T1)/T2) = (T1)/T5 - dlog (@(T1)/To)
= (TMIZ/T1Y) - dlog (TIZ/TIX)
= /I - (iZdIog(Z)).
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k = 2 proof continued

Q First target: compute lim¢_,091 = 1/t - 92(P(f)).

Q Logarithmic derivative: dlog,(h) := d,(h)/h.

U dlog linearizes product: dlog(hyhs) = dlog(hy) + dlog(hs). Note:
0; (@(T1)/T2) = @(T1)/T5 - dlog (@(T1)/T)

(TIZ/TIE) - dlog (TIZ/TIX)

/15 - (i D dIog(Z)) :

U Here X means just a linear polynomial £.
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Q Recap: 1/tp - 3:(D(F)) = limeogs = limeo (IIE/IE) - (+ 3 dlog(%)).

0 deg(f) =d = deg,(®(f)) =d = deg,(d-(D(f))) =d — 1.
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k = 2 proof continued: Quick recap

Q Recap: 1/tp - 3:(D(F)) = limeogs = limeo (IIE/IE) - (+ 3 dlog(%)).
0 deg(f) =d = deg,(®(f)) =d = deg,(d-(D(f))) =d — 1.

O Suffices to compute lim¢ 9 g1 mod Z9.
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U What is dlog(¢) for a linear polynomial { = A —z - B?

B
“A(1-z-BJA)

d-1 i
B Z(Z-B)l d
= ——. ——] mod Z
A = A
€ ZAX.

dlog(A - zB) =
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k = 2 proof: dlog strikes!

U What is dlog(¢) for a linear polynomial { = A —z - B?

B
“A(1-z-BJA)

d-1 i
B Z(Z-B)l d
= ——. ——] mod Z
A = A
€ ZAX.

dlog(A - zB) =

Thus,

. d : ) d
EI|L>no gy mod z EIILT;]O /1= (Z dIog(Z)) mod Z

|im0 (MZ/O2) - (EAX) mod 29
(i

(MZ/I2) - (EAZ) mod 29 .

m
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Finishing the proof

Q C-D cC-D. Therefore,

IZ/IE) - (EA%) ¢ (ME/OZ)-TAS
(ABP/ABP) - ABP
ABP/ABP .

N

Q Eliminate division to get: lim¢c_g gy mod z¢ = ABP/ABP mod z? = ABP.
Q Thus, 1/f2 . 6Z(<I>(f)) = |im6_>0 g1 = ABP.

Q Thus, ®(f)/t, = ABP => ®(f) = ABP => f = ABP.
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Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If P(x) is a nonzero polynomial of degree d, and S C F of size at least d + 1, then
P(a) # 0 for some a € S".

O This above lemma puts PIT € RP.
U Can we derandomize blackbox-PIT? Some special cases are derandomized.

Q Derandomizing PIT, for restricted cases, has many algorithmic applications:
> Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’ 19]
> Primality Testing [Agrawal-Kayal-Saxena’04].
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Border hitting set
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0 n9k) _time hitting set is known for ZKITIS [Saxena-Seshadri 2012].
Unfortunately, it does not work for ZIKITTE.

O General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (s©(1°819€9)) hitting set for size-s

S IKIIIY circuits, for any constant k.
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Q [Dutta-Dwivedi-Saxena 202 1] showed a quasipolynomial-time hitting set for
KIS circuits. Can we improve it to polynomial?

O Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to very restricted depth-4 and depth-5 circuits.

Thank you & stay safe!
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