Demystifying the border of depth-3 algebraic circuits

Accepted to the 62nd IEEE Symposium on Foundations of Computer Science (FOCS 2021). Join work with Prateek Dwivedi (IIT Kanpur) & Nitin Saxena (IIT Kanpur).

> Pranjal Dutta Google Ph.D. Fellow, CMI & Visiting Research Scholar, IIT Kanpur

> > 11th November, 2021 Oxford-Warwick Complexity Seminar

- 1. Algebraic Complexity Theory
- 2. Border Complexity and GCT
- 3. Border depth-3 circuits
- 4. Derandomizing border depth-3 circuits
- 5. Conclusion

Algebraic Complexity Theory

□ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001).

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
 - It proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
 - It proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].
- \square [P $\stackrel{?}{=}$ NP, Aronson 2011] calls GCT "The String Theory of Computer Science".

Size of the circuit = number of nodes + edges

size(*f*) = min size of the circuit computing *f*

Computationally 'easy' polynomials

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1, ..., x_n))_{n \ge 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1, ..., x_n))_{n \ge 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant *c*.

$$\succ$$
 $f_n := x_1 \cdots x_n$.

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1, ..., x_n))_{n \ge 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant *c*.

$$f_n := x_1 \cdots x_n.$$

$$f_n := x_1^n + \ldots + x_n^n.$$

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1, ..., x_n))_{n \ge 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant *c*.

$$f_n := x_1 \cdots x_n.$$

$$f_n := x_1^n + \ldots + x_n^n.$$

$$f_n := \sum_{S \subseteq [n]} \prod_{j \in S} x_j$$

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1, ..., x_n))_{n \ge 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

>
$$f_n := x_1 \cdots x_n$$
.
> $f_n := x_1^n + \dots + x_n^n$.
> $f_n := \sum_{S \subseteq [n]} \prod_{j \in S} x_j = \prod_{i=1}^n (1 + x_i)$.

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).
- \Box E.g. dc($x_1 \cdots x_n$) = n, since

$$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}.$$

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .

□ VBP ⊆ VP. It is open whether VBP $\stackrel{?}{=}$ VP.

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .

□ VBP ⊆ VP. It is open whether VBP $\stackrel{?}{=}$ VP.

 \Box Often we will say *f* has a small ABP. This just means dc(f) is small.

- □ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .
- □ VBP ⊆ VP. It is open whether VBP $\stackrel{?}{=}$ VP.
- \Box Often we will say *f* has a small ABP. This just means dc(f) is small.
- □ Connections: Linear algebra, Volume, counting planar matchings.

□ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?

'Hard' polynomials?

□ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. size $(f_n) = n^{\omega(1)}$?

A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11].

'Hard' polynomials?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!

'Hard' polynomials?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$
'Hard' polynomials?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

□ perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .

'Hard' polynomials?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the **permanental** complexity pc(*f*).

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

□ Connections: Enumeration, counting matchings, Bosons etc.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

□ Connections: Enumeration, counting matchings, Bosons etc.

 $\Box \ \mathsf{VBP} \subseteq \mathsf{VP} \subseteq \mathsf{VNP}.$

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

□ Connections: Enumeration, counting matchings, Bosons etc.

 $\Box \ \mathsf{VBP} \subseteq \mathsf{VP} \subseteq \mathsf{VNP}.$

```
Valiant's Conjecture [Valiant 1979]
```

VBP \neq VNP & VP \neq VNP. Equivalently, dc(perm_n) and size(perm_n) are both $n^{\omega(1)}$.

Connections to Boolean circuit complexity

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).
 - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well.

Summary

□ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the *first super*polynomial lower bound for general **constant-depth** algebraic circuits!

□ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the *first super*polynomial lower bound for general **constant-depth** algebraic circuits!

□ Can there be 'algebraic natural proofs' to prove VP ≠ VNP? Some answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020, Kumar-Ramya-Saptharishi-Tengse 2020]. **Border Complexity and GCT**

□ Can 'approximations' also help in algebraic computational models?

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

The smallest *r* such that a *homogeneous* degree *d* polynomial *h* can be written as a sum of *d*-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

□ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.
- \Box Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$.

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.
- □ Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$.
- \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.
- \Box Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$.
- \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.
- □ WR(*h*) ≤ *r* is denoted as $h \in \Sigma^{[r]} \land \Sigma$ (homogeneous *depth-3 diagonal* circuits).

□ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\Box X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\Box X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\square X_1 = \{h \mid \mathsf{WR}(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.
- □ Such $f = b^2 4ac$ is sometimes called a 'polynomial obstruction' or a 'separating polynomial'.

- □ Let us try to *characterize* the bivariate degree 2 polynomials h(x, y) such that WR(h) = 1.
- $\Box \text{ Let } h(x, y) = ax^2 + bxy + cy^2.$
- $\square X_1 = \{h \mid WR(h) = 1\} = \{(a, b, c) \mid b^2 4ac = 0\}.$
- □ It helps to **prove** lower bound. For e.g. WR(xy) > 1 because $(0, 1, 0) \notin X_1$.
- □ Such $f = b^2 4ac$ is sometimes called a 'polynomial obstruction' or a 'separating polynomial'.
- □ X_1 is a *closed* set. If there are three sequences (a_n, b_n, c_n) such that $a_n \rightarrow a, b_n \rightarrow b, c_n \rightarrow c$, i.e. limits exist, such that $(a_n, b_n, c_n) \in X_1$, then $(a, b, c) \in X_1$.

□ Example: $WR(x^2y) \le 3$, because

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 $\square Prove: WR(x^2y) = 3.$

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

D Prove: $WR(x^2y) = 3$.

 $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 $\square Prove: WR(x^2y) = 3.$

$$\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$$
$$= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \xrightarrow{\epsilon \to 0} x^2 y =: h \text{ (coefficient-wise).}$$

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 $\square Prove: WR(x^2y) = 3.$

$$\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$$
$$= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \xrightarrow{\epsilon \to 0} x^2 y =: h \text{ (coefficient-wise)}.$$

□ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!
Approximation helps

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 Prove: WR(x²y) = 3.
Let h_ε := ¹/_{3ε} ((x + εy)³ - x³) = x²y + εxy² + ^{ε²}/₃y³ ^{ε→0}→ x²y =: h (coefficient-wise).

□ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!

□ The subtlety: If a **continuous** function (**separating polynomial**) *f* vanishes on all *h* with $WR(h) \le 2$, then *f* should also vanishes on x^2y .

- □ The subtlety: If a **continuous** function (**separating polynomial**) *f* vanishes on all *h* with $WR(h) \le 2$, then *f* should also vanishes on x^2y .
- □ To prove $WR(x^2y) > 2$, we need to find a **discontinuous** function *f* which vanishes on $WR(h) \le 2$ but *does not* vanish on x^2y .

- □ The subtlety: If a **continuous** function (**separating polynomial**) *f* vanishes on all *h* with $WR(h) \le 2$, then *f* should also vanishes on x^2y .
- □ To prove $WR(x^2y) > 2$, we need to find a **discontinuous** function *f* which vanishes on $WR(h) \le 2$ but *does not* vanish on x^2y .

Border Waring rank

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

- □ The subtlety: If a **continuous** function (**separating polynomial**) *f* vanishes on all *h* with $WR(h) \le 2$, then *f* should also vanishes on x^2y .
- □ To prove $WR(x^2y) > 2$, we need to find a **discontinuous** function *f* which vanishes on $WR(h) \le 2$ but *does not* vanish on x^2y .

Border Waring rank

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2 \text{ but } \mathsf{WR}(x^2y) = 3.$

- □ The subtlety: If a **continuous** function (**separating polynomial**) *f* vanishes on all *h* with $WR(h) \le 2$, then *f* should also vanishes on x^2y .
- □ To prove $WR(x^2y) > 2$, we need to find a **discontinuous** function *f* which vanishes on $WR(h) \le 2$ but *does not* vanish on x^2y .

Border Waring rank

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2 \text{ but } \mathsf{WR}(x^2y) = 3.$

□ The subtlety is *gone*: $X_n := \{h \mid \overline{WR}(h) \le n\}$, is now a **closed** set.

- □ The subtlety: If a **continuous** function (**separating polynomial**) *f* vanishes on all *h* with $WR(h) \le 2$, then *f* should also vanishes on x^2y .
- □ To prove $WR(x^2y) > 2$, we need to find a **discontinuous** function *f* which vanishes on $WR(h) \le 2$ but *does not* vanish on x^2y .

Border Waring rank

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2 \text{ but } \mathsf{WR}(x^2y) = 3.$

- □ The subtlety is *gone*: $X_n := \{h \mid \overline{WR}(h) \le n\}$, is now a **closed** set.
- □ On to proving lower bounds: To show $\overline{WR}(p) > n$, for some p, it suffices to show that $p \notin X_n$, i.e. find a *continuous* function f that vanishes on X_n but not on p.

 \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$.

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

□ Important border rank: **border tensor rank**, related to border Waring rank!

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

Important border rank: border tensor rank, related to border Waring rank! Border tensor rank is *directly* related to the matrix multiplication exponent ω [Bini 1980, Coppersmith-Winograd 1990]. □ Coefficients in the earlier definition can be arbitrary depending on the parameter *ϵ*. Can it be 'nicer'?

- □ Coefficients in the earlier definition can be arbitrary depending on the parameter ϵ. Can it be 'nicer'?
- □ Yes! Via '*approximative circuits*'.

Approximative circuits (continued)

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?!

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'legal' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'legal' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

□ Summary: g_0 is really something **non-trivial** and being 'approximated' by the circuit since $\lim_{\epsilon \to 0} g(\mathbf{x}, \epsilon) = g_0$.

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

□ Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

 \succ size(*h*) ≤ exp($\overline{\text{size}}(h)$).

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

➤ size(h) ≤ exp($\overline{size}(h)$).

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h) \le \exp(\overline{\text{size}}(h))$

□ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class *D* such that $\overline{C} \subseteq D$?

- □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$?
- $\Box \text{ Take } C \in \{ \mathsf{VBP}, \mathsf{VP}, \Sigma \land \Sigma, \mathsf{VNP}, \cdots \}.$

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class *D* such that $\overline{C} \subseteq D$?
- $\Box \text{ Take } C \in \{ \mathsf{VBP}, \mathsf{VP}, \Sigma \land \Sigma, \mathsf{VNP}, \cdots \}.$

□ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$?
- $\Box \text{ Take } C \in \{ \mathsf{VBP}, \mathsf{VP}, \Sigma \land \Sigma, \mathsf{VNP}, \cdots \}.$

□ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

$$\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$$
, $\overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}$, $\overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}$.

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\notin \overline{VBP} \& VNP \notin \overline{VP}$. Equivalently, $\overline{dc}(perm_n)$ and $\overline{size}(perm_n)$ are both $n^{\omega(1)}$.
Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\notin \overline{VBP} \& VNP \notin \overline{VP}$. Equivalently, $\overline{dc}(perm_n)$ and $\overline{size}(perm_n)$ are both $n^{\omega(1)}$.

□ Both det and perm have 'nice' symmetries.

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\not\subset$ VBP & VNP $\not\subset$ VP. Equivalently, $\overline{dc}(perm_n)$ and $\overline{size}(perm_n)$ are both $n^{\omega(1)}$.

- □ Both det and perm have 'nice' symmetries.
- □ Symmetry-characterization **avoids** the Razborov–Rudich barrier: *Very few* functions are symmetry-characterized, so symmetry-characterization violates the largeness criterion!

 \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- > $\overline{\Sigma \land \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- ▶ $\overline{\Sigma \land \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi \text{ and } \overline{\Pi^{[d]}\Sigma} = \Pi^{[d]}\Sigma.$

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- ▶ $\overline{\Sigma \land \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi \text{ and } \overline{\Pi^{[d]}\Sigma} = \Pi^{[d]}\Sigma.$

□ Upper bounds and lower bounds are *dual* to each other.

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- ▶ $\overline{\Sigma \land \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi \text{ and } \overline{\Pi^{[d]}\Sigma} = \Pi^{[d]}\Sigma.$

- Upper bounds and lower bounds are *dual* to each other.
- □ Further potential applications in identity testing and understanding its 'robustness'.

Border depth-3 circuits

□ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \Box How powerful are $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits? Are they *universal*?

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \Box How powerful are $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits? Are they *universal*?
- □ No.

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \Box How powerful are $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits? Are they *universal*?
- □ No. E.g. the *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1y_1 + \ldots + x_{k+1}y_{k+1}$ cannot be written as a $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuit, *regardless* of the product fan-in *d*!

Power of border depth-3 circuits

 \Box What about $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ circuits?

 \Box What about $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a polynomial *g* such that

 \Box What about $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a polynomial *g* such that

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

 \Box What about $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a polynomial *g* such that

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

 \Box What about $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ of size *s* if there exists a polynomial *g* such that

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let *P* be *any* homogeneous *n*-variate degree *d* polynomial. Then, $P \in \Sigma^{[2]}\Pi^{[D]}\Sigma$, where $D := \exp(n, d)$.

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

□ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?

- □ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?
 - > Is it even explicit?

- □ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?
 - > Is it even explicit? If yes, $\overline{\Sigma^{[2]}\Pi^{[d]}\Sigma} \subseteq \mathsf{VNP}$?

□ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?

> Is it even explicit? If yes, $\overline{\Sigma^{[2]}\Pi^{[d]}\Sigma} \subseteq \mathsf{VNP}$?

Theorem 1 (Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy') [Dutta-Dwivedi-Saxena FOCS 2021].

 $\Sigma^{[2]}\Pi^{[d]}\Sigma \subseteq \text{VBP}$, for d = poly(n). In particular, any polynomial in the border of top-fanin-2 size-*s* depth-3 circuits, can also be exactly computed by a linear projection of a $\text{poly}(s) \times \text{poly}(s)$ determinant.

□ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?

> Is it even explicit? If yes, $\overline{\Sigma^{[2]}\Pi^{[d]}\Sigma} \subseteq \mathsf{VNP}$?

Theorem 1 (Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy') [Dutta-Dwivedi-Saxena FOCS 2021].

 $\Sigma^{[2]}\Pi^{[d]}\Sigma \subseteq \text{VBP}$, for d = poly(n). In particular, any polynomial in the border of top-fanin-2 size-*s* depth-3 circuits, can also be exactly computed by a linear projection of a $\text{poly}(s) \times \text{poly}(s)$ determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant *k*.

Why k = 2 is hard to analyze?

□ Non-trivial cancellations for k = 2 make things harder.

 \Box Non-trivial cancellations for k = 2 make things harder.

 $\square \text{ E.g., } T_1 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_3+\ldots), T_2 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_4+\ldots).$

- \Box Non-trivial cancellations for k = 2 make things harder.
- $\Box \text{ E.g., } T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + \ldots), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + \ldots).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$

- \Box Non-trivial cancellations for k = 2 make things harder.
- □ E.g., $T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + ...), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + ...).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$

□ Note $x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M$, for any $a \in \mathbb{F}$.

- \Box Non-trivial cancellations for k = 2 make things harder.
- □ E.g., $T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + ...), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + ...).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$
- □ Note $x^2 \equiv (x \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M$, for any $a \in \mathbb{F}$.

□ Moreover,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^M} \cdot \left(x^2 - (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \right) = a^2$$

 \Box Non-trivial cancellations for k = 2 make things harder.

□ E.g., $T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + ...), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + ...).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$

 $\Box \text{ Note } x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M, \text{ for any } a \in \mathbb{F}.$

□ Moreover,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^M} \cdot \left(x^2 - (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \right) = a^2$$

□ *Infinitely* many factorizations may give *infinitely* many limits.
□ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

□ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

□ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by Φ : $x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

□ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 \succ *α_i* to make sure: If *ℓ* | *T_i*, then $Φ(ℓ)|_{z=0} = ℓ(α_1, ..., α_n) ∈ 𝔽(ε) \setminus \{0\}.$

□ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 \succ *α_i* to make sure: If *ℓ* | *T_i*, then $Φ(ℓ)|_{z=0} = ℓ(α_1, ..., α_n) ∈ 𝔽(ε) \setminus \{0\}.$

 \Box It suffices to show that $\Phi(f)$ has small ABP.

□ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the "degree counter",

 \succ *α_i* to make sure: If *ℓ* | *T_i*, then $Φ(ℓ)|_{z=0} = ℓ(α_1, ..., α_n) ∈ 𝔽(ε) \setminus \{0\}.$

 \Box It suffices to show that $\Phi(f)$ has small ABP.

U We devise a technique called DiDIL - Divide, Derive, Interpolate with Limit.

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

 $\Box \text{ Let } \Phi(T_i) \coloneqq \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i \coloneqq \mathsf{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

$$f + \epsilon \cdot S = T_1 + T_2$$

$$\implies \Phi(f) + \epsilon \cdot \Phi(S) = \Phi(T_1) + \Phi(T_2)$$

$$\implies \Phi(f)/\tilde{T}_2 + \epsilon \cdot \Phi(S)/\tilde{T}_2 = \epsilon^{a_2} + \Phi(T_1)/\tilde{T}_2$$

$$\implies \partial_z \left(\Phi(f)/\tilde{T}_2 \right) + \epsilon \cdot \partial_z \left(\Phi(S)/\tilde{T}_2 \right) = \partial_z \left(\Phi(T_1)/\tilde{T}_2 \right) =: g_1 . \quad (1)$$

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

$$f + \epsilon \cdot S = T_1 + T_2$$

$$\implies \Phi(f) + \epsilon \cdot \Phi(S) = \Phi(T_1) + \Phi(T_2)$$

$$\implies \Phi(f)/\tilde{T}_2 + \epsilon \cdot \Phi(S)/\tilde{T}_2 = \epsilon^{a_2} + \Phi(T_1)/\tilde{T}_2$$

$$\implies \partial_z \left(\Phi(f)/\tilde{T}_2 \right) + \epsilon \cdot \partial_z \left(\Phi(S)/\tilde{T}_2 \right) = \partial_z \left(\Phi(T_1)/\tilde{T}_2 \right) =: g_1 . \quad (1)$$

 $\Box \lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_z(\Phi(f)), \text{ where } t_2 := \lim_{\epsilon \to 0} \tilde{T}_2.$

□ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.
- $\Box \ \operatorname{dlog} \ \operatorname{linearizes} \ \operatorname{product:} \ \operatorname{dlog}(h_1h_2) = \operatorname{dlog}(h_1) + \operatorname{dlog}(h_2).$

□ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{split} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) &= \Phi(T_1) / \tilde{T}_2 \cdot \operatorname{dlog} \left(\Phi(T_1) / \tilde{T}_2 \right) \\ &= (\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog} \left(\Pi \Sigma / \Pi \Sigma \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\pm \sum \operatorname{dlog}(\Sigma) \right). \end{split}$$

□ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{split} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) &= \Phi(T_1) / \tilde{T}_2 \cdot \operatorname{dlog} \left(\Phi(T_1) / \tilde{T}_2 \right) \\ &= (\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog} \left(\Pi \Sigma / \Pi \Sigma \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\pm \sum \operatorname{dlog}(\Sigma) \right). \end{split}$$

 \Box Here Σ means just a linear polynomial ℓ .

 $\square \operatorname{Recap:} 1/t_2 \cdot \partial_z(\Phi(f)) = \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \sum \operatorname{dlog}(\Sigma)).$

 $\square \operatorname{Recap:} 1/t_2 \cdot \partial_Z(\Phi(f)) = \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\Box \ \deg(f) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(f))) = d - 1.$

 $\square \operatorname{Recap:} 1/t_2 \cdot \partial_Z(\Phi(f)) = \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\Box \ \deg(f) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(f))) = d - 1.$

□ Suffices to compute $\lim_{\epsilon \to 0} g_1 \mod z^d$.

□ What is $dlog(\ell)$ for a linear polynomial $\ell = A - z \cdot B$?

□ What is $dlog(\ell)$ for a linear polynomial $\ell = A - z \cdot B$?

$$d\log(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^j \mod z^d$$
$$\in \Sigma \land \Sigma$$

□ What is $dlog(\ell)$ for a linear polynomial $\ell = A - z \cdot B$?

$$d\log(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^j \mod z^d$$
$$\in \Sigma \land \Sigma .$$

Thus,

$$\begin{split} \lim_{\epsilon \to 0} g_1 \mod z^d &\equiv \lim_{\epsilon \to 0} \Pi \Sigma / \Pi \Sigma \cdot \left(\sum d \log(\Sigma) \right) \mod z^d \\ &\equiv \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma) \mod z^d \\ &\in \overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma)} \mod z^d \;. \end{split}$$

$\overline{(\Pi\Sigma/\Pi\Sigma)\cdot(\Sigma\wedge\Sigma)}\subseteq\ \overline{(\Pi\Sigma/\Pi\Sigma)}\cdot\overline{\Sigma\wedge\Sigma}$

 $\subseteq \ (\mathsf{ABP}/\mathsf{ABP}) \cdot \mathsf{ABP}$

= ABP/ABP.

$\overline{(\Pi\Sigma/\Pi\Sigma)} \cdot (\Sigma \land \Sigma) \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

$\overline{(\Pi\Sigma/\Pi\Sigma) \cdot (\Sigma \land \Sigma)} \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

 $\Box \text{ Thus, } 1/t_2 \cdot \partial_z(\Phi(f)) = \lim_{\epsilon \to 0} g_1 = \text{ABP.}$

$\overline{(\Pi\Sigma/\Pi\Sigma)} \cdot (\Sigma \land \Sigma) \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

□ Thus, $1/t_2 \cdot \partial_z(\Phi(f)) = \lim_{\epsilon \to 0} g_1 = ABP$.

 $\Box \text{ Thus, } \Phi(f)/t_2 = \mathsf{ABP} \implies \Phi(f) = \mathsf{ABP} \implies f = \mathsf{ABP}.$

Derandomizing border depth-3 circuits

Polynomial Identity Testing

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Polynomial Identity Testing

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ This above lemma puts $PIT \in RP$.

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel] If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then

 $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- □ This above lemma puts PIT \in **RP**.
- □ Can we *derandomize* blackbox-PIT?

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ This above lemma puts $PIT \in RP$.

□ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- □ This above lemma puts $PIT \in RP$.
- □ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.
- Derandomizing PIT, for restricted cases, has many algorithmic applications:

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- □ This above lemma puts $PIT \in RP$.
- □ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.
- Derandomizing PIT, for restricted cases, has many algorithmic applications:
 - Graph Theory [Lovasz'79], [Fenner-Gurjar-Theirauf'19]

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ This above lemma puts $PIT \in RP$.

- □ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.
- Derandomizing PIT, for restricted cases, has many algorithmic applications:
 - Graph Theory [Lovasz'79], [Fenner-Gurjar-Theirauf'19]
 - Primality Testing [Agrawal-Kayal-Saxena'04].

Border hitting set

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.

 \Box *h* could have really high complexity compared to *g*.

Border hitting set

- □ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.
- \Box *h* could have really high complexity compared to *g*.
- □ We know

Border hitting set

- □ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.
- \Box *h* could have really high complexity compared to *g*.
- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],

Border hitting set

- □ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.
- \Box *h* could have really high complexity compared to *g*.
- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 20013].

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.

 \Box *h* could have really high complexity compared to *g*.

- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 20013].

 \square $n^{O(k)}$ -time hitting set is known for $\Sigma^{[k]}\Pi\Sigma$ [Saxena-Seshadri 2012].

Border hitting set

- □ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.
- \Box *h* could have really high complexity compared to *g*.
- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 20013].
- □ $n^{O(k)}$ -time hitting set is known for $\Sigma^{[k]}\Pi\Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it *does not* work for $\Sigma^{[k]}\Pi\Sigma$.

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $a \in \mathbb{F}^n$ such that $g(a, \epsilon) \neq 0$ *does not* suffice.

 \Box *h* could have really high complexity compared to *g*.

- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 20013].
- □ $n^{O(k)}$ -time hitting set is known for $\Sigma^{[k]}\Pi\Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it *does not* work for $\Sigma^{[k]}\Pi\Sigma$.
- General PIT for det is not known!

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\mathbf{a} \in \mathbb{F}^n$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.

 \Box *h* could have really high complexity compared to *g*.

- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 20013].
- □ $n^{O(k)}$ -time hitting set is known for $\Sigma^{[k]}\Pi\Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it *does not* work for $\Sigma^{[k]}\Pi\Sigma$.
- General PIT for **det** is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits) [Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time $(s^{O(\log \log s)})$ hitting set for size-*s* $\Sigma^{[k]}\Pi\Sigma$ circuits, for any constant *k*.

Conclusion

□ Can we show $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP}$, for d = poly(n)?

□ Can we show $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP}$, for d = poly(n)?

Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a Σ^[k+1]Π^[d]Σ circuit of size O(n) such that f requires 2^{Ω(n)}-size Σ^[k]Π^[D]Σ circuits. [Dutta-Saxena 2021, Preprint] □ Can we show $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq VBP$, for d = poly(n)?

- Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a Σ^[k+1]Π^[d]Σ circuit of size O(n) such that f requires 2^{Ω(n)}-size Σ^[k]Π^[D]Σ circuits. [Dutta-Saxena 2021, Preprint]
- > Thus, the above result also shows $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \mathsf{VBP}, \mathsf{VNP}.$

- $\Box \text{ Can we show } \overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP, for } d = \text{poly}(n)?$
 - Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a Σ^[k+1]Π^[d]Σ circuit of size O(n) such that f requires 2^{Ω(n)}-size Σ^[k]Π^[D]Σ circuits. [Dutta-Saxena 2021, Preprint]
 - > Thus, the above result also shows $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \mathsf{VBP}, \mathsf{VNP}.$
- $\Box \quad [Dutta-Dwivedi-Saxena 2021] \text{ showed a } quasipolynomial-time hitting set for} \\ \overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \text{ circuits. Can we improve it to polynomial?}$

- $\Box \text{ Can we show } \overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP, for } d = \text{poly}(n)?$
 - Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a Σ^[k+1]Π^[d]Σ circuit of size O(n) such that f requires 2^{Ω(n)}-size Σ^[k]Π^[D]Σ circuits. [Dutta-Saxena 2021, Preprint]
 - > Thus, the above result also shows $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \mathsf{VBP}, \mathsf{VNP}.$
- $\Box \quad [Dutta-Dwivedi-Saxena 2021] \text{ showed a } quasipolynomial-time hitting set for} \\ \overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \text{ circuits. Can we improve it to polynomial?}$
- □ Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to very restricted depth-4 and depth-5 circuits.

- $\Box \text{ Can we show } \overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP, for } d = \text{poly}(n)?$
 - Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a Σ^[k+1]Π^[d]Σ circuit of size O(n) such that f requires 2^{Ω(n)}-size Σ^[k]Π^[D]Σ circuits. [Dutta-Saxena 2021, Preprint]
 - > Thus, the above result also shows $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \mathsf{VBP}, \mathsf{VNP}.$
- □ [Dutta-Dwivedi-Saxena 2021] showed a *quasi*polynomial-time hitting set for $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits. Can we improve it to polynomial?
- □ Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to very restricted depth-4 and depth-5 circuits.

Thank you & stay safe!