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Algebraic Complexity Theory



Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aronson 2011] calls GCT “The String Theory of Computer Science”.
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Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi ).
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The determinant polynomial

❑ Let Xn = [xi,j ]1≤i,j≤n be a n × n matrix of distinct variables xi,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi, 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f ).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.
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Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f ) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.
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‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC’11].
Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi, 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f ).
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Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]

VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both n𝜔 (1) .
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Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.
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Border Complexity and GCT



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ [r ] ∧ Σ (homogeneous depth-3 diagonal circuits).

11



Separating polynomial

❑ Let us try to characterize the bivariate degree 2 polynomials h(x, y) such that
WR(h) = 1.

❑ Let h(x, y) = ax2 + bxy + cy2.

❑ X1 = {h | WR(h) = 1} = {(a, b, c) | b2 − 4ac = 0}.

❑ It helps to prove lower bound. For e.g. WR(xy) > 1 because (0, 1, 0) ∉ X1.

❑ Such f = b2 − 4ac is sometimes called a ‘polynomial obstruction’ or a
‘separating polynomial’.

❑ X1 is a closed set. If there are three sequences (an, bn, cn) such that
an → a, bn → b, cn → c, i.e. limits exist, such that (an, bn, cn) ∈ X1, then
(a, b, c) ∈ X1.
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Approximation helps

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖 ) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y
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Border Waring rank

❑ The subtlety: If a continuous function (separating polynomial) f vanishes on
all h with WR(h) ≤ 2, then f should also vanishes on x2y.

❑ To prove WR(x2y) > 2, we need to find a discontinuous function f which
vanishes on WR(h) ≤ 2 but does not vanish on x2y.

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.

14
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Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖 ) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].
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Approximative circuits

❑ Coefficients in the earlier definition can be arbitrary depending on the parameter
𝜖 . Can it be ‘nicer’?

❑ Yes! Via ‘approximative circuits’.
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Approximative circuits (continued)

x1 x2 x3 1

+ + + + + +

× × ×

+

1
𝜖3

𝜖

𝜖3+1

g(x1, . . . , xn, 𝜖) ∈ F(𝜖) [x]

F(𝜖) := {p(𝜖)
q(𝜖) | p, q ∈ F[𝜖], q(𝜖) ≠ 0}

17



Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x, 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x, 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x, 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x, 𝜖) = g0.
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Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] approximative complexity s, if there is a
g(x, 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x, 𝜖) ∈ F[𝜖] [x] such that
g(x, 𝜖) = h(x) + 𝜖 · S(x, 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x, 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))
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De-bordering

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
’nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VP, Σ ∧ Σ,VNP, · · · }.

❑ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

VBP ?
= VBP , VP ?

= VP , VNP ?
= VNP .
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Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP & VNP ⊄ VP. Equivalently, dc(permn) and size(permn) are both n𝜔 (1) .

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!
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De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ [s]Π = Σ [s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds are dual to each other.

❑ Further potential applications in identity testing and understanding its
‘robustness’.
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Border depth-3 circuits



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ [k ]Π [d ]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ [k ]Π [d ]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x, y⟩ = x1y1 + . . . + xk+1yk+1 cannot be
written as a Σ [k ]Π [d ]Σ circuit, regardless of the product fan-in d!
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❑ Depth-3 circuits with top fan-in k, are denoted as Σ [k ]Π [d ]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).
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Power of border depth-3 circuits

❑ What about Σ [k ]Π [d ]Σ circuits?

❑ Recall: h ∈ Σ [k ]Π [d ]Σ of size s if there exists a polynomial g such that

g(x, 𝜖) = h(x) + 𝜖 · S(x, 𝜖) ,

where g can be computed by a Σ [k ]Π [d ]Σ circuit, over F(𝜖), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ [2]Π [D]Σ,
where D := exp(n, d).
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De-bordering Σ [2]ΠΣ circuits

❑ If h is approximated by a Σ [2]Π [d ]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ [2]Π [d ]Σ ⊆ VNP?

Theorem 1 (Border of polynomial-sized depth-3 top-fanin-2 circuits are ’easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ [2]Π [d ]Σ ⊆ VBP, for d = poly(n). In particular, any polynomial in the border of
top-fanin-2 size-s depth-3 circuits, can also be exactly computed by a linear
projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Why k = 2 is hard to analyze?

❑ Non-trivial cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+ 𝜖x1 + 𝜖2x2 + 𝜖3x3 + . . .), T2 := 𝜖−3 (1+ 𝜖x1 + 𝜖2x2 + 𝜖3x4 + . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.
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Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x]. Assume deg(f ) = d.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the “degree counter”,

➢ 𝛼i to make sure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f ) has small ABP.

❑ We devise a technique called DiDIL - Divide, Derive, Interpolate with Limit.
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k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti ) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti )).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f ) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f )/T̃2 + 𝜖 · Φ(S)/T̃2 = 𝜖a2 + Φ(T1)/T̃2

=⇒ 𝜕z
(
Φ(f )/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 1/t2 · 𝜕z (Φ(f )), where t2 := lim𝜖→0 T̃2.
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k = 2 proof continued: Divide and Derive
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k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 1/t2 · 𝜕z (Φ(f )).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.
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k = 2 proof continued: Quick recap

❑ Recap: 1/t2 · 𝜕z (Φ(f )) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(f ) = d =⇒ degz (Φ(f )) = d =⇒ degz (𝜕z (Φ(f ))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .
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k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = A − z · B?

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A
·

d−1∑︁
j=0

(
z · B

A

) j
mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .
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Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 1/t2 · 𝜕z (Φ(f )) = lim𝜖→0 g1 = ABP.

❑ Thus, Φ(f )/t2 = ABP =⇒ Φ(f ) = ABP =⇒ f = ABP.
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Derandomizing border depth-3 circuits



Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].
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➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.
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Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖 ) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 20013].

❑ nO (k) -time hitting set is known for Σ [k ]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ [k ]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s) ) hitting set for size-s
Σ [k ]ΠΣ circuits, for any constant k.
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Concluding remarks

❑ Can we show Σ [k ]Π [d ]Σ ≠ VBP, for d = poly(n)?
➢ Fix any constant k ≥ 1. There is an explicit n-variate and < n degree

polynomial f such that f can be computed by a Σ [k+1]Π [d ]Σ circuit of size
O(n) such that f requires 2Ω(n) -size Σ [k ]Π [D]Σ circuits. [Dutta-Saxena
2021, Preprint]

➢ Thus, the above result also shows Σ [k ]Π [d ]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ [k ]Π [d ]Σ circuits. Can we improve it to polynomial?

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to very restricted depth-4 and depth-5 circuits.

Thank you & stay safe!
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