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A function f that is
• Easy to compute: can be computed in poly time
• Hard to invert: no PPT can invert it

One-way Functions (OWF) [Diffie-Hellman’76]

x y=f(x)

easy

hard

Ex [Factoring]: use x to pick to 2 random “large” primes p,q, and output y = p* q
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A function f that is
• Easy to compute: can be computed in poly time
• Hard to invert: no PPT can invert it

OWF both necessary [IL’89] and sufficient for:
• Private-key encryption [GM84,HILL99]
• Pseudorandom generators [HILL99]
• Digital signatures [Rompel90]
• Authentication schemes [FS90]
• Pseudorandom functions [GGM84]
• Commitment schemes [Naor90]
• Coin-tossing [Blum’84]
• ZK proofs [GMW89]
• …

One-way Functions (OWF) [Diffie-Hellman’76]

Whether OWF exists is the most important problem in Cryptography

Not included:
public-key encryption, OT, obfuscation 



Observation: OWF => NP ∉ BPP

OWF v.s NP Hardness

“Holy grail” [DH’76] 

Prove: NP ∉ BPP => OWF

Lots of partial BB “separations”: [Bra’79],[AGGM’06],[P’07],[MX’10]



In the absence of the holy-grail…

Factoring [RSA’83]

Discrete Logarithm Problem [DH’76]

Lattice Problems [Ajtai’96]

DES,
SHA,
AES…

So far, not broken…but for how long?
“Cryptographers seldom sleep well” - Micali’88

Have we really escaped from the “crypto cycle”?

QUANTUM COMPUTERS



Discrete Logarithm Problem [DH’76]

Lattice Problems [Ajtai’96]

Central question: Does there exist some natural average-case hard 
problem (a “mother problem”) that characterizes existence of OWF?

Factoring [RSA’83]

DES,
SHA,
AES…

In the absence of the holy-grail…



Main Theorem

For every polynomial t(n)>1.1n:

OWFs exist iff t-bounded Kolmogorov-complexity is mildly hard-on-average



Which of the following strings is more “random”:
• 1231231231231231231
• 1730544459347394037

Kolmogorov Complexity [Sol’64,Kol’68,Cha’69]

K(x) = length of the shortest program that outputs x

Formally, we fix a universal TM U, and are looking for the length of the 
shortest program 𝚷 = (M,w) s.t. U(M,w) = x

Lots of amazing applications (e.g., Godel’s incompleteness theorem)
But uncomputable.



Which of the following strings is more “random”:
• 1231231231231231231
• 1730544459347394037

Time-Bounded Kolmogorov Complexity

K(x) = length of the shortest program that outputs x
Kt(x) = length of the shortest program that outputs x within time t(|x|)

Can Kt  be efficiently computed when t(n) is a polynomial?
• Studied in the Soviet Union since 60s [Kol’68,T’84]
• Independently by Hartmanis [83], Sipser [83], Ko [86]
• Closely related to MCSP (Minimum Circuit Size Problem) [T’84,KC’00]



Average-case Hardness of Kt

Frequential version [60’s, T’84]
Does ∃ algorithm that computes Kt(x) for a “large” fraction of x’s?

Observation [60’s, T’84]: Kt can be approximated within d log n w.p 1-1/nd

Proof: simply output n.

Def: Kt is mildly-HOA if there exists a polynomial p, such that no PPT heuristic H
can compute Kt w.p 1-1/p(n) over random strings x for inf many n.

Def: Kt is mildly-HOA to c-approximate if there exists a polynomial p, such that 
no PPT heuristic H can c-approximate Kt w.p 1-1/p(n) over random strings x for 
inf many n.



Main Theorem
The following are equivalent:
1. OWFs exist
2. ∃ poly t(n)>0, s.t. Kt is mildly-HOA.
3. ∀ c>0, ε>0, poly t(n)>(1+ε) n, 

Kt is mildly-HOA to (clog n)-approx.



Main Theorem
The following are equivalent:
1. OWFs exist
2. ∃ poly t(n)>0, s.t. Kt is mildly-HOA.
3. ∀ c>0, ε>0, poly t(n)>(1+ε) n, 

Kt is mildly-HOA to (clog n)-approx.

Corr: For all poly t(n)>(1+ε)n, 
OWFs exists iff Kt is mildly hard-on-average

Corr: For all c>0, ε>0, poly t(n)>(1+ε) n, 
Kt is mildly hard-on-average to (clog n)-approx iff Kt is mildly hard-on-average.



Earlier Connections between OWF and Kt

• [RR’97,KC00,ABK+06]: OWF ⟹ exists poly t s.t Kt is worst-case hard
- converse direction not known
- this will be our starting point to showing OWF ⟹ Kt is HOA 

• [Santhanam’19]: Under a new conjecture, MCSP is “errorless-HOA” iff OWF exists
- as mentioned, MCSP is closely related to Kt

- in contrast, our results are unconditional.



Proof: (2) => (1) => (3)

Today: just sketch (1) <=> (2)

Main Theorem
The following are equivalent:
1. OWFs exist
2. ∃ poly t(n)>0, s.t. Kt is mildly-HOA.
3. ∀ c>0, ε>0, poly t(n)>(1+ε) n, 

Kt is mildly-HOA to (clog n)-approx.



Theorem 1
Assume there exists some poly t(n)>0, s.t. Kt is mildly-HOA.
Then OWFs exist.

Theorem 2
Assume OWFs exists.
Then there exists some poly t(n)>0 s.t. Kt is mildly-HOA. 



Theorem 1
Assume there exists some poly t(n)>0, s.t. Kt is mildly-HOA.
Then OWFs exist.

Weak OWF: “mild-HOA version” of a OWF:
efficient function f s.t. no PPT can invert f w.p. 1-1/p(n)
for inf many n, for some poly p(n)>0.

Lemma [Yao’82]. If a Weak OWF exists, then a OWF exists.

So, we just need to construct a weak OWF.



Let c be a constant so that Kt(x) < |x|+c for all x

Define f(𝚷’,i) where |𝚷’| = n, |i| = log (n+c) as follows:
• Let 𝚷 = first i bits of 𝚷’ (i.e., truncate 𝚷’ to i bits).
• Let y = output of 𝚷 after t(n) steps.
• Output i||y.

Assume for contradiction that f is not a Weak OWF.
Then, for every inverse polynomial 𝛿, there exists a PPT attacker A that inverts f 
w.p 1- 𝛿.

We construct a heuristic H (using A) that computes Kt w.p. 1- 𝛿 O(n), which 
concludes that Kt is not mildly HOA, a contradiction.



Heuristic H(y) proceeds as follows given x ∈ {0,1}n:
• For i = 1 to n+c

- Run A(i||y) -> 𝚷 and check if 𝚷 outputs y within t(n) steps
• Output the smallest i for which the check passed.

Intuitively, if A succeeds with VERY high probability, then it should also succeed with high 
probability conditioned on length i, for EVERY i ∈ [n+c]

But: the problem is that H is feeding A the wrong distribution over y’s.



In OWF experiment 
(where A works):

i ← Ulog(n+c)
y ← output of a random program 

of length i

In the emulation by H in Kt experiment
(where we need to prove that A works):

i ← Kt(y)
y ← Un

No reason to believe that the output of a random program will be close to uniform!

But: using a counting argument, we can show that they are not too far in relative distance



In OWF experiment 
(where A works):

i ← Ulog(n+c)
y ← output of a random program 

of length i

In the emulation by H in Kt experiment
(where we need to prove that A works):

i ← Kt(y)
y ← Un

Key idea: 
• Assume for simplicity that A is deterministic.
• Consider some string y on which H fails. y has prob mass 2-n in the Kt exp.
• For H(y) to fail, A(w||y) must fail where w = Kt(y).
• But the pair w||y is sampled in the OWF exp w.p

1/(n+c) * 2-w  > 1/(n+c) * 2-n+c > 1/O(n) 2-n

• So, if H fails w.p. ε,  A must fail w.p > ε /O(n) ≤ 𝛿
• Thus. H fails w.p ε ≤ 𝛿 O(n)
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Theorem 2
Assume OWFs exists.
Then there exists some poly t(n)>0 s.t. Kt is mildly-HOA. 

High-level Idea [KC’00,ABK+’06]:
• Use OWF f to construct a PRG G:{0,1}n -> {0,1}2n [HILL’99]

(output of G(Un) is indistinguishable from U2n by PPT observers)

• Use algorithm H for computing Kt to distinguish output of PRG from 
random, where t = running time of G, which yields a contradiction.



Uniform
y ← U2n

Kt(y) > 2n-O(logn) w.h.p

Pseudorandom
y ← G(Un)

Kt(y) < n+O(1) w.p 1

So any algorithm H that computes Kt can break the PRG. 

Important: 
• Only works if H computes Kt w.p 1.
• if H is just a heuristic (that works w.p 1-neg), then we have no guarantees:

H can fail on all pseudorandom strings, as they have tiny probability mass!



Entropy-preserving PRG (EP-PRG)

Efficiently computable function G:{0,1}n->{0,1}n+c log n

• Pseudorandomness: G(Un) indistinguishable from Un+c log n
• Entropy-preserving: G(Un) has Shannon entropy n-O(log n)

Lemma: EP-PRG with running time t implies Kt is mildly-HOA



Uniform
y ← Un+O(log n)

Kt(y) > n+O(logn) w.h.p

Pseudorandom
y ← G(Un)

Kt(y) < n+O(1) w.p 1

If G is an EP-PRG, then H(y) < n + O(1) w.p O(1)/n^2 given pseudo random samples

Idea:
• If Shannon entropy is n – O(log n), then using an averaging argument, 

there exists a set S of strings in the support of G(Un), s.t.
- for every y ∈ S, Pr[G(Un) = y] < 2-(n-O(log n))

- Pr[S] > 1/n
• That is, conditioned on S, the relative distance from uniform is small, and we can use the 

same argument as for Thm 1 to argue that H’s failure probability will be small.



Constructing EP-PRG

Good News: GL’89 construction of a PRG from a OWP f is entropy preserving.

G(s,r) = r, f(s),GL(s,r)

Bad News:
• HILL’ 99 construction of a PRG from OWF is not entropy preserving (as far as we can tell)
• Don’t know how to obtain an EP-PRG from OWF…

Need to relax the notion of an EP-PRG.

Entropy n



Entropy-preserving PRG (EP-PRG)

Efficiently computable function G:{0,1}n->{0,1}n+c log n

• Pseudorandomness: G(Un) indistinguishable from Un+c log n

• Entropy-preserving: G(Un) has Shannon entropy n-O(log n)



Conditionally Entropy-preserving PRG (condEP-PRG)

Efficiently computable function G:{0,1}n->{0,1}n+c log n

• Pseudorandomness: G(Un | E) indistinguishable from Un+c log n

• Entropy-preserving: G(Un | E) has Shannon entropy n-O(log n)
For some event E

Lemma: condEP-PRG with running time t implies Kt is mildly-HOA

Same proof as before works.



Constructing condEP-PRG from OWF
Lemma: OWF => cond EP-PRG

Proof:
• Use a variant of PRG from regular OWF from [HILL’99,Gol’01,YLW’15]
• Show that it satisfies our notion of a cond EP-PRG when using any OWF.

G(s,r1,r2,r3,i) =   r1,r2,r3, [Extr1(s)]i-O(log n) [Extr2(f(s))]n-i-O(log n)   GL(s,r3)

Not a PRG. Not EP.
But is a PRG and EP conditioned on the event that (i,s) is “good”

“good” : s has regularity r that is “common”,  i = r
Ensures that extractors work.

Shannon Entropy n – O(log n)



Theorem 1
Assume there exists some poly t(n)>0, s.t. Kt is mildly-HOA.
Then OWFs exist.

Theorem 2
Assume OWFs exists.
Then there exists some poly t(n)>0 s.t. Kt is mildly-HOA. 



Main Theorem
For all ε>0, all poly t(n)>(1+ε)n
OWFs exist iff Kt is mildly-HOA.

First natural avg-case problem characterizing the feasibility of the basic tasks in Crypto
(i.e., private-key encryption, digital sigs, PRGs, PRFs, commitments, authentication, ZK…)



Recent Results on Kt and Friends

• [Hirahara’18]: presents a worst-case to average-case reduction for Kt:
Kt is errorless-HAO if Kt is worst-case hard to approximate.
Similar results indep. obtained by [Santhanam’19] w.r.t. a variant of MCSP.

Our results to not extend to errorless-HAO…

• [Ilango-Loff-Oliviera’20]: Multi-MCSP is NP-Hard

• [Oliviera-Santhanam]: Hardness magnification for MCSP



Kpoly OWFKpolyMulti-
MCSPNP

Hard for BPP Hard for BPP Hard to approx
for BPP

Errorless-HOA
(one-sided error)

Towards the “holy-grail”

Kpoly

[ILO’20] [H’18] [today]

mild-HOA
(two-sided error)

trivial

Missing implications



Thank You


