
Bounded Indistinguishability
for Simple Sources

Andrej
Bogdanov

CUHK

K. Dinesh

CUHK

Yuval
Filmus

Technion

Yuval
Ishai

Technion

Avi
Kaplan

Technion

Akshay
Srinivasan

TIFR

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

 is -wise independent if every coordinates look uniformX k k

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

 is -wise independent if every coordinates look uniformX k k

 are -wise indistinguishable if every coordinates look the sameX, Y k k

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

 is -wise independent if every coordinates look uniformX k k

 are -wise indistinguishable if every coordinates look the sameX, Y k k

 is -wise independent if are -wise indistinguishableX k X, U k
⇧

uniform

distribution

Examples

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where is dual distance (shortest linear relation)

(k − 1)
k

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where is dual distance (shortest linear relation)

(k − 1)
k

 is 2-wise independentX = (a1, b1, a1 + b1, …, an, bn, an + bn)

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where is dual distance (shortest linear relation)

(k − 1)
k

 is 2-wise independentX = (a1, b1, a1 + b1, …, an, bn, an + bn)

 and are -wise indistinguishableX |a1+⋯+an=0 X |a1+⋯+an=1 (n − 1)

Motivation

Motivation
-wise independence: derandomizationk

Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

Motivation
-wise independence: derandomizationk

any parties can recover secretr

no keys leak any informationk

-wise indistinguishability: secret sharing schemesk

Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

any parties can recover secretr

no keys leak any informationk

-wise independent secret sharing schemes use linear reconstruction

 reconstruction requires -wise indistinguishability

k
𝖠𝖢𝟢 k

Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

any parties can recover secretr

no keys leak any informationk

-wise independent secret sharing schemes use linear reconstruction

 reconstruction requires -wise indistinguishability

k
𝖠𝖢𝟢 k

secure multiparty computation and leakage-resilience require share manipulation

breaks -wise independence but not -wise indistinguishabilityk k

Braverman for indistinguishability?
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman for indistinguishability?
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Braverman for indistinguishability?
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

“Fooling escalation”

Braverman for indistinguishability?
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR!

n
n

“Fooling escalation”

Braverman for indistinguishability?
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR!

n
n

“Fooling escalation”
LP

duality⇒

Braverman for indistinguishability?
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR!

n
n

Does Braverman
hold for polylog

indistinguishable
simple sources?

“Fooling escalation”
LP

duality⇒

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

“Resilience escalation”

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Generating shares is simple

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Win–Win!

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing
‣ affine sources: “refreshing” secret sharing

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing
‣ affine sources: “refreshing” secret sharing
‣ quadratic sources: secure multiparty computation

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing
‣ affine sources: “refreshing” secret sharing
‣ quadratic sources: secure multiparty computation] Arise in natural 

crypto protocols

when combining 
different shares

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing
‣ affine sources: “refreshing” secret sharing
‣ quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

] Arise in natural 
crypto protocols

when combining 
different shares

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Affi
ne

 s
ou

rc
es

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Affi
ne

 s
ou

rc
es

Special case: compute parity of codewords belonging to LDPC code

Inner Product w/ Preprocessing

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y) Compute IP in 𝖯𝖧𝖼𝖼

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Linear sources, circuits𝖠𝖢𝟢

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Cannot compute for all in given linear ⟨x, y⟩ x 𝖠𝖢𝟢 gj(y)

Cannot compute in given linear ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

Linear sources, circuits𝖠𝖢𝟢

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Cannot compute for all in given linear ⟨x, y⟩ x 𝖠𝖢𝟢 gj(y)

Cannot compute in given linear ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)Ar
bi

tr
ar

y 
pr

ep
ro

ce
ss

in
g

Linear sources, circuits𝖠𝖢𝟢

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Concentrate on OR, decision trees, DNFs

OR is interesting!

OR is interesting!
selective failure attacks

OR is interesting!
selective failure attacks

visual secret sharing

[Naor–Shamir 1994]

OR is interesting!
selective failure attacks

visual secret sharing

[Naor–Shamir 1994]

OR

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Constant degree
or

Constant locality

Constant fools OR
Quadratic: decision trees

k

Quadratic: k = polylog(1/ϵ)

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Constant degree
or

Constant locality

Constant fools OR
Quadratic: decision trees

k

Quadratic: k = polylog(1/ϵ)

Degree log n

OR distinguishes k = n

Mixture of iid: application
to visual secret sharing

Techniques

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Constant degree
or

Constant locality

Constant fools OR
Quadratic: decision trees

k

Quadratic: k = polylog(1/ϵ)

Degree log n

OR distinguishes k = n

Mixture of iid: application
to visual secret sharing

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Constant degree
or

Constant locality

Constant fools OR
Quadratic: decision trees

k

Quadratic: k = polylog(1/ϵ)

Degree log n

OR distinguishes k = n

Mixture of iid: application
to visual secret sharing

OR distinguishes -wise indistinguishable simple sources n

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

Natural idea: Consider symmetric distributions

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

Natural idea: Consider symmetric distributions

De Finetti’s theorem: Symmetric distributions are mixtures of iid (in the limit)

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

Natural idea: Consider symmetric distributions

De Finetti’s theorem: Symmetric distributions are mixtures of iid (in the limit)

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

Natural idea: Consider symmetric distributions

De Finetti’s theorem: Symmetric distributions are mixtures of iid (in the limit)

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

-wise indistinguishability ⟺ for all k 𝔼
i∼p

[αℓ
i] = 𝔼

j∼q
[βℓ

j] ℓ ≤ k

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

Natural idea: Consider symmetric distributions

De Finetti’s theorem: Symmetric distributions are mixtures of iid (in the limit)

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

-wise indistinguishability ⟺ for all k 𝔼
i∼p

[αℓ
i] = 𝔼

j∼q
[βℓ

j] ℓ ≤ k

OR can distinguish: p1 = Ω(1), α1 = 1, βj ≤ 1 − Ω(1
n)

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable sources distinguished by ORn X, Y

Natural idea: Consider symmetric distributions

De Finetti’s theorem: Symmetric distributions are mixtures of iid (in the limit)

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

-wise indistinguishability ⟺ for all k 𝔼
i∼p

[αℓ
i] = 𝔼

j∼q
[βℓ

j] ℓ ≤ k

OR can distinguish: p1 = Ω(1), α1 = 1, βj ≤ 1 − Ω(1
n)

Explicit construction — guess , compute αi, βj p, q

Application: Visual Secret Sharing

OR

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

OR distinguishes -wise indistinguishable simple sources n

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

Construct polynomial size decision trees for sampling “reduced precision” X, Y

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

Construct polynomial size decision trees for sampling “reduced precision” X, Y
Skipping some technicalities

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

Construct polynomial size decision trees for sampling “reduced precision” X, Y
Skipping some technicalities

Express each source as disjoint (unambiguous) DNF T1 ∨ ⋯ ∨ Tm

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

Construct polynomial size decision trees for sampling “reduced precision” X, Y
Skipping some technicalities

Express each source as disjoint (unambiguous) DNF T1 ∨ ⋯ ∨ Tm

Reduce degree to using Razborov–Smolensky encodingO(log 𝗌𝗂𝗓𝖾) = O(log n)

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

Construct polynomial size decision trees for sampling “reduced precision” X, Y
Skipping some technicalities

Express each source as disjoint (unambiguous) DNF T1 ∨ ⋯ ∨ Tm

Reduce degree to using Razborov–Smolensky encodingO(log 𝗌𝗂𝗓𝖾) = O(log n)

Encode as ℓ1 ∧ ⋯ ∧ ℓw ∏k [1 + ∑j
(1 + ℓj)rk,j]

OR distinguishes -wise indistinguishable simple sources n
Goal: Construct two -wise indistinguishable simple sources distinguished by ORn Z, W

: sample according to distribution , then sample iid

: sample according to distribution , then sample iid

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

Construct polynomial size decision trees for sampling “reduced precision” X, Y
Skipping some technicalities

Express each source as disjoint (unambiguous) DNF T1 ∨ ⋯ ∨ Tm

Reduce degree to using Razborov–Smolensky encodingO(log 𝗌𝗂𝗓𝖾) = O(log n)

Encode as ℓ1 ∧ ⋯ ∧ ℓw ∏k [1 + ∑j
(1 + ℓj)rk,j]

Sum over all terms (use disjointness)

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Constant degree
or

Constant locality

Constant fools OR
Quadratic: decision trees

k

Quadratic: k = polylog(1/ϵ)

Degree log n

OR distinguishes k = n

Mixture of iid: application
to visual secret sharing

Our Results
-wise indistinguishable sourcek

 = distinguishing advantageε

Affine sources

Constant fools OR,
decision trees,
narrow DNFs

k

OR: k = log(1/ϵ)

Constant degree
or

Constant locality

Constant fools OR
Quadratic: decision trees

k

Quadratic: k = polylog(1/ϵ)

Degree log n

OR distinguishes k = n

Mixture of iid: application
to visual secret sharing

-wise indistinguishable simple sources fool ORO(1)

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε
Reduces problem to understanding a single source

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε

Suppose are two -wise indistinguishable simple sourcesX, Y k

Reduces problem to understanding a single source

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε

Suppose are two -wise indistinguishable simple sourcesX, Y k
 predicts and predicts ⟹ predicts bothS X T Y S ∪ T

Reduces problem to understanding a single source

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε

Suppose are two -wise indistinguishable simple sourcesX, Y k
 predicts and predicts ⟹ predicts bothS X T Y S ∪ T

 are small ⟹ S, T Pr[X = 0] ≈ Pr[X |S∪T = 0] = Pr[Y |S∪T = 0] ≈ Pr[Y = 0]

Reduces problem to understanding a single source

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε

Suppose are two -wise indistinguishable simple sourcesX, Y k
 predicts and predicts ⟹ predicts bothS X T Y S ∪ T

 are small ⟹ S, T Pr[X = 0] ≈ Pr[X |S∪T = 0] = Pr[Y |S∪T = 0] ≈ Pr[Y = 0]

Example 1: Xi = r0ri

Reduces problem to understanding a single source

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

Idea: Value of OR on any simple source “predicted” by small set of coordinates

Formally: Probability that for all but is at most Xi = 0 i ∈ S X ≠ 0 ε

Suppose are two -wise indistinguishable simple sourcesX, Y k
 predicts and predicts ⟹ predicts bothS X T Y S ∪ T

 are small ⟹ S, T Pr[X = 0] ≈ Pr[X |S∪T = 0] = Pr[Y |S∪T = 0] ≈ Pr[Y = 0]

Example 1: Xi = r0ri

Example 2: Xi = ri

Reduces problem to understanding a single source

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0

 Unlikely that for many ri = 0 i

-wise indistinguishable simple sources fool ORO(1)

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

Warm-up: Linear sources

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

Warm-up: Linear sources
Case 1: Source has low rank Choose basis

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

Warm-up: Linear sources
Case 1: Source has low rank Choose basis
Case 2: Source has high rank Choose many linearly independent Xi

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

Warm-up: Linear sources
Case 1: Source has low rank Choose basis
Case 2: Source has high rank Choose many linearly independent Xi

Sources of low degree or low locality

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

Warm-up: Linear sources
Case 1: Source has low rank Choose basis
Case 2: Source has high rank Choose many linearly independent Xi

Sources of low degree or low locality
Case 1: Source has low “rank” Use to simplify source

-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from in constant degree or constant localityr1, r2, r3, …
Goal: Find small s.t. probability that but is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If for many then probably hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that for many ri = 0 i

Warm-up: Linear sources
Case 1: Source has low rank Choose basis
Case 2: Source has high rank Choose many linearly independent Xi

Sources of low degree or low locality
Case 1: Source has low “rank” Use to simplify source
Case 2: Source has high “rank” Choose many “independent” Xi

polylog-wise indistinguishable quadratic sources
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

Decision tree with leavesm

polylog-wise indistinguishable quadratic sources
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

z̄1 ∧ z2 z1 ∧ z3

Decision tree with leavesm

-wise indistinguishability -fools every 1-leafpolylog(m/ε) ε/m

polylog-wise indistinguishable quadratic sources
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

z̄1 ∧ z2 z1 ∧ z3

Decision tree with leavesm

-wise indistinguishability -fools every 1-leafpolylog(m/ε) ε/m

-wise indistinguishability -fools decision treeε = poly(1/n) ⟹ polylog(n) ε

polylog-wise indistinguishable quadratic sources
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

z̄1 ∧ z2 z1 ∧ z3

Decision tree with leavesm

-wise indistinguishability -fools every 1-leafpolylog(m/ε) ε/m

-wise indistinguishability -fools decision treeε = poly(1/n) ⟹ polylog(n) ε

Crucially relies on !k = polylog(1/ϵ)

Open Questions

Open Questions
Beyond OR

Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Open Questions
Beyond OR

Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Application: secret-sharing with sharing in and reconstruction in
(current best: sharing using decision trees and reconstruction using OR)

𝖭𝖢𝟢 𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know: and)O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know: and)O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

Connection to approximate degree breaks down

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

-wise indistinguishable distributions over distinguished by ? (n − 1) Σn 𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know: and)O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean
-wise indistinguishable distributions over distinguished by ? (n − 1) ({0,1}n)n 𝖠𝖢𝟢

Application: secret sharing scheme in with “sharp threshold”𝖠𝖢𝟢

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

-wise indistinguishable simple sources fool ORO(1)

-wise indistinguishable simple sources fool ORO(1)
Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

If there are many depending on disjoint random bits: doneXi

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

If there are many depending on disjoint random bits: doneXi

Otherwise, we found small “hitting set’’ for entire source

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

If there are many depending on disjoint random bits: doneXi

Otherwise, we found small “hitting set’’ for entire source

Consider every possible setting of hitting set ⟹ locality reduces to s − 1

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

If there are many depending on disjoint random bits: doneXi

Otherwise, we found small “hitting set’’ for entire source

Consider every possible setting of hitting set ⟹ locality reduces to s − 1

Sources samplable in degree d

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

If there are many depending on disjoint random bits: doneXi

Otherwise, we found small “hitting set’’ for entire source

Consider every possible setting of hitting set ⟹ locality reduces to s − 1

Sources samplable in degree d

Use higher-order Fourier analysis to implement similar argument

-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find such that probability that but is at most S X |S = 0 X ≠ 0 ε

If there are many depending on disjoint random bits: doneXi

Otherwise, we found small “hitting set’’ for entire source

Consider every possible setting of hitting set ⟹ locality reduces to s − 1

Sources samplable in degree d

Use higher-order Fourier analysis to implement similar argument

Quadratic case (): dedicated argument gives better boundsd = 2

