Bounded Indistinguishability for Simple Sources

Andrej Bogdanov CUHK

K. Dinesh

CUHK

Yuval Filmus

Technion

Yuval Ishai

Technion

Avi Kaplan

Technion

Akshay Srinivasan

TIFR

Cast of Characters

 $X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

$X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

X is k-wise independent if every k coordinates look uniform

Cast of Characters

Cast of Characters

 $X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

X is k-wise independent if every k coordinates look uniform

X, Y are k-wise indistinguishable if every k coordinates look the same

Cast of Characters

 $X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

X is k-wise independent if every k coordinates look uniform

X, Y are k-wise indistinguishable if every k coordinates look the same

X is k-wise independent if X, U are k-wise indistinguishable 公 uniform distribution

Examples

Uniform distribution on even parity vectors: (n - 1)-wise independent

where k is dual distance (shortest linear relation)

Examples

- Uniform distribution on even parity vectors: (n 1)-wise independent
- Uniform distribution on subspace is (k 1)-wise independent,

where k is dual distance (shortest linear relation)

$$X = (a_1, b_1, a_1 + b_1, \dots$$

Examples

- Uniform distribution on even parity vectors: (n 1)-wise independent
- Uniform distribution on subspace is (k 1)-wise independent,

 - $(a_n, b_n, a_n + b_n)$ is 2-wise independent

where k is dual distance (shortest linear relation)

$$X = (a_1, b_1, a_1 + b_1, \dots, a_n, b_n, a_n + b_n)$$
 is 2-wise independent

$$X|_{a_1 + \dots + a_n = 0} \text{ and } X|_{a_1 + \dots + a_n = 0}$$

Examples

- Uniform distribution on even parity vectors: (n 1)-wise independent
- Uniform distribution on subspace is (k 1)-wise independent,

 $\dots + a_n = 1$ are (n - 1)-wise indistinguishable

k-wise indistinguishability: secret sharing schemes

k-wise indistinguishability: secret sharing schemes

any *r* parties can recover secret

no k keys leak any information

k-wise indistinguishability: secret sharing schemes

k-wise independent secret sharing schemes use linear reconstruction AC^{0} reconstruction requires k-wise indistinguishability

any *r* parties can recover secret

no k keys leak any information

k-wise indistinguishability: secret sharing schemes

k-wise independent secret sharing schemes use linear reconstruction AC^{0} reconstruction requires k-wise indistinguishability

secure multiparty computation and leakage-resilience require share manipulation breaks k-wise independence but not k-wise indistinguishability

any *r* parties can recover secret

no k keys leak any information

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

"Fooling escalation"

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

"Fooling escalation"

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Nisan–Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n} -wise indistinguishability doesn't even fool OR!

"Fooling escalation"

LP

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Nisan–Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n} -wise indistinguishability doesn't even fool OR!

"Fooling escalation"

LP

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Nisan–Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n} -wise indistinguishability doesn't even fool OR!

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Generating shares is simple

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Generating shares is simple

Secret recovery in AC⁰

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Generating shares is simple

Secret recovery in AC⁰

Iocal sources

- Iocal sources
- Inear sources: linear secret sharing

- Iocal sources
- Inear sources: linear secret sharing
- affine sources: "refreshing" secret sharing

- Iocal sources
- Inear sources: linear secret sharing
- affine sources: "refreshing" secret sharing
- quadratic sources: secure multiparty computation

- Iocal sources
- Inear sources: linear secret sharing
- affine sources: "refreshing" secret sharing
- quadratic sources: secure multiparty computation

Arise in natural crypto protocols when combining different shares

Sources that are easy to sample given iid uniform random bits r_1, r_2, r_3, \ldots

- Iocal sources
- Inear sources: linear secret sharing
- affine sources: "refreshing" secret sharing
- quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

Circuits cannot distinguish k-wise indistinguishable sources

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

Circuits cannot distinguish k-wise indistinguishable sources

Circuits cannot distinguish k-wise indistinguishable sources of the form $X|_{r_1=0}$ and $X|_{r_1=1}$ ("cosets")

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Special case: compute parity of codewords belonging to LDPC code

Inner Product w/ Preprocessing

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$

Compute IP in PH^{cc}

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc}

Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ \oplus (equivalently, $f_i(x), g_i(y)$ linear)

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc}

Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ $\odot \oplus$ (equivalently, $f_i(x), g_i(y)$ linear)

Linear sources, AC⁰ circuits

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc} Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ $\odot \oplus$ (equivalently, $f_i(x), g_i(y)$ linear)

- Linear sources, AC⁰ circuits
- No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Cannot compute $\langle x, y \rangle$ in AC⁰ given linear $f_i(x), g_i(y)$

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc} Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ $\odot \oplus$ (equivalently, $f_i(x), g_i(y)$ linear)

- Linear sources, AC⁰ circuits
- No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

AC^{0} circuits cannot distinguish k-wise indistinguishable linear sources

AC^{0} circuits cannot distinguish k-wise indistinguishable linear sources

AC^{0} circuits cannot distinguish k-wise indistinguishable linear sources

Concentrate on OR, decision trees, DNFs

selective failure attacks

selective failure attacks

visual secret sharing [Naor–Shamir 1994]

selective failure attacks

visual secret sharing [Naor-Shamir 1994]

A. 02 12/13 18 32 38 B. 01 02 10 17 25 42 C. 11 18 22 36 37 38 0.12/22/25/28/36/39 E. 09 10 13 19 40 43 F. 05 06 19 20 28 32

k-wise indistinguishable source

ε = distinguishing advantage

122803238 19(11)25 49 Е 09 10 13 19 40 43

k-wise indistinguishable source

ε = distinguishing advantage

Affine sources

Constant k fools OR, decision trees, narrow DNFs

k-wise indistinguishable source

ε = distinguishing advantage

Constant degree Oľ **Constant locality**

Constant k fools OR **Quadratic: decision trees**

Affine sources

Constant k fools OR. decision trees, narrow DNFs

k-wise indistinguishable source

ε = distinguishing advantage

Constant degree Constant locality

Constant k fools OR **Quadratic: decision trees**

Affine sources

Constant k fools OR, decision trees, narrow DNFs

OR distinguishes $k = \sqrt{n}$

Mixture of iid: application Quadratic: $k = polylog(1/\epsilon)$ to visual secret sharing

ε = distinguishing advantage

Constant degree Constant locality

Constant k fools OR **Quadratic: decision trees**

Affine sources

Constant k fools OR, decision trees, narrow DNFs

k-wise indistinguishable source

Degree log n

OR distinguishes $k = \sqrt{n}$

Mixture of iid: application Quadratic: $k = polylog(1/\epsilon)$ to visual secret sharing

ε = distinguishing advantage

Constant degree **Constant locality**

Constant k fools OR **Quadratic: decision trees**

Quadratic: $k = polylog(1/\epsilon)$

Affine sources

Constant k fools OR, decision trees, narrow DNFs

k-wise indistinguishable source

Degree log n

OR distinguishes $k = \sqrt{n}$

Mixture of iid: application to visual secret sharing

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) *Y*: sample *j* according to distribution *q*, then sample *n* iid Bernoulli(β_i)

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample *j* according to distribution *q*, then sample *n* iid Bernoulli(β_i)

k-wise indistinguishability $\iff \mathbb{E} \left[\alpha_i^{\ell} \right] = \mathbb{E} \left[\beta_j^{\ell} \right]$ for all $\ell \leq k$

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample *j* according to distribution *q*, then sample *n* iid Bernoulli(β_i)

k-wise indistinguishability $\iff \mathbb{E} \left[\alpha_i^{\ell} \right] = \mathbb{E} \left[\beta_j^{\ell} \right]$ for all $\ell \leq k$

OR can distinguish: $p_1 = \Omega(1), \alpha_1 = 1,$

$$\beta_j \leq 1 - \Omega\left(\frac{1}{n}\right)$$

Goal: Construct two \sqrt{n} -wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

k-wise indistinguishability $\iff \mathbb{E} \left[\alpha_i^{\ell} \right] = i \sim p$

OR can distinguish: $p_1 = \Omega(1), \alpha_1 = 1,$

Explicit construction — guess α_i, β_i , compute p, q

$$= \mathbb{E}\left[\beta_{j}^{\ell}\right] \text{ for all } \ell \leq k$$

$$\beta_j \leq 1 - \Omega\left(\frac{1}{n}\right)$$

Application: Visual Secret Sharing

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) *Y*: sample *j* according to distribution *q*, then sample *n* iid Bernoulli(β_i)

Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Construct polynomial size decision trees for sampling "reduced precision" X, Y

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Construct polynomial size decision trees for sampling "reduced precision" X, Y

- Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

 - Skipping some technicalities

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Construct polynomial size decision trees for sampling "reduced precision" X, Y

Express each source as disjoint (unambiguous) DNF $T_1 \lor \cdots \lor T_m$

- Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

 - Skipping some technicalities

X: sample *i* according to distribution p, then sample n iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Construct polynomial size decision trees for sampling "reduced precision" X, Y

Express each source as disjoint (unambiguous) DNF $T_1 \lor \cdots \lor T_m$

Reduce degree to $O(\log size) = O(\log n)$ using Razborov–Smolensky encoding

- Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

 - Skipping some technicalities

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Construct polynomial size decision trees for sampling "reduced precision" X, Y

Express each source as disjoint (unambiguous) DNF $T_1 \lor \cdots \lor T_m$

- Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

 - Skipping some technicalities
- Reduce degree to $O(\log size) = O(\log n)$ using Razborov–Smolensky encoding
 - Encode $\ell_1 \wedge \cdots \wedge \ell_w$ as $\prod_k 1 + \sum_j (1 + \ell_j) r_{k,j}$

X: sample *i* according to distribution *p*, then sample *n* iid Bernoulli(α_i) Y: sample j according to distribution q, then sample n iid Bernoulli(β_i)

Construct polynomial size decision trees for sampling "reduced precision" X, Y

Express each source as disjoint (unambiguous) DNF $T_1 \lor \cdots \lor T_m$

Reduce degree to $O(\log size) = O(\log n)$ using Razborov–Smolensky encoding

Encode $\ell_1 \wedge \cdots \wedge \ell_{\nu}$

Sum over all terms (use disjointness)

- Goal: Construct two \sqrt{n} -wise indistinguishable simple sources Z, W distinguished by OR

 - Skipping some technicalities

$$\int_{V} \operatorname{as} \prod_{k} \left| 1 + \sum_{j} (1 + \ell_{j}) r_{k,j} \right|$$

ε = distinguishing advantage

Constant degree Constant locality

Constant k fools OR **Quadratic: decision trees**

Affine sources

Constant k fools OR, decision trees, narrow DNFs

k-wise indistinguishable source

Degree log n

OR distinguishes $k = \sqrt{n}$

Mixture of iid: application Quadratic: $k = polylog(1/\epsilon)$ to visual secret sharing

ε = distinguishing advantage

Affine sources

Constant k fools OR, decision trees, narrow DNFs

OR: $k = \log(1/\epsilon)$

Constant degree Constant locality

Constant k fools OR **Quadratic: decision trees**

Quadratic: $k = polylog(1/\epsilon)$

k-wise indistinguishable source

Degree log n

OR distinguishes $k = \sqrt{n}$

Mixture of iid: application to visual secret sharing

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Reduces problem to understanding a single source

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Reduces problem to understanding a single source

Suppose X, Y are two k-wise indistinguishable simple sources

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Reduces problem to understanding a single source

Suppose X, Y are two k-wise indistinguishable simple sources

S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Reduces problem to understanding a single source

Suppose X, Y are two k-wise indistinguishable simple sources

S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both

 $S, T \text{ are small} \Longrightarrow \Pr[X = 0] \approx \Pr[X|_{S \cup T} = 0] = \Pr[Y|_{S \cup T} = 0] \approx \Pr[Y = 0]$

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Reduces problem to understanding a single source

Suppose X, Y are two k-wise indistinguishable simple sources

S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both

 $S, T \text{ are small} \Longrightarrow \Pr[X = 0] \approx \Pr[X|_{S_{I}}$

Example 1: $X_i = r_0 r_i$

If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

$$_{T} = 0] = \Pr[Y|_{S \cup T} = 0] \approx \Pr[Y = 0]$$

Idea: Value of OR on any simple source "predicted" by small set of coordinates

Formally: Probability that $X_i = 0$ for all $i \in S$ but $X \neq 0$ is at most ε

Reduces problem to understanding a single source

Suppose X, Y are two k-wise indistinguishable simple sources

S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both

 $S, T \text{ are small} \Longrightarrow \Pr[X = 0] \approx \Pr[X|_{S_{L}})$

If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0Example 1: $X_i = r_0 r_i$ Unlikely that $r_i = 0$ for many *i* Example 2: $X_i = r_i$

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

$$_{T} = 0] = \Pr[Y|_{S \cup T} = 0] \approx \Pr[Y = 0]$$

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

Goal: Find small S s.t. probability that $X|_{S} = 0$ but $X \neq 0$ is at most ε

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0
 - Unlikely that $r_i = 0$ for many i

Warm-up: Linear sources

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0
 - Unlikely that $r_i = 0$ for many i

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0
 - Unlikely that $r_i = 0$ for many i

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0

Choose many linearly independent X_i

Sources of low degree or low locality

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0

- Choose many linearly independent X_i

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0

- Choose many linearly independent X_i

- Simple sources: samplable from r_1, r_2, r_3, \dots in constant degree or constant locality

 - If $r_0 r_i = 0$ for many *i* then probably $r_0 = 0$ hence X = 0

Choose basis

Choose many linearly independent X_i

Use to *simplify* source

Choose many "independent" X_i

$ylog(m/\varepsilon)$ -wise indistinguishability ε/m -fools every 1-leaf

ylog(m/ε)-wise indistinguishability ε/m -fools every 1-leaf

$\varepsilon = poly(1/n) \implies polylog(n)$ -wise indistinguishability ε -fools decision tree

ylog(m/ε)-wise indistinguishability ε/m -fools every 1-leaf

 $\varepsilon = poly(1/n) \implies polylog(n)$ -wise indistinguishability ε -fools decision tree

Crucially relies on $k = \text{polylog}(1/\epsilon)!$

Results on DNFs or AC⁰? No barriers for local sources!

Results on DNFs or AC⁰? No barriers for local sources!

- Application: secret-sharing with sharing in NC⁰ and reconstruction in AC⁰ (current best: sharing using decision trees and reconstruction using OR)

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$) Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$)

Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

(n-1)-wise indistinguishable distributions over Σ^n distinguished by AC⁰? Connection to approximate degree breaks down

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$)

Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

(n-1)-wise indistinguishable distributions over $(\{0,1\}^n)^n$ distinguished by AC⁰? Application: secret sharing scheme in AC⁰ with "sharp threshold"

Goal: Find S such that probability that $X|_S = 0$ but $X \neq 0$ is at most ε

Goal: Find S such that probability that $X|_S = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

Goal: Find S such that probability that $X|_{S} = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

If there are many X_i depending on disjoint random bits: done

Goal: Find S such that probability that $X|_{S} = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

If there are many X_i depending on disjoint random bits: done

Otherwise, we found small "hitting set" for entire source

Goal: Find S such that probability that $X|_{S} = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

If there are many X_i depending on disjoint random bits: done

Otherwise, we found small "hitting set" for entire source

Consider every possible setting of hitting set \Longrightarrow locality reduces to s-1

Goal: Find S such that probability that $X|_{S} = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

If there are many X_i depending on disjoint random bits: done

Otherwise, we found small "hitting set" for entire source

Consider every possible setting of hitting set \implies locality reduces to s - 1

Sources samplable in degree d

Goal: Find S such that probability that $X|_S = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

If there are many X_i depending on disjoint random bits: done

Otherwise, we found small "hitting set" for entire source

Consider every possible setting of hitting set \implies locality reduces to s - 1

Sources samplable in degree d

Use higher-order Fourier analysis to implement similar argument

Goal: Find S such that probability that $X|_S = 0$ but $X \neq 0$ is at most ε

Sources samplable in locality s

If there are many X_i depending on disjoint random bits: done

Otherwise, we found small "hitting set" for entire source

Consider every possible setting of hitting set \implies locality reduces to s - 1

Sources samplable in degree d

Use higher-order Fourier analysis to implement similar argument

Quadratic case (d = 2): dedicated argument gives better bounds

