Bounded Indistinguishability for Simple Sources

Andrej Bogdanov

CUHK

K. Dinesh

CUHK

Yuval Filmus

Technion

Yuval Ishai

Technion

Avi
Kaplan
Technion

Akshay
Srinivasan
TIFR

Cast of Characters

$$
X=\left(X_{1}, \ldots, X_{n}\right), Y=\left(Y_{1}, \ldots, Y_{n}\right) \text { distributions on }\{0,1\}^{n}
$$

Cast of Characters

$X=\left(X_{1}, \ldots, X_{n}\right), Y=\left(Y_{1}, \ldots, Y_{n}\right)$ distributions on $\{0,1\}^{n}$
X is k-wise independent if every k coordinates look uniform

Cast of Characters

$X=\left(X_{1}, \ldots, X_{n}\right), Y=\left(Y_{1}, \ldots, Y_{n}\right)$ distributions on $\{0,1\}^{n}$
X is k-wise independent if every k coordinates look uniform
X, Y are k-wise indistinguishable if every k coordinates look the same

Cast of Characters

$X=\left(X_{1}, \ldots, X_{n}\right), Y=\left(Y_{1}, \ldots, Y_{n}\right)$ distributions on $\{0,1\}^{n}$
X is k-wise independent if every k coordinates look uniform
X, Y are k-wise indistinguishable if every k coordinates look the same

$$
X \text { is } k \text {-wise independent if } X, U \text { are } k \text {-wise indistinguishable }
$$

Examples

Uniform distribution on even parity vectors: $(n-1)$-wise independent

Examples

Uniform distribution on even parity vectors: $(n-1)$-wise independent
Uniform distribution on subspace is $(k-1)$-wise independent, where k is dual distance (shortest linear relation)

Examples

Uniform distribution on even parity vectors: $(n-1)$-wise independent Uniform distribution on subspace is $(k-1)$-wise independent, where k is dual distance (shortest linear relation)

$$
X=\left(a_{1}, b_{1}, a_{1}+b_{1}, \ldots, a_{n}, b_{n}, a_{n}+b_{n}\right) \text { is } 2 \text {-wise independent }
$$

Examples

Uniform distribution on even parity vectors: $(n-1)$-wise independent Uniform distribution on subspace is $(k-1)$-wise independent, where k is dual distance (shortest linear relation)

$$
X=\left(a_{1}, b_{1}, a_{1}+b_{1}, \ldots, a_{n}, b_{n}, a_{n}+b_{n}\right) \text { is 2-wise independent }
$$

$$
\left.X\right|_{a_{1}+\cdots+a_{n}=0} \text { and }\left.X\right|_{a_{1}+\cdots+a_{n}=1} \text { are }(n-1) \text {-wise indistinguishable }
$$

Motivation

k-wise independence: derandomization

Motivation

k-wise independence: derandomization
k-wise indistinguishability: secret sharing schemes

Motivation

k-wise independence: derandomization

k-wise indistinguishability: secret sharing schemes

any r parties can recover secret
no k keys leak any information

Motivation

k-wise independence: derandomization

k-wise indistinguishability: secret sharing schemes
any r parties can recover secret P909 no k keys leak any information
k-wise independent secret sharing schemes use linear reconstruction $A C^{0}$ reconstruction requires k-wise indistinguishability

Motivation

k-wise independence: derandomization

k-wise indistinguishability: secret sharing schemes
P甲999 1.9999
any r parties can recover secret no k keys leak any information
k-wise independent secret sharing schemes use linear reconstruction AC^{0} reconstruction requires k-wise indistinguishability
secure multiparty computation and leakage-resilience require share manipulation breaks k-wise independence but not k-wise indistinguishability

[Bogdanov-Ishai-Viola-Williamson 2016]

[Bogdanov-Ishai-Viola-Williamson 2016]

Braverman's theorem:
polylog independence fools $A C^{0}$

Braverman's theorem:
polylog independence fools $A C^{0}$
"Fooling escalation"

Braverman's theorem:
polylog independence fools AC ${ }^{0}$
"Fooling escalation"

Nisan-Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n}-wise indistinguishability doesn't even fool OR!

Braverman's theorem:
polylog independence fools AC ${ }^{0}$
"Fooling escalation"

Nisan-Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n}-wise indistinguishability doesn't even fool OR!

Does Braverman hold for polylog indistinguishable simple sources?

Nisan-Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n}-wise indistinguishability doesn't even fool OR!

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes \downarrow

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of
secure multiparty computation
(also secure hardware etc.)
"Resilience escalation"

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of
secure multiparty computation
(also secure hardware etc.)
"Resilience escalation"
$A C^{0}$ models realistic leakage

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of secure multiparty computation (also secure hardware etc.)
"Resilience escalation"
$A C^{0}$ models realistic leakage

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

Generating shares is simple
$A C^{0}$ models realistic leakage

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of secure multiparty computation (also secure hardware etc.)
"Resilience escalation"
$A C^{0}$ models realistic leakage

No

Low-complexity secret sharing

Generating shares is simple Secret recovery in AC^{0}

Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes Win-Win!

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

No

Low-complexity secret sharing
"Resilience escalation"
$A C^{0}$ models realistic leakage

Generating shares is simple Secret recovery in AC^{0}

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

- local sources

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

- local sources
- linear sources: linear secret sharing

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

- local sources
- linear sources: linear secret sharing
- affine sources: "refreshing" secret sharing

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

- local sources
- linear sources: linear secret sharing
- affine sources: "refreshing" secret sharing
- quadratic sources: secure multiparty computation

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

- local sources
- linear sources: linear secret sharing
- affine sources: "refreshing" secret sharing
- quadratic sources: secure multiparty computation

Simple sources

Sources that are easy to sample given iid uniform random bits $r_{1}, r_{2}, r_{3}, \ldots$

- local sources
- linear sources: linear secret sharing
- affine sources: "refreshing" secret sharing
- quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

Web of Conjectures

Given: class of sources (e.g. affine), class of circuits (e.g. AC)

Web of Conjectures

Given: class of sources (e.g. affine), class of circuits (e.g. ACº

Circuits cannot distinguish k-wise indistinguishable sources

Web of Conjectures

Given: class of sources (e.g. affine), class of circuits (e.g. ACº

Circuits cannot distinguish k-wise indistinguishable sources

Circuits cannot distinguish k-wise indistinguishable sources of the form $\left.X\right|_{r_{1}=0}$ and $\left.X\right|_{r_{1}=1}$ ("cosets")

Web of Conjectures

Given: class of sources (e.g. affine), class of circuits (e.g. AC ${ }^{0}$)

Circuits cannot distinguish k-wise indistinguishable sources

Circuits cannot distinguish k-wise indistinguishable sources of the form $\left.X\right|_{r_{1}=0}$ and $\left.X\right|_{r_{1}=1}$ ("cosets")

No k source bits contain any information on $r_{1} \Rightarrow$ Circuits cannot predict r_{1}

Web of Conjectures

Given: class of sources (e.g. affine), class of circuits (e.g. AC)

Circuits cannot distinguish k-wise indistinguishable sources

Circuits cannot distinguish k-wise indistinguishable sources of the form $\left.X\right|_{r_{1}=0}$ and $\left.X\right|_{r_{1}=1}$ ("cosets")

Web of Conjectures

Given: class of sources (e.g. affine), class of circuits (e.g. AC ${ }^{0}$)

Circuits cannot distinguish k-wise indistinguishable sources

Circuits cannot distinguish k-wise indistinguishable sources of the form $\left.X\right|_{r_{1}=0}$ and $\left.X\right|_{r_{1}=1}$ ("cosets")

No k source bits contain any information on $r_{1} \Rightarrow$ Circuits cannot predict r_{1}
Special case: compute parity of codewords belonging to LDPC code

Inner Product w/ Preprocessing

Inner Product w/ Preprocessing
IPPP: Compute $\langle x, y\rangle$ in AC^{0} given $f_{i}(x), g_{j}(y)$

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y\rangle$ in AC^{0} given $f_{i}(x), g_{j}(y)$

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y\rangle$ in $\mathrm{AC}{ }^{0}$ given $f_{i}(x), g_{j}(y)$
Compute IP in $\mathrm{PH}^{c c}$
Linear IPPP: Compute $\langle x, y\rangle$ in $\mathrm{AC}^{0} \circ \oplus$ (equivalently, $f_{i}(x), g_{j}(y)$ linear)

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y\rangle$ in $\mathrm{AC}{ }^{0}$ given $f_{i}(x), g_{j}(y)$
Compute IP in $\mathrm{PH}^{c \mathrm{c}}$
Linear IPPP: Compute $\langle x, y\rangle$ in $A C^{0} \circ \oplus$ (equivalently, $f_{i}(x), g_{j}(y)$ linear)
Linear sources, $A C^{0}$ circuits
No k source bits contain any information on $r_{1} \Rightarrow$ Circuits cannot predict r_{1}

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y\rangle$ in $\mathrm{AC}{ }^{0}$ given $f_{i}(x), g_{j}(y)$
Compute IP in $\mathrm{PH}^{c \mathrm{c}}$
Linear IPPP: Compute $\langle x, y\rangle$ in $A C^{0} \circ \oplus$ (equivalently, $f_{i}(x), g_{j}(y)$ linear)
Linear sources, $A C^{0}$ circuits
No k source bits contain any information on $r_{1} \Rightarrow$ Circuits cannot predict r_{1}

Cannot compute $\langle x, y\rangle$ for all x in $A C^{0}$ given linear $g_{j}(y)$

Cannot compute $\langle x, y\rangle$ in AC^{0} given linear $f_{i}(x), g_{j}(y)$

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y\rangle$ in $\mathrm{AC}{ }^{0}$ given $f_{i}(x), g_{j}(y)$
Compute IP in $\mathrm{PH}^{c \mathrm{c}}$
Linear IPPP: Compute $\langle x, y\rangle$ in $\mathrm{AC}^{0} \circ \oplus$ (equivalently, $f_{i}(x), g_{j}(y)$ linear)
Linear sources, $A C^{0}$ circuits
No k source bits contain any information on $r_{1} \Rightarrow$ Circuits cannot predict r_{1}

\downarrow

Cannot compute $\langle x, y\rangle$ for all x in AC^{0} given linear $g_{j}(y)$

Cannot compute $\langle x, y\rangle$ in AC^{0} given linear $f_{i}(x), g_{j}(y)$

Barrier

$A C^{0}$ circuits cannot distinguish k-wise indistinguishable linear sources

Cannot compute $\langle x, y\rangle$ in $\mathrm{AC}^{0} \circ \oplus$

Barrier

$A C^{0}$ circuits cannot distinguish k-wise indistinguishable linear sources

Cannot compute $\langle x, y\rangle$ in $\mathrm{AC}^{0} \circ \oplus$

Hard!

Barrier

$A C^{0}$ circuits cannot distinguish k-wise indistinguishable linear sources

Cannot compute $\langle x, y\rangle$ in $\mathrm{AC}^{0} \circ \oplus$

Hard!

Concentrate on OR, decision trees, DNFs

OR is interesting!

OR is interesting!

selective failure attacks

OR is interesting!

selective failure attacks

visual secret sharing [Naor-Shamir 1994]

OR is interesting!

selective failure attacks

visual secret sharing
 [Naor-Shamir 1994]

Our Results

k-wise indistinguishable source
$\varepsilon=$ distinguishing advantage

Our Results

k-wise indistinguishable source
$\varepsilon=$ distinguishing advantage

Affine sources

Constant k fools OR, decision trees, narrow DNFs

OR: $k=\log (1 / \epsilon)$

Our Results

k-wise indistinguishable source
$\varepsilon=$ distinguishing advantage

Affine sources

Constant degree
 or
 Constant locality

Constant k fools OR, decision trees, narrow DNFs

OR: $k=\log (1 / \epsilon) \quad$ Quadratic: $k=\operatorname{poly} \log (1 / \epsilon)$

Our Results

k-wise indistinguishable source
$\varepsilon=$ distinguishing advantage

Affine sources

Constant degree
or
Constant locality

Degree $\log n$

Constant k fools OR
Quadratic: decision trees
OR distinguishes $k=\sqrt{n}$

Mixture of id: application Quadratic: $k=\operatorname{polylog}(1 / \epsilon)$ to visual secret sharing

Our Results

k-wise indistinguishable source
$\varepsilon=$ distinguishing advantage

Affine sources

Constant degree or
 Constant locality

Degree $\log n$

Constant k fools OR
Quadratic: decision trees
OR distinguishes $k=\sqrt{n}$

Mixture of id: application
OR: $k=\log (1 / \epsilon)$
Quadratic: $k=\operatorname{poly} \log (1 / \epsilon)$ to visual secret sharing

Affine sources

Our Results

k-wise indistinguishable source

$$
\varepsilon=\text { distinguishing advantage }
$$

Constant degree or
 Constant locality

Constant k fools OR
Quadratic: decision trees

Degree $\log n$

OR distinguishes $k=\sqrt{n}$

Mixture of id: application

OR: $k=\log (1 / \epsilon)$
Quadratic: $k=$ polylog(1/ $\epsilon)$ to visual secret sharing

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR
Natural idea: Consider symmetric distributions

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR
Natural idea: Consider symmetric distributions
De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR
Natural idea: Consider symmetric distributions
De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)
X: sample i according to distribution p, then sample n iid $\operatorname{Bernoulli}\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

X : sample i according to distribution p, then sample n id $\operatorname{Bernoulli}\left(\alpha_{i}\right)$
Y: sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$
k-wise indistinguishability $\Longleftrightarrow \underset{i \sim p}{\mathbb{E}}\left[\alpha_{i}^{\ell}\right]=\underset{j \sim q}{\mathbb{E}}\left[\beta_{j}^{\ell}\right]$ for all $\ell \leq k$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)

X : sample i according to distribution p, then sample n id $\operatorname{Bernoulli}\left(\alpha_{i}\right)$
Y: sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$
k-wise indistinguishability $\Longleftrightarrow \underset{i \sim p}{\mathbb{E}}\left[\alpha_{i}^{\ell}\right]=\underset{j \sim q}{\mathbb{E}}\left[\beta_{j}^{\ell}\right]$ for all $\ell \leq k$
OR can distinguish: $p_{1}=\Omega(1), \alpha_{1}=1, \beta_{j} \leq 1-\Omega\left(\frac{1}{n}\right)$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable sources X, Y distinguished by OR

Natural idea: Consider symmetric distributions

De Finetti's theorem: Symmetric distributions are mixtures of iid (in the limit)
X: sample i according to distribution p, then sample n id $\operatorname{Bernoulli}\left(\alpha_{i}\right)$
Y: sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$
k-wise indistinguishability $\Longleftrightarrow \underset{i \sim p}{\mathbb{E}}\left[\alpha_{i}^{\ell}\right]=\underset{j \sim q}{\mathbb{E}}\left[\beta_{j}^{\ell}\right]$ for all $\ell \leq k$
OR can distinguish: $p_{1}=\Omega(1), \alpha_{1}=1, \beta_{j} \leq 1-\Omega\left(\frac{1}{n}\right)$
Explicit construction - guess α_{i}, β_{j}, compute p, q

Application: Visual Secret Sharing

OR

X : sample i according to distribution p, then sample n id $\operatorname{Bernoulli}\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid Bernoulli $\left(\beta_{j}\right)$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$
Construct polynomial size decision trees for sampling "reduced precision" X, Y

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid Bernoulli $\left(\beta_{j}\right)$
Construct polynomial size decision trees for sampling "reduced precision" X, Y
Skipping some technicalities

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$
Construct polynomial size decision trees for sampling "reduced precision" X, Y
Skipping some technicalities
Express each source as disjoint (unambiguous) DNF $T_{1} \vee \cdots \vee T_{m}$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid $\operatorname{Bernoulli}\left(\beta_{j}\right)$
Construct polynomial size decision trees for sampling "reduced precision" X, Y
Skipping some technicalities
Express each source as disjoint (unambiguous) DNF $T_{1} \vee \cdots \vee T_{m}$
Reduce degree to $O(\log$ size $)=O(\log n)$ using Razborov-Smolensky encoding

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid Bernoulli $\left(\beta_{j}\right)$
Construct polynomial size decision trees for sampling "reduced precision" X, Y
Skipping some technicalities
Express each source as disjoint (unambiguous) DNF $T_{1} \vee \cdots \vee T_{m}$
Reduce degree to $O(\log$ size $)=O(\log n)$ using Razborov-Smolensky encoding

$$
\text { Encode } \ell_{1} \wedge \cdots \wedge \ell_{w} \text { as } \prod_{k}\left[1+\sum_{j}\left(1+\ell_{j}\right) r_{k, j}\right]
$$

OR distinguishes \sqrt{n}-wise indistinguishable simple sources

Goal: Construct two \sqrt{n}-wise indistinguishable simple sources Z, W distinguished by OR
X : sample i according to distribution p, then sample n iid Bernoulli $\left(\alpha_{i}\right)$
Y : sample j according to distribution q, then sample n iid Bernoulli $\left(\beta_{j}\right)$
Construct polynomial size decision trees for sampling "reduced precision" X, Y
Skipping some technicalities
Express each source as disjoint (unambiguous) DNF $T_{1} \vee \cdots \vee T_{m}$
Reduce degree to $O(\log$ size $)=O(\log n)$ using Razborov-Smolensky encoding
Encode $\ell_{1} \wedge \cdots \wedge \ell_{w}$ as $\prod_{k}\left[1+\sum_{j}\left(1+\ell_{j}\right) r_{k, j}\right]$
Sum over all terms (use disjointness)

Our Results

k-wise indistinguishable source
$\varepsilon=$ distinguishing advantage

Affine sources

Constant degree or
 Constant locality

Degree $\log n$

Constant k fools OR
Quadratic: decision trees
OR distinguishes $k=\sqrt{n}$

Mixture of id: application
OR: $k=\log (1 / \epsilon)$
Quadratic: $k=\operatorname{poly} \log (1 / \epsilon)$ to visual secret sharing

Our Results

k-wise indistinguishable source

$\varepsilon=$ distinguishing advantage

Affine sources

Constant degree or
 Constant locality

Degree $\log n$

Constant k fools OR, decision trees, narrow DNFs

Constant k fools OR
Quadratic: decision trees

OR distinguishes $k=\sqrt{n}$

Mixture of iid: application
$O(1)$-wise indistinguishable simple sources fool OR

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε
Reduces problem to understanding a single source

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε
Reduces problem to understanding a single source
Suppose X, Y are two k-wise indistinguishable simple sources

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε
Reduces problem to understanding a single source
Suppose X, Y are two k-wise indistinguishable simple sources
S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε
Reduces problem to understanding a single source
Suppose X, Y are two k-wise indistinguishable simple sources
S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both
S, T are small $\Longrightarrow \operatorname{Pr}[X=0] \approx \operatorname{Pr}\left[\left.X\right|_{S \cup T}=0\right]=\operatorname{Pr}\left[\left.Y\right|_{S \cup T}=0\right] \approx \operatorname{Pr}[Y=0]$

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε
Reduces problem to understanding a single source
Suppose X, Y are two k-wise indistinguishable simple sources
S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both
S, T are small $\Longrightarrow \operatorname{Pr}[X=0] \approx \operatorname{Pr}\left[\left.X\right|_{S \cup T}=0\right]=\operatorname{Pr}\left[\left.Y\right|_{S \cup T}=0\right] \approx \operatorname{Pr}[Y=0]$
Example 1: $X_{i}=r_{0} r_{i}$
If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Idea: Value of OR on any simple source "predicted" by small set of coordinates
Formally: Probability that $X_{i}=0$ for all $i \in S$ but $X \neq 0$ is at most ε
Reduces problem to understanding a single source
Suppose X, Y are two k-wise indistinguishable simple sources
S predicts X and T predicts $Y \Longrightarrow S \cup T$ predicts both
S, T are small $\Longrightarrow \operatorname{Pr}[X=0] \approx \operatorname{Pr}\left[\left.X\right|_{S \cup T}=0\right]=\operatorname{Pr}\left[\left.Y\right|_{S \cup T}=0\right] \approx \operatorname{Pr}[Y=0]$
Example 1: $X_{i}=r_{0} r_{i}$
If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i
$O(1)$-wise indistinguishable simple sources fool OR

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i
Warm-up: Linear sources

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i
Warm-up: Linear sources
Case 1: Source has low rank Choose basis

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i
Warm-up: Linear sources
Case 1: Source has low rank
Choose basis
Case 2: Source has high rank
Choose many linearly independent X_{i}

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i
Warm-up: Linear sources
Case 1: Source has low rank
Choose basis
Case 2: Source has high rank
Choose many linearly independent X_{i}
Sources of low degree or low locality

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i} \quad$ Unlikely that $r_{i}=0$ for many i
Warm-up: Linear sources
Case 1: Source has low rank
Choose basis
Case 2: Source has high rank
Choose many linearly independent X_{i}
Sources of low degree or low locality
Case 1: Source has low "rank" Use to simplify source

$O(1)$-wise indistinguishable simple sources fool OR

Simple sources: samplable from $r_{1}, r_{2}, r_{3}, \ldots$ in constant degree or constant locality
Goal: Find small S s.t. probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Example 1: $X_{i}=r_{0} r_{i} \quad$ If $r_{0} r_{i}=0$ for many i then probably $r_{0}=0$ hence $X=0$
Example 2: $X_{i}=r_{i}$
Warm-up: Linear sources
Case 1: Source has low rank
Choose basis
Case 2: Source has high rank
Choose many linearly independent X_{i}
Sources of low degree or low locality
Case 1: Source has low "rank" Use to simplify source
Case 2: Source has high "rank" Choose many "independent" X_{i}
polylog-wise indistinguishable quadratic sources fool polynomial size decision trees

Decision tree with m leaves

polylog-wise indistinguishable quadratic sources fool polynomial size decision trees

Decision tree with m leaves

polylog (m / ε)-wise indistinguishability ε / m-fools every 1 -leaf

polylog-wise indistinguishable quadratic sources fool polynomial size decision trees

Decision tree with m leaves

polylog (m / ε)-wise indistinguishability ε / m-fools every 1 -leaf
$\varepsilon=\operatorname{poly}(1 / n) \Longrightarrow$ polylog (n)-wise indistinguishability ε-fools decision tree

polylog-wise indistinguishable quadratic sources fool polynomial size decision trees

Decision tree with m leaves

polylog (m / ε)-wise indistinguishability ε / m-fools every 1 -leaf
$\varepsilon=\operatorname{poly}(1 / n) \Longrightarrow$ polylog (n)-wise indistinguishability ε-fools decision tree
Crucially relies on $k=$ polylog $(1 / \epsilon)$!

Open Questions

Open Questions

Beyond OR

Results on DNFs or AC^{0} ? No barriers for local sources!

Open Questions

Beyond OR

Results on DNFs or AC^{0} ? No barriers for local sources!
Application: secret-sharing with sharing in NC^{0} and reconstruction in AC^{0} (current best: sharing using decision trees and reconstruction using OR)

Open Questions

Beyond OR

Results on DNFs or AC^{0} ? No barriers for local sources! $\mathrm{NC}^{0} / \mathrm{AC}^{0}$ secret-sharing

Web of conjectures

Given linear preprocessing $g_{j}(y)$, which parities of y are computable in AC^{0} ? Linear IPPP: not all - Our conjecture: short linear combinations - Equivalent?

Open Questions

Beyond OR

Results on DNFs or $A C^{0}$? No barriers for local sources! $N C^{0} / A C^{0}$ secret-sharing

Web of conjectures

Given linear preprocessing $g_{j}(y)$, which parities of y are computable in AC^{0} ? Linear IPPP: not all - Our conjecture: short linear combinations - Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

Open Questions

Beyond OR

Results on DNFs or $A C^{0}$? No barriers for local sources! $N C^{0} / A C^{0}$ secret-sharing

Web of conjectures

Given linear preprocessing $g_{j}(y)$, which parities of y are computable in AC^{0} ? Linear IPPP: not all - Our conjecture: short linear combinations - Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$) Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Open Questions

Beyond OR

Results on DNFs or $A C^{0}$? No barriers for local sources! $N C^{0} / A C^{0}$ secret-sharing

Web of conjectures

Given linear preprocessing $g_{j}(y)$, which parities of y are computable in AC^{0} ? Linear IPPP: not all - Our conjecture: short linear combinations - Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

($n-1$)-wise indistinguishable distributions over Σ^{n} distinguished by AC^{0} ?
Connection to approximate degree breaks down

Open Questions

Beyond OR

Results on DNFs or AC^{0} ? No barriers for local sources! NC ${ }^{0} / \mathrm{AC}^{0}$ secret-sharing

Web of conjectures

Given linear preprocessing $g_{j}(y)$, which parities of y are computable in AC^{0} ? Linear IPPP: not all - Our conjecture: short linear combinations - Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

$(n-1)$-wise indistinguishable distributions over $\left(\{0,1\}^{n}\right)^{n}$ distinguished by AC 0 ? Application: secret sharing scheme in AC^{0} with "sharp threshold"
$O(1)$-wise indistinguishable simple sources fool OR

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality s

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality s
If there are many X_{i} depending on disjoint random bits: done

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality S
If there are many X_{i} depending on disjoint random bits: done
Otherwise, we found small "hitting set" for entire source

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality S
If there are many X_{i} depending on disjoint random bits: done
Otherwise, we found small "hitting set" for entire source
Consider every possible setting of hitting set \Longrightarrow locality reduces to $s-1$

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality s
If there are many X_{i} depending on disjoint random bits: done
Otherwise, we found small "hitting set" for entire source
Consider every possible setting of hitting set \Longrightarrow locality reduces to $s-1$
Sources samplable in degree d

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality s
If there are many X_{i} depending on disjoint random bits: done
Otherwise, we found small "hitting set" for entire source
Consider every possible setting of hitting set \Longrightarrow locality reduces to $s-1$
Sources samplable in degree d
Use higher-order Fourier analysis to implement similar argument

$O(1)$-wise indistinguishable simple sources fool OR

Goal: Find S such that probability that $\left.X\right|_{S}=0$ but $X \neq 0$ is at most ε
Sources samplable in locality S
If there are many X_{i} depending on disjoint random bits: done
Otherwise, we found small "hitting set" for entire source
Consider every possible setting of hitting set \Longrightarrow locality reduces to $s-1$
Sources samplable in degree d
Use higher-order Fourier analysis to implement similar argument
Quadratic case $(d=2)$: dedicated argument gives better bounds

