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Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where  is dual distance (shortest linear relation)

(k − 1)
k

 is 2-wise independentX = (a1, b1, a1 + b1, …, an, bn, an + bn)

 and  are -wise indistinguishableX |a1+⋯+an=0 X |a1+⋯+an=1 (n − 1)
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Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

any  parties can recover secretr

no  keys leak any informationk

-wise independent secret sharing schemes use linear reconstruction

 reconstruction requires -wise indistinguishability

k
𝖠𝖢𝟢 k

secure multiparty computation and leakage-resilience require share manipulation

breaks -wise independence but not -wise indistinguishabilityk k
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Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Win–Win!

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢
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Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing
‣ affine sources: “refreshing” secret sharing
‣ quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

] Arise in natural 
crypto protocols

when combining 
different shares
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Circuits cannot distinguish -wise indistinguishable sources 
of the form  and  (“cosets”)

k
X |r1=0 X |r1=1

No  source bits contain any information on  ⇒ Circuits cannot predict k r1 r1
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Special case: compute parity of codewords belonging to LDPC code
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 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

  Cannot compute  in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Concentrate on OR, decision trees, DNFs
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: sample  according to distribution , then sample  iid 

X i p n Bernoulli(αi)
Y j q n Bernoulli(βj)

-wise indistinguishability ⟺  for all k 𝔼
i∼p

[αℓ
i ] = 𝔼

j∼q
[βℓ

j ] ℓ ≤ k

OR can distinguish: p1 = Ω(1), α1 = 1, βj ≤ 1 − Ω( 1
n )

Explicit construction — guess , compute αi, βj p, q
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Reduce degree to  using Razborov–Smolensky encodingO(log 𝗌𝗂𝗓𝖾) = O(log n)

Encode  as ℓ1 ∧ ⋯ ∧ ℓw ∏k [1 + ∑j
(1 + ℓj)rk,j]

Sum over all terms (use disjointness)
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-wise indistinguishable simple sources fool ORO(1)
Simple sources: samplable from  in constant degree or constant localityr1, r2, r3, …
Goal: Find small  s.t. probability that  but  is at most S X |S = 0 X ≠ 0 ε

Example 1: Xi = r0ri

Example 2: Xi = ri

 If  for many  then probably  hence r0ri = 0 i r0 = 0 X = 0
 Unlikely that  for many ri = 0 i

Warm-up: Linear sources
Case 1: Source has low rank  Choose basis
Case 2: Source has high rank  Choose many linearly independent Xi

Sources of low degree or low locality
Case 1: Source has low “rank”  Use to simplify source
Case 2: Source has high “rank”  Choose many “independent” Xi



polylog-wise indistinguishable quadratic sources 
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

Decision tree with  leavesm



polylog-wise indistinguishable quadratic sources 
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

z̄1 ∧ z2 z1 ∧ z3

Decision tree with  leavesm

-wise indistinguishability -fools every 1-leafpolylog(m/ε) ε/m



polylog-wise indistinguishable quadratic sources 
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

z̄1 ∧ z2 z1 ∧ z3

Decision tree with  leavesm

-wise indistinguishability -fools every 1-leafpolylog(m/ε) ε/m

-wise indistinguishability -fools decision treeε = poly(1/n) ⟹ polylog(n) ε



polylog-wise indistinguishable quadratic sources 
fool polynomial size decision trees

z1

z2 z3

0 1 0 1

0 1

0 1 0 1

z̄1 ∧ z2 z1 ∧ z3

Decision tree with  leavesm

-wise indistinguishability -fools every 1-leafpolylog(m/ε) ε/m

-wise indistinguishability -fools decision treeε = poly(1/n) ⟹ polylog(n) ε

Crucially relies on !k = polylog(1/ϵ)
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Open Questions
Beyond OR

Given linear preprocessing , which parities of  are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know:  and )O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean
-wise indistinguishable distributions over  distinguished by ? (n − 1) ({0,1}n)n 𝖠𝖢𝟢

Application: secret sharing scheme in  with “sharp threshold”𝖠𝖢𝟢

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢
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-wise indistinguishable simple sources fool ORO(1)

Sources samplable in locality s

Goal: Find  such that probability that  but  is at most S X |S = 0 X ≠ 0 ε

If there are many  depending on disjoint random bits: doneXi

Otherwise, we found small “hitting set’’ for entire source

Consider every possible setting of hitting set ⟹ locality reduces to s − 1

Sources samplable in degree d

Use higher-order Fourier analysis to implement similar argument

Quadratic case ( ): dedicated argument gives better boundsd = 2


