
An Average-Case Lower Bound against ACC0

Ruiwen Chen∗ Igor C. Oliveira† Rahul Santhanam‡

Department of Computer Science

University of Oxford

November 6, 2017

Abstract

In a seminal work, Williams [26] showed that NEXP (non-deterministic exponential time)
does not have polynomial-size ACC0 circuits. Williams’ technique inherently gives a worst-case
lower bound, and until now, no average-case version of his result was known.

We show that there is a language L in NEXP (resp. EXPNP) and a function ε(n) =
1/ log(n)ω(1) (resp. 1/nΩ(1)) such that no sequence of polynomial size ACC0 circuits solves
L on more than a 1/2 + ε(n) fraction of inputs of length n for all large enough n.

Complementing this result, we give a nontrivial pseudo-random generator against polynomial-
size AC0[6] circuits. We also show that learning algorithms for quasi-polynomial size ACC0 cir-
cuits running in time 2n/nω(1) imply lower bounds for the randomised exponential time classes
RE (randomized time 2O(n) with one-sided error) and ZPE/1 (zero-error randomized time 2O(n)

with 1 bit of advice) against polynomial size ACC0 circuits. This strengthens results of Oliveira
and Santhanam [17].

1 Introduction

1.1 Motivation and Background

Significant advances in unconditional lower bounds are few and far between, specially in non-
monotone boolean circuit models. In the 80s, there was substantial progress in proving circuit lower
bounds for AC0 (constant-depth circuits with unbounded fan-in AND and OR gates) [2, 7, 28, 10]
and AC0[p] (AC0 circuits extended with MODp gates) for p prime [18, 21]. But even the case of
AC0[m] with m composite has remained little understood after decades of investigation, despite our
expectation that MODm gates do not have much computational power.

In a seminal paper from a few years ago, Williams [26] proved a super-polynomial lower bound
against ACC0 (constant-depth circuits with unbounded fan-in AND, OR and MODm gates, for a
fixed but arbitrary m) using a new lower bound technique: the algorithmic method. This result
represents exciting progress on circuit lower bounds after a long gap. However, it has a couple of
drawbacks when compared to previous lower bounds.

∗Email: rwchenmail@gmail.com. Most of this work was conducted while the author was a postdoctoral researcher
at the University of Oxford.
†Email: igor.carboni.oliveira@cs.ox.ac.uk.
‡Email: rahul.santhanam@cs.ox.ac.uk.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 173 (2017)

First, while previous lower bounds were for explicit functions, i.e., functions in P (deterministic
polynomial time), Williams’ lower bound is only known to hold for functions in NEXP [26], or in
closely related classes [27]. (We note that even proving a lower bound for these much larger classes
had been a longstanding open problem.) Unfortunately, the algorithmic method of Williams does
not seem to be easily adaptable to give lower bounds for explicit functions.

Second, previous lower bounds and their subsequent extensions worked also in the average
case setting, i.e., they showed that there were explicit functions which cannot be computed by
polynomial-size circuits on significantly more than half the inputs of any input length. In other
words, even computing the function correctly on a random input is hard. Williams’ lower bound,
on the other hand, only seems to give a worst-case lower bound, meaning that any polynomial-size
family of ACC0 circuits is only guaranteed to fail to compute the hard function in NEXP on a
negligible fraction of inputs of length n, for infinitely many n. The question of strengthening the
existing worst-case ACC0 lower bound to the average case has been recently posed and discussed
in [27] and [1].

1.2 Our Results

Our main result addresses this second drawback of Williams’ lower bound, and strengthen the
main result from [26] to an average-case lower bound.

Theorem 1 (An average-case lower bound against ACC0).
There is a function ε(n) = 1/ log(n)ω(1) such that the following holds. There is a language L in
NEXP such that for any polynomial-size family {Cn} of ACC0 circuits, there are infinitely many n
such that Cn computes L correctly on at most a 1/2 + ε(n) fraction of inputs of length n.

Our proof of Theorem 1 in fact gives a much smaller upper bound on ε(n), but stating this
bound is a bit technical, so we defer it to the main body of the paper.

Before sketching the main ideas behind the proof of Theorem 1, we attempt to explain why the
original proof based on the algorithmic method fails to give an average-case lower bound. Williams’
proof [26] employs an indirect diagonalization technique. The technique exploits Williams’ algo-
rithm solving satisfiability of poly-size ACC0 circuits in time 2n−ω(log(n)) . Assume, for the sake
of contradiction, that NTIME(2n) does have ACC0 circuits of polynomial-size. It can be shown
from this assumption that languages in NTIME(2n) have succinct witnesses, i.e., YES instances
have witnesses which can be represented succinctly by ACC0 circuits of size poly(n). Now we can
use the following guess-and-check procedure to compute any L ∈ NTIME(2n) in non-deterministic
time 2n/nω(1), contradicting the non-deterministic time hierarchy theorem. We guess a poly-size
ACC0 circuit encoding a witness for the instance, and then check that this circuit indeed encodes
a witness by using the satisfiability algorithm for ACC0 circuits. From the fact that the satisfia-
bility algorithm runs in time 2n/nω(1), it follows that this guess-and-check procedure runs in time
2n/nω(1), giving the desired contradiction to the non-deterministic time hierarchy theorem. (This
is just a high-level description – we refer to [26] for more details.)

A crucial step in the above proof is to use the assumption that NEXP is in poly-size ACC0 to get
succinct witnesses for NEXP languages. This step simply does not work if our asssumption is that
NEXP is in poly-size ACC0 on average rather than in the worst case, and the proof fails completely.

It seems difficult to adapt the algorithmic method to get an average-case lower bound, so we try
a different approach. A popular paradigm in complexity-theoretic pseudorandomness is hardness
amplification: transforming a function that is worst-case hard for some class of circuits to a function
that is average-case hard for the same class of circuits. Williams’ result gives us a worst-case lower

2

bound against polynomial-size ACC0 circuits. Can we use hardness amplification to derive an
average-case lower bound from this?

There are a couple of obstacles we need to overcome to make this approach work. First,
hardness amplification typically requires that the class of circuits against which we are performing
amplification can compute the Majority function [20]. We are trying to show an average-case lower
bound against ACC0 circuits, and we do not believe that poly-size ACC0 circuits can compute
Majority. However, while this does preclude us from amplifying to hardness 1/2− 1/poly(n) (i.e.,
showing that any circuits computing the function must fail on a 1/2− 1/poly(n) fraction of inputs)
in a black-box way, we can still hope for weaker hardness amplification results which get us hardness
1/2− o(1). Indeed, using the connection between hardness amplification and list-decodable error-
correcting codes due to Sudan, Trevisan and Vadhan [23], hardness amplification procedures are
known [8, 9] which are applicable in our setting.

Second, and more problematically, the hard function we begin with is in NEXP, and we would
like our new function resulting from hardness amplification also to be in NEXP. If we were to do
hardness amplification in a black-box way starting from a NEXP function, the amplification needs
to be monotone, and it is not hard to see that black-box monotone hardness amplification cannot
even amplify worst-case hardness to hardness 0.99.1

To overcome this obstacle, we use instead a later result of Williams [27], where he shows that
his lower bound [26] also holds for a function in (NE ∩ coNE)/1, i.e., both in NE = NTIME[2O(n)]
and coNE = coNTIME[2O(n)], but with 1 bit of advice depending only on the input length. The
advantage of starting from this later result of Williams is that when standard hardness amplification
is applied, the resulting function stays in (NE ∩ coNE)/1.

This still leaves the problem of eliminating the 1 bit of advice in the upper bound. Doing this in
a naive way would stop us from achieving hardness less than 3/4, but we show how to eliminate the
advice with a negligible loss in our hardness parameter. This concludes our high-level description
of the proof of Theorem 1.

A natural question that arises when we have an average-case lower bound against a circuit
class is whether we can construct pseudo-random generators (PRG) against the circuit class. An
influential paradigm of [15], motivated by a similar paradigm in the cryptographic setting, shows
how to transform average-case hardness into pseudorandomness, and conversely. However, this
is only applicable when we have a hardness parameter ε(n) ≤ 1/nΩ(1), which Theorem 1 fails to
achieve.

More recent work of [6] studies how to derive pseudorandomness from average-case hardness
in cases where the hardness is not strong enough to apply [15]. It is shown in [6] that when the
hard function has a property known as resamplability (a certain form of random self-reducibility),
it is possible to get low-stretch pseudorandom generators with error o(1) even under the weaker
assumption that ε(n) = o(1). We cannot directly apply their result in our setting because it is
unclear if our hard function in NEXP satisfies the resamplability property.

However, by a win-win analysis and a result from [6], we are able to get a low-stretch pseudo-
random generator against AC0[6].2 Ideally, we would like this generator to be computable in
deterministic exponential time, but because our hard function for ACC0 is in (NE ∩ coNE)/1, we
are only able to get computability in strong non-deterministic linear exponential time with 1 bit of
advice.3

1This corresponds to monotone error-correcting codes, which cannot have good distance. We refer to [4] for more
details.

2We stick to modulo 6 gates mostly for simplicity. Our result can be extended to any modulus m for which
Theorem 15 holds. We refer to [6] for more details.

3In other words, the non-deterministic algorithm, when given the correct advice bit (that only depends on the

3

Theorem 2 (A non-deterministic pseudo-random generator against AC0[6]).
For every depth d ≥ 1 and δ > 0, there is a sequence of functions {Gn} computable in (NE∩coNE)/1,
where each Gn : {0, 1}` → {0, 1}n has seed length `(n) = n − n1−δ, for which the following holds.
Let {Cn} be a sequence of AC0[6] circuits, where each Cn has depth ≤ d and size ≤ nd. Then, for
infinitely many values of n,∣∣∣Pry∈{0,1}` [Cn(Gn(y)) = 1]−Prx∈{0,1}n [Cn(x) = 1]

∣∣∣ ≤ o(1).

We observe that, using the pseudo-random generator in Theorem 2, we can get an alternative
proof of a variant of Theorem 1. Since this is obtained in a somewhat more indirect way, we do
not discuss it further.

There are a couple of directions in which we could aspire to strengthen these results. First, in
Theorem 1, we might hope to get a hardness parameter ε(n) = 1/nΩ(1), or even ε(n) = 1/nω(1).
Indeed, we are able to obtain an analogous result with ε(n) = 1/nΩ(1), but for a hard function in
ENP instead of NEXP (Section 4). Nevertheless, getting even stronger results seems to be a difficult
task using existing techniques, for the following reason. Even for the substantially simpler case
of AC0[p] circuits, when p is prime, we do not know how to get ε(n) = o(1/

√
n) for an explicit

function, and showing a stronger hardness result is a long-standing open problem (cf. [22]).
Second, we could hope to get a PRG computable in deterministic linear exponential time in

Theorem 2. But this would imply that EXP is hard on average for poly-size AC0[6] circuits, and so
far we have been unable to show even worst-case hardness against poly-size AC0[6] for EXP. This
brings us back to the first drawback in Williams’ algorithm technique, discussed in Section 1.1, and
which we further explore now.

While substantially improving the explicitness in Williams’ lower bounds [26, 27] and in The-
orem 1 remains a major challenge, [16] recently introduced another approach that could lead to
further progress in this direction. They considered a learning-theoretic analogue of Williams’ ap-
proach. While Williams derives circuit lower bounds from circuit satisfiability algorithms that are
“non-trivial” in that they beat the naive brute force search algorithm, [16] shows implications for
circuit lower bounds from learning algorithms that are similarly non-trivial in that they beat a
brute force learning approach.

We say that a randomized learning algorithm is a non-trivial learner for a circuit class C if it
runs in time bounded by 2n/nω(1). For concreteness and simplicity, we consider learning algorithms
that make membership queries, and that learn under the uniform distribution with error at most
1/n and with failure probability at most 1/n.

For convenience, we use ACC0
d,m(s(n)) to denote the class of boolean functions computable by

depth-d ACC0 circuits over a fixed modulo m and of size ≤ s(n). The following connection between
learning algorithms and non-uniform lower bounds was established in [16].

Proposition 1 (REXP lower bounds from learning sub-exponential size ACC0 circuits [16]).
If for every depth d ≥ 1 and modulo m ≥ 1 there is ε > 0 such that ACC0

d,m(2n
ε
) can be learned in

non-trivial time, then REXP * ACC0.

Recall that REXP ⊆ NEXP is the class of languages decided by one-sided randomized ex-
ponential time algorithms, and that under standard derandomization hypotheses, REXP = EXP.4

Consequently, Proposition 1 offers a potential path to more explicit (worst-case) ACC0 lower bounds

input length parameter), outputs either “abort” of the correct string, and outputs the correct string in at least one
computation path. We refer to Section 2 for more details.

4For a concrete example of the benefits of improving an NEXP lower bound to randomized exponential time classes
such as REXP, we refer the reader to [17].

4

via the design of non-trivial learning algorithms, and it can be seen as another instantiation of the
algorithmic method.5

However, note that the learnability of sub-exponential size circuits is a strong assumption.
Indeed, by the Speedup Lemma of [16], it implies that polynomial size ACC0 circuits can be learned
in quasi-polynomial time, a result that is only known to hold for AC0 and AC0[p] circuits [5]. Ideally,
we would like to get stronger and more explicit lower bounds from much weaker assumptions.

The proof of Proposition 1 relies on a variety of techniques from complexity theory. An im-
portant element in the argument is the use of Williams’ unconditional proof that NEXP * ACC0.
This lower bound is employed as a black-box in the argument from [16], and in Section 8 of the
same work, the authors speculate about the possibility of establishing stronger connections between
non-trivial algorithms and lower bounds by combining ideas from different frameworks.

We present a new application of the interaction between the learning framework of [16], and
the satisfiability framework of Williams [26, 27]. We combine the proofs of existing connections
between non-trivial algorithms and non-uniform lower bounds, and establish the following result.

Theorem 3 (Stronger connection between ACC0-learnability and lower bounds).
Assume that for every fixed choice of parameters d,m, c ≥ 1, the class ACC0

d,m(n(logn)c) can be
non-trivially learned. Then,

RTIME[2O(n)] * ACC0(nlogn) and ZPTIME[2O(n)]/1 * ACC0(nlogn).

We note that the worst-case lower bound for ZPTIME[2O(n)]/1 in Theorem 3 can be strengthened
to an average-case lower bound using the same technique as in the proof of Theorem 1. We
also note that more generally, for any circuit class C closed under composition with AC0 circuits,
such an average-case lower bound against C follows from the existence of non-trivial learning and
satisfiability algorithms for C, using the same proof as for Theorem 3.

Observe that this result strengthens Proposition 1 in a few ways. The assumption is considerably
weaker, and the lower bound is quantitatively stronger. In addition, it provides a lower bound for
zero-error randomized computations with one bit of advice, while in Proposition 1 the randomized
algorithm computing the hard function makes mistakes. Interestingly, Theorem 3 is not known to
hold for other circuit classes, and its proof explores specific results about ACC0 circuits in a crucial
way.

We note that there is a connection between non-trivial algorithms and non-uniform lower bounds
for ZPEXP, but it assumes the existence of P-natural properties useful against sub-exponential size
circuits (see Theorem 44 from [16], and also [11]). Although in Theorem 3 the uniformity over the
hard language is not as strong (i.e., REXP and ZPEXP/1 versus ZPEXP), it almost matches the
uniformity condition, while its assumption is considerably weaker.

Organization. We introduce definitions, notation, and some necessary technical results in the
following section. In Section 3, we explore Williams’ proof that (NE ∩ coNE)/1 * ACC0 [27],
alluded to in the discussion above. We obtain slightly better bounds by using a more careful choice
of parameters, which is important in the proof of Theorem 1 and its extensions. Crucially, we
extract from his argument a stronger technical consequence (Lemma 1) that plays a fundamental
role in the proof of Theorem 3. We then present the proofs of Theorems 1, 2, and 3 and their
consequences in Sections 4, 5, and 6, respectively.

5The design of concrete non-trivial learning algorithms for some circuit classes and in some alternative but related
learning models has been recently investigated in [19].

5

2 Preliminaries

2.1 Complexity Classes and Basic Definitions

Let TIME[t(n)] be the classes of languages decided by deterministic Turing machines (TM)
running in time O(t(n)), and let NTIME[t(n)] be the class of languages decided by non-deterministic
Turing machines (NTM) running in time O(t(n)). We use standard notions of complexity classes,
such as P, NP, EXP, NEXP, etc. In particular, E = TIME[2O(n)], NE = NTIME[2O(n)], and L is
the class of languages computable in (uniform) logarithmic space. A function t : N → N is time-
constructible if there is a TM M , which on input 1n outputs t(n) in time O(t(n)). We sometimes
informally use the term algorithm instead of Turing machines. We refer to a textbook such as [3]
for more background in complexity theory.

A strong non-deterministic Turing machine (SNTM) is a NTM where each branch of the com-
putation has one of three possible outputs: 0, 1, and ‘?’. We say that a SNTM M decides a
language L if the following promise holds: if x ∈ L, each branch ends with 1 or ‘?’, and at least
one branch ends with 1; if x /∈ L, each branch ends with 0 or ‘?’, and at least one branch ends with
0. It is easy to see that a language L ∈ NE ∩ coNE if and only if L is decided by a SNTM in time
2O(n). When we say that a sequence of functions Gn : {0, 1}` → {0, 1}n is computed by a SNTM
M , we formally mean that the language LG ⊆ {0, 1}? that encodes {Gn} is computed by M , where
LG is defined in a natural way. For concreteness, we let LG be the set of strings encoding tuples
〈1n, y, i, b〉, where b ∈ {0, 1}, y ∈ {0, 1}`(n), i ∈ [n], and Gn(y)i = b. We assume that the tuples
obtained from each choice of the parameter n have all the same length as strings in {0, 1}? (this is
relevant when defining computation with advice below).

We define advice classes as follows. For a deterministic or non-deterministic uniform complexity
class C and a function α(n), the class C/α(n) is the set of languages L such that there is a language
L′ ∈ C and a sequence of strings {an} with |an| = α(n) which satisfy that L(x) = L′(x, a|x|) for all
strings x ∈ {0, 1}?.

For semantic classes C (such as BPP, NE∩coNE, etc.) with advice, we only require the promise
condition for the class C to hold when the correct advice is given. For example, a language L is in
(NE ∩ coNE)/α(n) if there is a SNTM M running in time 2O(n) and a sequence of advice strings
{an} with |an| = α(n) such that, on each input x, the computation paths of M(x, a|x|) satisfy the
promise condition in the definition of SNTMs. Note that M running with incorrect advice may not
satisfy the promise on its branches.

We also define infinitely often classes. For a (syntactic) deterministic or non-deterministic class
C, the class i.o.C is the set of languages L for which there is a language L′ ∈ C such that, for infinitely
many values of n, L ∩ {0, 1}n = L′ ∩ {0, 1}n. For a semantic class C, we relax the definition, and
let i.o.C be the class of languages L decided by a Turing machine M such that, for infinitely many
input lengths n, M is of type C on inputs of length n (i.e., it satisfies the corresponding promise).
Note that M might not be of type C on other input lengths.

We use standard notation for circuit classes. In particular, AC0 is the class of circuit families of
constant depth and polynomial size, with AND, OR, and NOT gates, where AND and OR gates
have unbounded fan-in. AC0[m] extends AC0 by allowing unbounded fan-in MODm gates, where

m is fixed, and ACC0 def
=
⋃
m AC0[m] (we often write AC0[m] and ACC0[m] interchangeably). For

convenience, we use Cd(s) to restrict a circuit class to circuits of depth ≤ d and size ≤ s. Finally,
recall that NC1 is the class of circuit families of logarithmic depth and polynomial size with AND,
OR, and NOT gates, where the gates have bounded fan-in. We often deliberately conflate a class of
circuit families with the class of languages computed by the circuit families. These circuit families
are all non-uniform, unless otherwise stated.

6

We say that a language L is γ(n)-hard for a circuit class C if for each L′ ∈ C and for infinitely
many values of n, Prx∈{0,1}n [L(x) = L′(x)] ≤ 1− γ(n). Finally, a class Γ is γ(n)-hard for C if there
is a language in Γ that is γ(n)-hard for C.

In Section 6, we show some consequences of learnability. Our model of learnability here is
randomized learning with membership queries – the learner is given access to an oracle for the
target function on the given input length n, and is allowed to make arbitrary queries to the oracle.
The task of the learner is to output with probability 1 − o(1) a hypothesis which agrees with the
oracle on a 1− o(1) fraction of inputs of length n.

Given a circuit class C, a size bound s and a time bound T , we say that C[s(n)] is learnable
in time T if there is a learner running in time T (n) which succeeds given any oracle computed by
circuits from C of size s(n). We say that C[s(n)] is non-trivially learnable if it is learnable in time
2n/nω(1). Note that the class of all Boolean functions is trivially learnable in time O(2n) with this
definition of learnability, just by querying every input of length n and outputting the truth table.
Non-trivial learnability corresponds to learners that are just marginally more efficient than this.

For more detailed definitions of concepts in this learning model, see [16].

2.2 ACC0 Lower Bounds and Pseudorandomness

We recall the following ACC0 circuit lower bounds.

Theorem 4 ([26]). For every d ≥ 1 and m ≥ 1, there is a δ > 0 and a language in ENP that is not

computable by a sequence of ACC0[m] circuits of depth d and size O(2n
δ
).

Theorem 5 ([27]). There is a language in (NE∩coNE)/1 that does not admit ACC0 circuits of size
O(nlogn).

The results in Section 3 make use of the following connection between hard functions and
pseudo-random generators.

Theorem 6 ([25]). There is a fixed constant λ ≥ 1 and a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
such that, for every s ∈ N and Y ∈ {0, 1}∗, where Y viewed as the truth-table of a Boolean function
requires circuits of size ≥ sλ, and for all circuits C of size ≤ s,∣∣∣Prx∈{0,1}λ log |Y | [C(G(Y, x)) = 1]−Prw∈{0,1}s [C(w) = 1]

∣∣∣ ≤ 1/s.

In addition, G can be computed in deterministic time poly(|Y |).

2.3 Error Correcting Codes and Hardness Amplification

We follow part of the terminology from [9]. For our applications in Section 4, we need error
correcting codes with certain special properties that admit a uniform encoding procedure, but
whose decoding can be non-uniform.

Definition 1 (Local-list-decoding in error correcting codes). We say that a family {CM}M of
functions CM : {0, 1}M → {0, 1}N is a (d, L)-locally-list-decodable code if there is an oracle Turing
machine D that takes an index i ∈ [M], advice a ∈ [L], and a random string r, and for which the
following holds. For every input x ∈ {0, 1}M and y ∈ {0, 1}N for which ∆(CM (x), y) ≤ d, there
exists a ∈ [L] such that, for all i ∈ [M],

Prr[D
y(i, a, r) = xi] > 9/10.

7

Here ∆(w1, w2) ∈ [0, 1] is the relative hamming distance between strings w1 and w2, and one should
think of N = N(M), d = d(M), etc. as a sequence of parameters indexed by M . We say that a
code of this form is explicit if it can be computed in time poly(N(M)).

We will need results on hardness amplification and constructions of efficient error correcting
codes.

Definition 2 (Black-box hardness amplification). A (1/2− ε, δ)-black-box hardness amplification
from input length k to input length n is a pair (Amp,Dec) where Amp is an oracle Turing machine
that computes a (sequence of) boolean function on n bits, Dec is a randomized oracle Turing machine
on k bits which also takes an advice string of length a, and for which the following holds. For every
pair of functions f : {0, 1}k → {0, 1} and h : {0, 1}n → {0, 1} such that

Prx∼{0,1}n [h(x) = Ampf (x)] > 1/2 + ε,

there is an advice string α ∈ {0, 1}a such that

Prx∼{0,1}k,Dec[Dec
h(x, α) = f(x)] > 1− δ.

(We will also view Dech as a non-uniform oracle boolean circuit. Observe that if δ = 2−k then
there is a way to fix the randomness and the advice string of Dech so that it correctly computes f
on every input x ∈ {0, 1}k.6)

The following is a well-known connection [23] between fully black-box hardness amplification
and binary locally-list-decodable codes. (We will not formally specify all details of this reduction
since this is a standard construction.)

Theorem 7 (Connection between hardness amplification and local-list-decodable codes).
If there is a (1/2 − ε, L)-locally list decodable code C : {0, 1}K → {0, 1}N with a corresponding
decoder D then there is a (1/2 − ε, 2−k)-black-box hardness amplification procedure from length
k = logK to length n = logN , where Amp is defined by the encoder of C, and Dec is defined by
the decoder D with advice length a = logL.

We need the following construction of list-decodable codes (and corresponding hardness ampli-
fication procedure).

Theorem 8 (Efficient construction of locally-list-decodable codes [8, 9]). For every choice of
exp(−Θ(

√
logM)) ≤ ε < 1/2, there is an explicit (1/2 − ε, poly(1/ε))-locally-list-decodable code

CM : {0, 1}M → {0, 1}poly(M) with a local decoder that can be implemented by a family of constant-
depth circuits of size poly(logM, 1/ε) using majority gates of fan-in Θ(1/ε) and AND/OR gates of
unbounded fan-in.

We can get the following AC0 decoder by a standard simulation of majority gates using large
AC0 circuits.

Corollary 1 (Limited hardness amplification via constant-depth circuits of bounded size).
For every parameter exp(−Θ(

√
logM)) ≤ ε < 1/2 and each large enough constant d, there is

an explicit (1/2 − ε, poly(1/ε))-locally-list-decodable code CM : {0, 1}M → {0, 1}poly(M) with a local
decoder that can be implemented by AC0 circuits of size poly(logM, exp((1/ε)O(1/d))) and depth at
most d.

6Note that the process of amplifying the success probability of randomized algorithms and fixing the randomness
can be done with only an AC0 overhead on the overall complexity, since approximate majority functions can be
computed in this circuit class.

8

Corollary 1 and the connection to hardness amplification are the crucial results needed in Section
4. We will implicitly use these locally-list-decodable codes in order to amplify from worst-case
hardness to average-case hardness.

3 Stronger Consequences from Williams’ Lower Bound Argument

In this section, we aim to improve Williams’ size lower bound [27] from nlogn to sub-third-
exponential size. The argument closely follows his presentation, but our choice of parameters
will allow us later on to prove Theorem 1 and its extensions. We also extract a certain stronger
formulation of his lower bound (Lemma 1 below) that plays an important role in Section 6.

We need the following technical definitions. A function f : N→ N is sub-half-exponential if for
every fixed k ≥ 1, f(f(nk)k) ≤ 2n

o(1)
. Similarly, a function g : N→ N is sub-third-exponential if for

every fixed k ≥ 1, g(g(g(nk)k)k) ≤ 2n
o(1)

. For instance, for a fixed integer a ≥ 1, g(n)
def
= 2(logn)a is

sub-third-exponential. For technical reasons, throughout this section we will restrict our attention
to time-constructible functions only, even when this is not explicitly stated.

We introduce some definitions to capture languages with witnesses encoded by circuits. We say
that an algorithm V (x, y) is a good predicate for a language L ∈ NTIME[t(n)] if

• V runs in time at most poly(|y|+ t(|x|));

• For every input x ∈ {0, 1}?, x ∈ L if and only if there is (a witness string) y such that
V (x, y) = 1, where for convenience we assume that the length of y is a power of two, and that
|y| ≥ Ω(t(|x|)) for every witness.

Clearly, for each L ∈ NTIME[t(n)], there is at least one good predicate for L. Let V be such
a predicate, and C be a circuit class, such as ACC0. We say V has C-witnesses of size s(n) if for
every x, if x ∈ L then there is a C-circuit Cx of size ≤ s(n) such that V (x, tt(Cx)) = 1, where
tt(Cx) is the string that encode the truth-table of the function computed by Cx. Similarly, L has
C-witnesses of size s(n) if for every good predicate V for L, V admits C-witnesses of size ≤ s(n).

Recall that a language L ⊆ {0, 1}? is unary if it only contains strings of the form 1`, for different
values of `.

Theorem 9 (A variant of Corollary 4.2 from [27]). For every fixed depth d ≥ 1 and modulus
m ≥ 1, there is ε > 0 and an (infinite) unary language Lu in NTIME[2n] that does not have witness
strings encoded by AC0[m] circuits of depth ≤ d and size O(2n

ε
).

In Corollary 4.2 of [27], the same result is stated under the additional assumption that P
admits ACC0 circuits of size nlogn. This extra hypothesis is used to show that general circuits
can be simulated by ACC0 circuits of appropriate size, an important ingredient in the proof. The
assumption is no longer necessary, thanks to the more efficient reduction presented in [12].

The Circuit Approximation Probability Problem (CAPP) is defined as follows: Given a
boolean circuit C, compute a rational number p ∈ [0, 1] (represented as a binary string) such that∣∣Prx[C(x) = 1]− p

∣∣ ≤ 1/6.
In order to simplify our next statement, we will abuse notation, and for an increasing function

S : N→ N, we use S−1(b) to denote the least element a ∈ N such that S(a) ≥ b.

Theorem 10 (Analogue of Theorem 4.1 in [27]). Suppose P has ACC0 circuits of size t(n). Let
S(n) ≥ s(n)λ ≥ n be an increasing function such that t(10 · S(n) logS(n))) ≤ 2n

ε
, for each fixed

ε > 0 and every large enough n, where λ ≥ 1 is the constant in Theorem 6. Then, for infinitely
many values of n, CAPP on circuits of size ≤ s(n) and over n input variables is computable in

nondeterministic time poly(n, 2S
−1(s(n)λ)).

9

Williams [27] established a similar result using t(n) = nlogn, and here we verify this more
general version.

Sketch of the proof of Theorem 10. Recall the definition of the Circuit Evaluation Problem
(CEP): Given a boolean circuit C and a string x, each encoded by a string of length ≤ n, decide
if C(x) = 1. Clearly, CEP is in P. If P ⊆ E admits ACC0 circuits of size t(n), then CEP has
AC0[m?] circuits of depth d? and size t(O(n)), for fixed d?,m? ≥ 1. This implies that any circuit
C of size ≤ S on n ≤ S input bits can be converted to an AC0[m?] circuit of depth ≤ d? and size
≤ t(10 · S logS), by plugging in the description of C into the corresponding inputs of the AC0[m?]
circuit solving the Circuit Evaluation Problem.

By Theorem 9, we know that there is ε > 0 and an infinite unary language Lu ∈ NTIME[2n]
that does not admit witnesses encoded by AC0[m?] circuits of depth ≤ d? and size ≤ 2n

ε
. By the

preceding paragraph, Lu does not have witnesses encoded by unrestricted circuits of size ≤ S, using
the assumption that t(10 ·S logS)) ≤ 2n

ε
. Accordingly, let V be a good predicate for Lu that does

not admit such witnesses for infinitely many values of n.
In order to complete the proof, we rely on the pseudorandom generator G from Theorem 6. It

follows from this result using standard techniques that to solve CAPP over circuits of size s = s(n),
it is sufficient to obtain a string Y that encodes a function of circuit complexity at least sλ. The
overall running time of the resulting CAPP algorithm is then poly(n, 2λ·log |Y |) = poly(n, |Y |).

We obtain a hard truth-table nondeterministically using the good predicate V , in the following
way. Since Lu is infinite, unary, and V does not admit witnesses of circuit size ≤ S infinitely often,
there is an infinite set A ⊆ N such that, for every ` ∈ A, V (1`, Y`) = 1 for some Y` of length 2Θ(`),
and moreover, Y` has circuit complexity larger than S(`). Thus we can solve CAPP infinitely often
on circuits of size s(n) if we succeed in guessing a string Y` such that V (1`, Y`) = 1, ` ∈ A, and
S(`) ≥ s(n)λ. For this to happen, since S(·) is increasing it is enough to run the CAPP routine
just described on the first input 1` such that S(`) ≥ s(n)λ, which gives `(n) ≤ S−1(s(n)λ). The
value `(n) can be found by binary search. This nondeterministic algorithm succeeds infinitely often,
using that S−1(s(n)λ) is surjective over N as a function in n. Finally, it has complexity at most

poly(n, |Y |) = poly(n, 2Θ(`)) = poly(n, 2S
−1(s(n)λ)).

Before describing the main result of this section and its proof, we need one last ingredient.

Theorem 11 (A parameterized version of “EXP ⊆ P/poly implies EXP = MA” [14]).
Let g(n) ≥ 2n and s(n) ≥ n be time-constructible functions. There is a fixed c ≥ 1 for which the
following holds. If TIME[2O(n)] ⊆ SIZE[s(n)], then TIME[g(n)] ⊆ MATIME[s(c · log g(n))c].

The following extension of Theorem 5 holds.

Theorem 12 (Sub-third-exponential lower bounds against ACC0).
(NE ∩ coNE)/1 does not have ACC0 circuits of sub-third-exponential size.

Proof. The proof is by contradiction. Suppose that (NE ∩ coNE)/1 ⊆ ACC0[t(n)], where t(n) is
sub-third-exponential. This assumption implies in particular that:

E = DTIME[2O(n)] ⊆ ACC0[t(n)] ⊆ SIZE[t(n)O(1)].

By Theorem 11, taking g(n) = 2t(n)2 and s(n) = t(n)O(1),

DTIME[2t(n)2] ⊆ MATIME[t(t(n)O(1))O(1)].

10

Since a deterministic time complexity class is closed under complementation,

DTIME[2t(n)2] ⊆ coMATIME[t(t(n)O(1))O(1)].

Consequently, for an arbitrary language L ∈ DTIME[2t(n)2], both L and its complement L can be
decided by Merlin-Arthur protocols of complexity at most t(t(n)O(1))O(1).

We next design a nondeterministic algorithm for L, by derandomizing the Merlin-Arthur proto-
col via Theorem 10. We take a circuit C(x, y, z) of size s(n) = t(t(n)O(1))O(1) encoding the predicate
of the Merlin-Arthur game for L. That is, C takes input x, Merlin’s string y, and Arthur’s string z,
where x has length n, and y, z both have length ≤ s(n). Our nondeterministic algorithm for L first
guesses Merlin’s string y, then simulates Arthur’s string z using the pseudorandom generator for
C(x, y, ·). In order to apply Theorem 10, we choose S(n) = s(n)λ. Using our assumptions, E has

ACC0 circuits of size at most t(n), 2O(S−1(s(n)λ)) = 2O(n), and t(10 · S(n) logS(n)) ≤ 2n
o(1)

, since
t(n) is sub-third-exponential. Therefore, CAPP on circuits of size s(n) and over n input variables is
in NE = NTIME[2O(n)] for infinitely many values of n. Let A ⊆ N be the set of such input lengths.
In particular, L (and also its complement L) can be simulated infinitely often in NE∩coNE. We can
define two nondeterministic Turing machines M and M ′ which take (the same) one bit of advice
(indicating whether an input length is in A) such that M accepts L and M ′ accepts L on every input
length n ∈ A. Thus, given a language L ∈ TIME[2t(n)2], there is a language L? ∈ (NE ∩ coNE)/1
which agrees with L on infinitely many input lengths. That is,

DTIME[2t(n)2] ⊆ i.o.((NE ∩ coNE)/1).

Assuming (NE∩ coNE)/1 has circuits of size t(n) on every large enough input length, we imme-
diately obtain from the preceding class inclusion that

DTIME[2t(n)2] ⊆ i.o.SIZE[t(n)].

However, this is a contradiction by a standard diagonalization argument. Indeed, we can define
a language Lhard ∈ TIME[2t(n)2] which does not have circuits of size t(n) on every large enough
input length n. That is, for every n, we determine the lexicographically first boolean function fn
which does not have circuits of size t(n) by enumerating all circuits of size at most t(n) and listing

their truth tables in time O(2t(n)2), and let Lhard(x)
def
= f|x|(x). This can be done since by our

assumptions t(n) is constructive and t(n) � 2n/n, thus a hard truth table exists for every large
enough n. This completes the proof of Theorem 12.

In Section 6, we will need a slightly more technical formulation of the ACC0 lower bound.

Lemma 1 (A consequence of the proof of Theorem 12).
There exists a constant k ≥ 1 for which at least one of the following separations hold:

E * ACC0[nlogn] or NTIME[n(logn)k]/1 ∩ coNTIME[n(logn)k]/1 * ACC0(nlogn).

Also, in case the second separation holds, it is witnessed by a language L ∈ NTIME[n(logn)k]/1 ∩
coNTIME[n(logn)k]/1 that can be decided by non-deterministic Turing machines using the same
advice sequence α(n) : N→ {0, 1}.

Proof Sketch. This is implicit in the proof of Theorem 12, under the particular choice of t(n) =
nlogn, and consequent optimization of the definition of S(n). It is enough to observe that the
negation of the statement of Lemma 1 is sufficient to obtain a contradiction. The existence of
the advice sequence α(n) is immediate from the proof. (It is also possible to check this by closely
following the argument and parameters in [27].)

11

4 Average-Case Lower Bounds against ACC0

We start off by showing a (1/2− 1/nΩ(1))-hardness result for ENP.

Theorem 13 (An average-case lower bound for ENP). For every d ≥ 1 and m ≥ 1, there is a γ > 0
and a language in ENP that is (1/2 − 1/nγ)-hard for nonuniform AC0[m] circuits of depth d and
size 2n

γ
.

Proof. Given a sufficiently large d ≥ 1 and a fixed modulo m, let Ld ∈ ENP be the language
guaranteed to exist by Theorem 4, and δ = δ(d,m) > 0 be the corresponding constant. In other

words, Ld is not computed by AC0[m] circuits of depth d and size 2n
δ

for infinitely many values
of n. For a function ε′ = ε′(M ′) ≥ exp(−Θ(

√
logM ′)) to be fixed later in the proof, and d′

sufficiently large (but smaller than d), let {CM ′} be the sequence of explicit error-correcting codes
provided by Corollary 1, where each CM ′ : {0, 1}M

′ → {0, 1}N , and N(M ′) = M ′c for a fixed
positive integer c ≥ 1. Consider a new language L? that depends on Ld and on {CM ′}, defined
as follows. Given x ∈ {0, 1}n, if n is not of the form cm′ for some m′ ∈ N, then x is not in L?.

Otherwise, let T ∈ {0, 1}2m
′

be the truth-table of Ld on m′-bit inputs, and consider the codeword
CM ′(T) ∈ {0, 1}N , where M ′ = 2m

′
and N = M ′c = 2cm

′
= 2n. Then x ∈ L? if and only if the

entry of CM ′(T) indexed by x is 1. This completes the description of L?.
Given that Ld ∈ ENP and CM ′ can be computed in deterministic time poly(M ′), we can compute

L? in ENP as follows. Let x be an input of length N , on which we wish to solve L?. First, check
if N = M ′c for some integer M ′. If not, output 0. Otherwise, compute the truth table T of Ld on
input length M ′ by running the ENP machine for Ld on every possible input of length M ′. Then
compute CM ′(T) and output the x’th bit of that string. The computation of T can be done in ENP

as it involves at most 2N runs of an ENP machine on inputs of length ≤ N , and the computation of
CM ′(T) can be done in time 2O(N) just using the efficiency guarantee for CM ′ . Hence the procedure
described above can be implemented in ENP.

Now we show that L? has the claimed average-case hardness. For n = cm′ and M ′ = 2m
′

as

above, we set ε′(M ′)
def
= 1/n2γ � exp(−Θ(

√
logM ′)), where 0 < γ < δ/2 is a sufficiently small

constant. We claim that L? cannot be computed with advantage larger than 1/nγ on infinitely
many input lengths by AC0[m] circuits of depth ≤ d and size ≤ 2n

γ
. This follows by the properties

of the code CM ′ and the connection to hardness amplification. Indeed, if for all large n of the form
cm′ the boolean function computed by L?n could be approximated by such circuits, by hardcoding
their descriptions into the AC0 local decoders provided by Corollary 1 it would follow that for all
large n the language Ld is (worst-case) computable by AC0[m] circuits of depth ≤ d and size ≤ 2n

δ
,

a contradiction. (This last step crucially uses that γ is sufficiently small compared to the other
parameters, and the size bound in Corollary 1.)

Next, we address the more difficult problem of showing an average-case lower bound for NEXP.
We first establish a lower bound for (NE ∩ coNE)/1, and then show how to remove the advice.

Lemma 2. (NE ∩ coNE)/1 is (1/2 − 1/ log(t(n)))-hard for ACC0 circuits of size t(n), for any
(time-constructible) sub-third-exponential function t(n).

Proof. The argument follows the same high-level approach of Theorem 13, so we use the same
notation and only describe the relevant differences. By Theorem 12, there is a language L ∈
(NE∩coNE)/1 that is not computable by ACC0 circuits of sub-third-exponential size t(n). Similarly,
we define a language L? obtained from L and the locally-list-decodable codes provided by Corollary
1. We need to make sure the new language is still computable in (NE ∩ coNE)/1, and explain the
choice of parameters in the construction.

12

Since L ∈ (NE ∩ coNE)/1, there is a strong non-deterministic Turing machine (SNTM) S with
one bit of advice computing L. Let the advice sequence for M be α(·), where |α(n)| = 1 for all
n ∈ N. We define an SNTM S′ with one bit of advice computing L?. S′ acts as follows on input x
of length N . It checks if N = M ′c for some integer M ′. If not, it rejects. If yes, it simulates S with
advice α(M ′) on each input of length M ′. The advice α(M ′) is the advice bit for S′ - note that N
completely determines M ′ and hence α(M ′). If any of these simulations outputs ’?’, it outputs ’?’
and halts. If all of these simulations output non-’?’ values, S′ uses the results of its simulations
of S to compute the truth table T of L on input length M ′, and applies the mapping CM ′ to this
string. It then outputs the bit with index x of the resulting string.

We need to show that S′ is an SNTM with one bit of advice deciding L? correctly in time 2O(N).
By definition of S′, and using the fact that S is an SNTM with one bit of advice, we have that
whenever S′ computes a string T , this is the correct truth table of L on inputs of length M ′, if S′

uses advice β(N) = α(M ′). Moreover, this happens on at least one computation path of S, using
the fact that S′ is an SNTM with one bit of advice. On any such computation path, the correct
value L?(x) is output, as S′ is completely deterministic after computing T , and using the definition
of L?. The time taken by S′ is 2O(n), as it simulates S on inputs of length ≤ N at most 2N times,
and using the efficiency guarantee on CM ′ .

Finally, we sketch the choice of parameters in the hardness amplification, which correspond
to the parameters in the construction of L? via the error-correcting code provided by Corollary
1. Following the notation in the proof of Theorem 13, we let ε(M ′) be of order 1/ log(t(βn)β),
where β > 0 is sufficiently small. Under this definition, observe that the circuit complexity
overhead coming from the decoder in the analysis of the average-case hardness of L? is at most
poly(n, exp(1/ε′)) ≤ poly(n, exp(log t(βn)β)) ≤ t(n)γ , for a fixed but arbitrarily small γ > 0 that
depends on β. This implies that L? is 1/ log t(Ω(n))Ω(1)-hard against circuits of size t(n)Ω(1). Since
our original sub-third-exponential function t(n) was arbitrary and after composition with polyno-
mials a function remains in this class, the proof is complete.

We give a generic way to eliminate advice from the upper bound for average-case hardness
results. The specific case considered below involves 1 bit of advice, but a similar proof works for
up to o(log(n)) bits of advice.

Lemma 3. If NE/1 is (1/2−ε(n))-hard for C circuits of size s(n), then NE is (1/2−ε(bn/2c))-hard
for C circuits of size s(bn/2c).

Proof. Let L be a language in NE/1 which is (1/2− ε)-hard for C circuits of size s(n). Suppose L is
decided by a NTM M running in nondeterministic time 2O(n) and taking advice bits {bn}, where
|bn| = 1. In other words, for every string x, we have L(x) = M(x, b|x|).

Define a new language L′ as follows. We divide the input string z in the middle, and denote it
by xy, where either |y| = |x| (when |z| is even) or |y| = |x|+ 1 (when |z| is odd). Then we decide
by running M on the first half x, using an advice bit which depends only on the length of y. More
precisely, we let

L′(xy)
def
=

{
M(x, 0), if |y| = |x|;
M(x, 1), if |y| = |x|+ 1.

Obviously, L′ is in NE by simulating M .
We show that if Ln is hard to approximate, then either L′2n or L′2n+1 is also hard to approximate.

For contradiction, suppose that both L′2n and L′2n+1 can be computed correctly on more than a
1/2 + ε fraction of inputs by circuits of size s. If the advice bit bn = 0, let C0 be a circuit of size
s such that Prxy[L

′
2n(xy) = C0(xy)] > 1/2 + ε, where x and y are both chosen independently and

13

uniformly at random from {0, 1}n. By an averaging argument, there is a specific y? such that by
fixing y = y?, Prx[L′2n(xy?) = C0(xy?)] > 1/2 + ε. Note also that, since bn = 0, we have that for
all x of length n, L′2n(xy?) = M(x, 0) = Ln(x). Thus Prx[Ln(x) = C0(xy?)] > 1/2 + ε. That is,
we can use C0 to approximate Ln by fixing the second half of the inputs to y?. In the other case
where the advice bit bn = 1, we can use the approximate circuit for L′2n+1 to approximate Ln in
the same way. As a consequence, if Ln is (1/2− ε(n))-hard for C circuits of size s, then either L′2n
or L′2n+1 is also (1/2− ε(n))-hard for C circuits of size s.

Finally, since there are infinitely many input lengths n such that Ln is (1/2− ε(n))-hard for C
circuits of size s(n), there are also infinitely many input lengths n such that L′n is (1/2− ε(bn/2c))-
hard for C circuits of size s(bn/2c). This completes the proof.

Remark 1 (Preserving the hardness in Lemma 3). Observe that to maintain the infinitely often
average-case hardness of the language L in the proof of Lemma 3, we have used in a crucial way
the input length instead of an input bit in the definition of L′. This is because we cannot claim
hardness when the advice bit is not set to bn.

By combining the previous two lemmas, we get the following strengthened version of Theorem
1.

Theorem 14 (An average-case lower bound for NE against sub-third-exponential size ACC0). NE
is (1/2 − 1/ log t(n))-hard for ACC0 circuits of size t(n) when t(n) is time-constructible and sub-
third-exponential.

Remark 2 (On stronger average-case lower bounds.). In Lemma 2 and Theorem 14, we were
only able to prove (1/2 − ε(n))-hardness for a parameter ε(n) logarithmic in the size bound. The
bottleneck for improving the bounds on ε(n) comes from computing majority in the local list decoder,
as in Corollary 1. If one can show that the majority function on poly(1/δ(n)) bits is computable
by ACC0 circuits of size s(n), where s(n) is at most sub-third-exponential, then Lemma 2 and
Theorem 14 would establish (1/2 − δ(n))-hardness of (NE ∩ coNE)/1 and of NE for ACC0 circuits
of sub-third-exponential size, respectively.

5 A Pseudorandom Generator against AC0[6]

The following result is shown in [6] by using the resamplability of a certain complete problem
in L, and we refer to their paper for more details.

Theorem 15 ([6]). Suppose L * AC0[6]. Then, for every depth d ≥ 1 and any β > 0, there is a

generator Gn : {0, 1}n−n1−β → {0, 1}n computable in polynomial time such that, for infinitely many
values of n, for every AC0[6]-circuit C of depth ≤ d and size ≤ nd,∣∣∣Pr

s∈{0,1}n−nβ [C(Gn(s)) = 1]−Prx∈{0,1}n [C(x) = 1]
∣∣∣ ≤ o(1).

We now use Theorem 15 to get a pseudo-random generator against AC0
[6] circuits of depth d

computable in (NE ∩ coNE)/1.

Proof of Theorem 2. We use a win-win argument. Since (NE∩ coNE)/1 * ACC0 by Theorem 5 and
AC0[6] ⊆ ACC0, we have either (NE ∩ coNE)/1 * L/poly, or L/poly * AC0[6].

If (NE∩coNE)/1 * L/poly, since NC1 ⊆ L/poly, we get (NE∩coNE)/1 * NC1. By using a worst-
case to average-case hardness amplification against NC1 [23] and the hardness-to-pseudorandomness

14

transformation of [15], this implies a PRG with (a much shorter) seed length nβ against NC1 circuits
computable in (NE ∩ coNE)/1, and hence also a PRG with the same seed length against AC0[6]
circuits (since AC0[6] ⊆ NC1). It is crucial in this argument that the hardness amplification step
and the construction in [15], when applied to a Boolean function f , work on an input length by
input length basis. This allows us to maintain a single bit of advice.

If L/poly * AC0[6], we first get L * AC0[6]. This can be proved by contraposition. Suppose
L ⊆ AC0[6]. Let Q be a language in L/poly. Then there is a log-space TM M and a sequence {an}
of advice strings an of polynomial length such that x ∈ Q if and only if M(x, a|x|) = 1. Since the

language decided by M is in L ⊆ AC0[6], there is an AC0[6] circuit Cn of polynomial size such that
Cn(x, y) = M(x, y) for each input x ∈ {0, 1}n and string y of length |an|. Thus, for each n, we

get an AC0[6] circuit C ′n(x)
def
= Cn(x, a|x|) of polynomial size that decides Q on inputs of length n,

after fixing the second part of the input in Cn(·, ·) with the correct advice string. This shows that
L/poly ⊆ AC0[6], and completes the proof of our claim.

Now, since L * AC0[6], we can use Theorem 15 to get a pseudo-random generator with the
desired properties.

6 Lower Bounds from Learning Algorithms for ACC0

This section is dedicated to the proof of Theorem 3 and its implications. We refer the reader
to [16] for more background in learning theory, since that work shares a similar notation.

Recall that ACC0
d,m(s(n)) is the class of boolean functions computable by depth-d ACC0 circuits

over a fixed modulus m and of size ≤ s(n). We will need the following results.

Lemma 4 (A variant of the Speedup Lemma [16]). Fix a modulus m ≥ 2, and time-constructible
size bounds α(n) ≥ β(n) ≥ n. Suppose that, for every depth d ≥ 1, the class ACC0

d,m(α(n)) is

non-trivially learnable. Then, for every d ≥ 1, the class ACC0
d,m(β(n)) can be learned in time at

most poly(n, 2α
−1(poly(β(poly(n))))).

Proof Sketch. This is a straightforward generalization of the argument presented in the proof of
Lemma 24 from [16], instantiated in the particular case of ACC0 circuits.

Lemma 5 (Conditional connection between learning and lower bounds). There is a PSPACE-
hard language L? ∈ DSPACE[O(n)] for which the following holds. Let s(n) ≥ n and T (n) ≥ n be
constructible functions. If ACC0

d,m(s(n)) is learnable in time T (n), then at least one of the following
relations is true:

• L? /∈ ACC0
d,m(s(n)); or

• L? ∈ BPTIME[poly(T (n))].

Proof Sketch. This is a particular case of a result from [24, 13], and we refer to their work for more
details (see also [16]).

We are now ready to give the proof of Theorem 3. It employs the main ideas appearing in the
argument from [16], but by relying on the results from Section 3 instead of [26], we are able to
achieve a significant strengthening of Proposition 1.

Proof of Theorem 3. Let L? be the language from Lemma 5. First, if L? /∈ ACC0
d,m(nlogn) for

each choice of d,m ≥ 2, we are done, since L? ∈ DSPACE[O(n)] ⊆ DTIME[2O(n)] ⊆ RTIME[2O(n)]∩
coRTIME[2O(n)], and this class is obviously contained in both RTIME[2O(n)] and in ZPTIME[2O(n)]/1.

15

Otherwise, there are integers d?,m? ≥ 2 such that L? ∈ ACC0
d?,m?(n

logn). By assumption, for

every d, c ≥ 1, the class ACC0
d,m?(n

(logn)c) can be learned in non-trivial time. It follows from Lemma

4 that for every ` ≥ 1, ACC0
d?,m?(n

logn) can be learned in time at most T (n), where

T (n) ≤ poly(n, exp(α−1(nO(logn)))) and α(n) = n(logn)` ,

for sufficiently large n. Since L? ∈ ACC0
d?,m?(n

logn), we get from Lemma 5 and the PSPACE-
hardness of L? that PSPACE ⊆ BPTIME[poly(n, T (poly(n)))]. In particular, we have that NP ⊆
BPTIME[poly(n, T (poly(n)))].

By a simple search-to-decision reduction, it follows that NP ⊆ RTIME[poly(n, T (poly(n)))], i.e.,
we can assume the randomized algorithms deciding languages in NP to have one-sided error. Let
k ∈ N be the constant from Lemma 1. Using a standard translation argument and the upper bound
on T (·), it follows that

NTIME[n(logn)k] ⊆ RTIME[poly(n, T (n(logn)k
′
))] ⊆ RTIME[2n], (1)

where k′ is a sufficiently large constant. If E * ACC0(nlogn) in the statement of Lemma 1, we are
done, as there is nothing left to prove in Theorem 3. Otherwise, we can assume (in particular) that

NTIME[n(logn)k] * ACC0(nlogn). (2)

Let L be the language witnessing this separation. Since L /∈ ACC0(nlogn), in order to complete
the proof of the first lower bound in the statement of Theorem 3 it is sufficient to establish that
L ∈ RTIME[2O(n)]. But this follows immediately from Equation 1.

We proceed now with the proof of the ZPTIME[2O(n)]/1 lower bound, which is a bit more
technical, and requires the stronger separation

NTIME[n(logn)k]/1 ∩ coNTIME[n(logn)k]/1 * ACC0(nlogn). (3)

in Lemma 1. Arguing as before, we obtain Equations 1 and 3. This time, let L be a language
witnessing this stronger separation. Furthermore, assume it is decided by non-deterministic Turing
machines using the same advice sequence α(n) : N → {0, 1} (Lemma 1). We need the following
result.

Lemma 6. L ∈ RTIME[2n]/1∩ coRTIME[2n]/1. In both cases, the advice sequence can be taken as
α(·).

Proof of Lemma 6. Let M be a nondeterministic machine that decides L using advice sequence α(·)
in time at most O(n(logn)k). In other words, L(x) = M(x, α(|x|)) on every input x. Consider the

language L′
def
= {yb | y ∈ {0, 1}?, b ∈ {0, 1}, and M(y, b) = 1}. Clearly, L′ ∈ NTIME[n(logn)k], and

by Equation 1, we also have L′ ∈ RTIME[2n]. By fixing the appropriate input bit of a corresponding
randomized machine that decides L′, it follows that L ∈ RTIME[2n]/1 using advice sequence α(·).
This provides the first inclusion in Lemma 6.

Using Equation 1 and complementation, we get that coNTIME[n(logn)k] ⊆ coRTIME[2n]. Now

by assumption we also have L ∈ coNTIME[n(logn)k]/1, and via a completely analogous argument,
we conclude that L ∈ coRTIME[2n]/1. Note that the advice sequence is also given by α(·). This
finishes the proof of Lemma 6.

16

Continuing with the proof of Theorem 3, it follows from Lemma 6 by a standard composition of
RTIME[·] and coRTIME[·] computations that L can be computed in ZPTIME[2n]/1. Note that the
single bit of advice is given by α(n), and that the corresponding randomized algorithm respects the
zero-error promise under the correct advice bit. Since we started with a language L /∈ ACC0[nlogn],
the proof is complete.

Acknowledgements. We would like to thank Marco Carmosino for posing the question of proving
average-case hardness against ACC0, and for useful discussions. Thanks to Ryan Williams for
comments on an earlier version of this paper. This work was supported by the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2014)/ERC Grant
Agrement no. 615075.

References

[1] TCS Stack Exchange: “How powerful is ACC0 circuit class in average case?”. (Online version
accessed on 27/09/2017). URL: https://cstheory.stackexchange.com/q/37232. 2

[2] M. Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983.

URL: http://dx.doi.org/10.1016/0168-0072(83)90038-6, doi:10.1016/0168-0072(83)
90038-6. 1

[3] Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Cambridge Univer-
sity Press, Cambridge, 2009. 6

[4] Joshua Buresh-Oppenheim, Valentine Kabanets, and Rahul Santhanam. Uniform hardness
amplification in np via monotone codes. Electronic Colloquium on Computational Complex-
ity (ECCC), page 154, 2006. URL: https://eccc.weizmann.ac.il/eccc-reports/2006/

TR06-154/. 3

[5] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Conference on Computational Complexity (CCC),
pages 10:1–10:24, 2016. URL: https://doi.org/10.4230/LIPIcs.CCC.2016.10, doi:10.

4230/LIPIcs.CCC.2016.10. 5

[6] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the
hybrid argument. Theory of Computing, 9:809–843, 2013. URL: http://dx.doi.org/10.

4086/toc.2013.v009a026, doi:10.4086/toc.2013.v009a026. 3, 14

[7] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Systems Theory, 17(1):13–27, 1984. URL: http://dx.doi.org/10.1007/
BF01744431, doi:10.1007/BF01744431. 1

[8] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Symposium on Theory of Computing (STOC),
pages 440–449, 2007. URL: http://doi.acm.org/10.1145/1250790.1250855, doi:10.1145/
1250790.1250855. 3, 8

[9] Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In International
Workshop on Approximation, Randomization and Combinatorial Optimization (RANDOM-
APPROX), pages 455–468, 2008. URL: http://dx.doi.org/10.1007/978-3-540-85363-3_
36, doi:10.1007/978-3-540-85363-3_36. 3, 7, 8

17

https://cstheory.stackexchange.com/q/37232
http://dx.doi.org/10.1016/0168-0072(83)90038-6
http://dx.doi.org/10.1016/0168-0072(83)90038-6
http://dx.doi.org/10.1016/0168-0072(83)90038-6
https://eccc.weizmann.ac.il/eccc-reports/2006/TR06-154/
https://eccc.weizmann.ac.il/eccc-reports/2006/TR06-154/
https://doi.org/10.4230/LIPIcs.CCC.2016.10
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.4086/toc.2013.v009a026
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/BF01744431
http://doi.acm.org/10.1145/1250790.1250855
http://dx.doi.org/10.1145/1250790.1250855
http://dx.doi.org/10.1145/1250790.1250855
http://dx.doi.org/10.1007/978-3-540-85363-3_36
http://dx.doi.org/10.1007/978-3-540-85363-3_36
http://dx.doi.org/10.1007/978-3-540-85363-3_36

[10] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Symposium on Theory
of Computing (STOC), pages 6–20, 1986. URL: http://doi.acm.org/10.1145/12130.12132,
doi:10.1145/12130.12132. 1

[11] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties
as oracles. Electronic Colloquium on Computational Complexity (ECCC), page 023, 2017.
URL: https://eccc.weizmann.ac.il/report/2017/023/. 5

[12] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), pages 749–
760, 2015. URL: https://doi.org/10.1007/978-3-662-47672-7_61, doi:10.1007/

978-3-662-47672-7_61. 9

[13] Adam R. Klivans, Pravesh Kothari, and Igor C. Oliveira. Constructing hard functions using
learning algorithms. In Conference on Computational Complexity (CCC), pages 86–97, 2013.
URL: https://doi.org/10.1109/CCC.2013.18, doi:10.1109/CCC.2013.18. 15

[14] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In International Computing and
Combinatorics Conference (COCOON), pages 210–220, 1999. URL: http://dx.doi.org/10.
1007/3-540-48686-0_21, doi:10.1007/3-540-48686-0_21. 10

[15] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1, doi:10.

1016/S0022-0000(05)80043-1. 3, 15

[16] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness. In Computational Complexity Conference (CCC), pages 18:1–
18:49, 2017. URL: https://doi.org/10.4230/LIPIcs.CCC.2017.18, doi:10.4230/LIPIcs.
CCC.2017.18. 4, 5, 7, 15

[17] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential
time. In Symposium on Theory of Computing (STOC), pages 665–677, 2017. URL: http:
//doi.acm.org/10.1145/3055399.3055500, doi:10.1145/3055399.3055500. 1, 4

[18] Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over the com-
plete basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987. 1

[19] Rocco Servedio and Li-Yang Tan. What circuit classes can be learned with non-trivial savings?
In Innovations in Theoretical Computer Science Conference (ITCS), pages 1–23, 2017. 5

[20] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM
J. Comput., 39(7):3122–3154, 2010. URL: https://doi.org/10.1137/080735096, doi:10.
1137/080735096. 3

[21] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Symposium on Theory of Computing (STOC), pages 77–82, 1987. URL: http:
//doi.acm.org/10.1145/28395.28404, doi:10.1145/28395.28404. 1

[22] Srikanth Srinivasan. On improved degree lower bounds for polynomial approximation. In Con-
ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),

18

http://doi.acm.org/10.1145/12130.12132
http://dx.doi.org/10.1145/12130.12132
https://eccc.weizmann.ac.il/report/2017/023/
https://doi.org/10.1007/978-3-662-47672-7_61
http://dx.doi.org/10.1007/978-3-662-47672-7_61
http://dx.doi.org/10.1007/978-3-662-47672-7_61
https://doi.org/10.1109/CCC.2013.18
http://dx.doi.org/10.1109/CCC.2013.18
http://dx.doi.org/10.1007/3-540-48686-0_21
http://dx.doi.org/10.1007/3-540-48686-0_21
http://dx.doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.CCC.2017.18
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18
http://doi.acm.org/10.1145/3055399.3055500
http://doi.acm.org/10.1145/3055399.3055500
http://dx.doi.org/10.1145/3055399.3055500
https://doi.org/10.1137/080735096
http://dx.doi.org/10.1137/080735096
http://dx.doi.org/10.1137/080735096
http://doi.acm.org/10.1145/28395.28404
http://doi.acm.org/10.1145/28395.28404
http://dx.doi.org/10.1145/28395.28404

pages 201–212, 2013. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2013.201, doi:

10.4230/LIPIcs.FSTTCS.2013.201. 4

[23] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001. URL: https://doi.org/10.1006/
jcss.2000.1730, doi:10.1006/jcss.2000.1730. 3, 8, 14

[24] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uni-
form reductions. Computational Complexity, 16(4):331–364, 2007. URL: https://doi.org/
10.1007/s00037-007-0233-x, doi:10.1007/s00037-007-0233-x. 15

[25] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003. URL: http://dx.doi.org/10.1016/S0022-0000(03)00046-1, doi:10.
1016/S0022-0000(03)00046-1. 7

[26] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014. URL:
http://doi.acm.org/10.1145/2559903, doi:10.1145/2559903. 1, 2, 3, 4, 5, 7, 15

[27] Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,
2016. URL: http://dx.doi.org/10.1137/130938219, doi:10.1137/130938219. 2, 3, 4, 5,
7, 9, 10, 11

[28] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.
URL: https://doi.org/10.1109/SFCS.1985.49, doi:10.1109/SFCS.1985.49. 1

19
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.4230/LIPIcs.FSTTCS.2013.201
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.201
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.201
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
http://dx.doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
http://dx.doi.org/10.1007/s00037-007-0233-x
http://dx.doi.org/10.1016/S0022-0000(03)00046-1
http://dx.doi.org/10.1016/S0022-0000(03)00046-1
http://dx.doi.org/10.1016/S0022-0000(03)00046-1
http://doi.acm.org/10.1145/2559903
http://dx.doi.org/10.1145/2559903
http://dx.doi.org/10.1137/130938219
http://dx.doi.org/10.1137/130938219
https://doi.org/10.1109/SFCS.1985.49
http://dx.doi.org/10.1109/SFCS.1985.49

