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Abstract

A probabilistic representation of a string x ∈ {0, 1}n is given by the code of a randomized
algorithm that outputs x with high probability [Oli19]. We employ probabilistic representations
to establish the first unconditional Coding Theorem in time-bounded Kolmogorov complexity.
More precisely, we show that if a distribution ensemble Dm can be uniformly sampled in time
T (m) and generates a string x ∈ {0, 1}∗ with probability at least δ, then x admits a time-
bounded probabilistic representation of complexity O(log(1/δ) + log(T ) + log(m)). Under mild
assumptions, a representation of this form can be computed from x and the code of the sampler
in time polynomial in n = |x|.

We derive consequences of this result relevant to the study of data compression, pseudodeter-
ministic algorithms, time hierarchies for sampling distributions, and complexity lower bounds.
In particular, we describe an instance-based search-to-decision reduction for Levin’s Kt com-
plexity [Lev84] and its probabilistic analogue rKt [Oli19]. As a consequence, if a string x admits
a succinct time-bounded representation, then a near-optimal representation can be generated
from x with high probability in polynomial time. This partially addresses in a time-bounded
setting a question from [Lev84] on the efficiency of computing an optimal encoding of a string.
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1 Introduction

Shannon’s information theory provides a foundation for the study of data transmission and data
compression. However, it inherently considers probability distributions and random variables, and
for this reason it does not apply to an individual object. The theory of Kolmogorov complexity
on the other hand captures the information or computational content of an individual string or
message. Despite significant conceptual differences between the two theories, results obtained in
one setting sometimes admit an analogue in the other (see e.g. the textbooks [CT06, LV08, SUV17]).

A fundamental result connecting the distributional framework of Shannon and the information
of an individual object x is the Coding Theorem in Kolmogorov complexity [Lev74].1 This theorem
states that if a randomized machine A generates a string x with probability δ, then its Kolmogorov
complexity K(x) is at most log(1/δ) + OA(1). The result is part of a deep and beautiful theory
that we will not be able to survey here. For a complexity-theoretic perspective that is closer to
our work, we refer to [Lee06], where the coding theorem is referred to as one of the four pillars of
Kolmogorov complexity.

An issue with this result and with Kolmogorov complexity more broadly is that many aspects
of the theory are nonconstructive. For instance, computing or even estimating K(x) of an input
string x is known to be undecidable. This limits the applicability of Kolmogorov complexity and
of the aforementioned coding theorem in algorithms and complexity theory.

In order to import methods of Kolmogorov complexity from computability to complexity theory,
a number of works have introduced time-bounded variants of Kolmogorov complexity (cf. [All92,
All01, For04, All17] for a survey of results). In other words, one considers the minimum description
length of a string x with respect to machines that operate under a time constraint. Among many
applications, this idea has led Sipser [Sip83] to a proof that BPP is contained in the polynomial
hierarchy, and Levin [Lev84, Section 1.3] to further develop universal search and optimal search
algorithms.

Naturally, many authors have investigated time-bounded variants of the main results in Kol-
mogorov complexity.2 Unfortunately, under standard hardness assumptions some of its most pow-
erful theorems do not survive in time-bounded settings. Two notable examples are the language
compression theorem (see [BLvM05] and references therein) and the principle of symmetry of in-
formation (see [LM93, LW95]).

Our focus in this work is on the coding theorem and its applications. Interestingly, there is no
barrier to proving certain versions of the coding theorem in a time-bounded setting. For instance,
Fortnow and Antunes [AF09] have implicitly established a form of this result, under a strong
computational assumption. While their results are conditional and currently beyond reach without
an assumption, they indicate that a useful time-bounded version of the coding theorem might be
true.

Before proceeding with our discussion, we recall Levin’s time-bounded Kolmogorov complexity.
Let M be a deterministic machine and |M | be its description length. For a string x ∈ {0, 1}∗,

Kt(x)
def
= min

TMM, t≥1
{|M |+ log t |M(ε) outputs x in t steps},

1Some authors also refer to it as the Source Compression Theorem or Source Coding Theorem.
2Troy Lee’s PhD thesis [Lee06] contains a particularly nice exposition of the contrast between Kolmogorov com-

plexity and its time-bounded variants, including pointers to relevant references.
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where M(ε) denotes the computation of M over the empty string.3 An important advantage of
this definition over Kolmogorov complexity K(x) is that an encoding of minimal Kt complexity can
be computed in exponential time via exhaustive search. Moreover, given an encoding w of x of Kt
complexity at most k, we can recover x from w in time at most 2k. Beyond its established appli-
cations in topics such as optimal search algorithms and pseudorandomness, Levin’s Kt complexity
plays an important role in a few other areas. Recent examples include hardness magnification
(e.g. [OPS19, CJW19]) and the investigation of non-disjoint promise problems [Hir20].

A probabilistic version of Levin’s Kt complexity has been recently investigated in [Oli19]. In
this definition, we minimize over randomized machines that output x with probability at least 2/3
after computing for at most t steps. In other words,

rKt(x)
def
= min

RTMM, t≥1
{|M |+ log t |M(ε) outputs x in t steps with probability ≥ 2/3}.

Consequently, an rKt description w of a string x provides a probabilistic representation of x, in the
sense that x can be recovered with high probability from w. (Note that the description itself is a
deterministic object.)

Under a mild derandomization assumption, Kt(x) = Θ(rKt(x)) for every string x [Oli19, Theo-
rem 5]. If so, this would show that any object that can be succinctly described in a probabilistic
way can also be succinctly described in a deterministic way, and that results about rKt can be
transferred to Kt. However, we appear to be far from establishing this relation, and it is consistent
with our knowledge that there is an infinite sequence {xn}n≥1 where each xn is an n-bit string
satisfying rKt(x) = O(log n) and Kt(x) = Ω(n).

We do know without assumptions that various natural objects such as certain n-bit prime
numbers can have rKt complexity no(1) [Oli19, OS17], while establishing even an upper bound
of o(n) on the Kt complexity of a sequence of n-bit primes would lead to a breakthrough in the
deterministic generation of primes [TCH12]. It seems therefore that probabilistic representations
are useful to represent data, given our current knowledge of algorithms and complexity.

Another interesting aspect of rKt is that, despite its conjectured equivalence to Kt, we are able
to settle basic questions about rKt that remain longstanding conjectures in the case of Kt. For
instance, a natural computational problem is to approximate, given a string x, the value rKt(x).
In other words, we would like to decide if a string has a short probabilistic representation. [Oli19]
proved unconditionally that this problem cannot be solved in probabilistic polynomial time. In
contrast, showing that computing Kt cannot be done in deterministic polynomial time (i.e., proving
MKtP /∈ P) is an important problem in time-bounded Kolmogorov complexity (cf. [ABK+06]).

We are motivated by these intriguing recent results and by the possibility of studying algorithmic
information theory from the vantage point of probabilistic descriptions. The following questions
are particularly relevant in this context.

1. Is it possible to employ rKt to establish new results in time-bounded Kolmogorov complexity?
Specifically, can we establish an unconditional version of the coding theorem discussed above?

2. We have natural examples where probabilistic representations might be helpful, but no pos-
itive algorithmic results about finding such descriptions. Is it possible to compute a proba-
bilistic representation of a string in some non-trivial way?

3To obtain precise results about the encoding lengths, it is necessary to fix a universal machine and to consider
short inputs for this machine that produce x, as done by Levin. Since our techniques are not sensitive to encoding
choices and our results incur a constant factor overhead in the encoding length, this is not relevant for our discussion.
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3. Can we further develop the theory of probabilistic representations and show stronger results
for natural objects such as prime numbers?

1.1 Contributions

We make progress in the context of these questions, obtaining results that suggest new research
directions connected to data compression, time-bounded Kolmogorov complexity, search-to-decision
reductions, and related areas. In particular, our results highlight the usefulness of probabilistic
representations in algorithms and complexity. We describe these contributions in detail next.

1.1.1 Main results

For an algorithm or machine A, recall that we use |A| to denote its description length under a
fixed encoding scheme. One of our main contributions in this work is to show that an important
result in Kolmogorov complexity survives in the time-bounded setting.

Theorem 1 (Efficient Coding Theorem for rKt). Suppose there is a randomized algorithm A for
sampling strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗ of length
n ≤ T (m) with probability at least δ > 0. Then

rKt(x) = O
(

log(1/δ) + log(T (m)) + log(m)
)
,

where the constant behind the O(·) depends on |A| and is independent of the remaining parameters.
Moreover, given x, m, the code of A, and δ, it is possible to compute with probability ≥ 0.99 some
rKt encoding of x of at most this complexity in time poly(|A|, log(m), |x|, log(1/δ)).

A few comments are in order. It is not hard to prove an effective coding theorem for a distri-
bution whose cumulative probability function is computable in polynomial time (cf. [LV08]). Other
works have established incomparable results under the assumption that deciding if a string is in the
support of the distribution is easy (see e.g. [TVZ05]). Crucially, the theorem above only assumes
that the distribution is samplable, which makes it more broadly applicable. To our knowledge, The-
orem 1 is the first result that provides a general approach to constructing a probabilistic encoding
of a string.

It follows from Shannon’s Coding Theorem that the expected encoding length in Theorem 1
is essentially optimal up to a constant factor. An interesting feature of the result is that the
algorithm computing the rKt encoding runs in polynomial time regardless of the time complexity of
the sampler A(1m). Furthermore, producing the encoding of a string x only requires knowledge of
a lower bound on its probability weight, in contrast to encoding algorithms such as Huffman coding
where knowledge of the probabilities of all elements in the support of the distribution is necessary.

Using an argument of Levin (see [GS91] and [Lee06, Section 5.3] or Appendix A), under the
existence of one-way functions there is a polynomial-time samplable source Dn supported over
{0, 1}n such that every x ∈ Support(Dn) has probability weight Dn(x) ≥ 2−n

ε
, but Dn does not

admit a pair (Encn,Decn) of efficient (probabilistic) encoding and decoding algorithms such that
each x ∈ Support(Dn) is assigned a description of length ≤ n− 3. In contrast, Theorem 1 is able to
sidestep this limitation by using an efficient encoding algorithm whose associated decoding proce-
dure (provided by the rKt representation itself) is not necessarily efficient. There are applications
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where this trade-off might be acceptable, i.e., where it is crucial to achieve high compression rates
and fast (or low energy) encoding, but for which decoding is allowed to take more resources.4

We refer the reader to Section 3.3 for additional remarks on Theorem 1 and its consequences. In
Appendix A, we contrast the result to the coding theorem in (unrestricted) Kolmogorov complexity.
In Appendix B, we optimise the space complexity of the encoding and decoding algorithms employed
in the proof of Theorem 1, under the assumption that the sampler runs in bounded space.

Similarly to the coding theorem in Kolmogorov complexity, it is possible to derive a variety of
consequences from Theorem 1. We cover in more detail one of its most unexpected implications,
deferring the discussion of a couple of other results to Section 1.1.2 below.

A search-to-decision reduction is an efficient procedure that allows one to find solutions to a
problem from the mere ability to decide when a solution exists. These reductions are particularly
important in algorithms and complexity. On the one hand, theories of computational complexity
are often easier to develop in the context of decision problems. On the other hand, in practice
solving a search problem tends to be the relevant task. A search-to-decision reduction for a given
problem shows that the complexities of its search and decision versions are similar.

It is well known that any NP-complete problem admits a search-to-decision reduction. However,
there are problems of interest for which such reductions are still unknown. A notable example in
the realm of time-bounded Kolmogorov complexity is whether MCSP, the Minimum Circuit Size
Problem, admits a search-to-decision reduction (cf. [Ila20] for a discussion and a recent result).

We establish the existence of the following search-to-decision reductions for rKt and Kt com-
plexities.

Theorem 2 (Instance-based search-to-decision reductions). The following results hold:

(i) There is a randomized polynomial-time algorithm that, when given an input string x ∈ {0, 1}n
and a value k ≥ rKt(x), outputs with probability ≥ 0.99 a valid rKt representation of x of
complexity O(k).

(ii) Similarly, there is a randomized polynomial-time algorithm that, when given an input string
x ∈ {0, 1}n and a value k ≥ Kt(x), outputs with probability ≥ 0.99 a valid Kt representation
of x of complexity O(k).

We note that [ABK+06] established that any language in deterministic exponential time E can
be non-uniformly reduced via polynomial-size circuits to the problem of deciding Kt complexity (or
even of just approximating Kt on a large fraction of inputs). Since the problem of finding a minimal
Kt representation of an input string can be encoded as a language in E, it follows from their work
that there is a polynomial-size search-to-decision reduction for Kt. Observe that the reduction given
by [ABK+06] finds a description of minimum length, while Theorem 2 only provides a description
that is within a constant factor of the optimal description length.

There are now a number of search-to-decision reductions in the context of time-bounded Kol-
mogorov complexity with respect to a variety of string complexity measures (e.g. [CIKK16, Hir18,
Ila20, ILO20, LP20]). We are not aware, however, of a previous instance-based search-to-decision
reduction in the sense of Theorem 2. In other words, Theorem 2 shows that it is possible to produce
a near-optimal Kt representation of x from a decision oracle for Kt that is only queried on x.5 In

4As a speculative scenario, one can imagine data transmission for deep space exploration.
5A binary search is sufficient to compute rKt(x) ∈ N from a decision oracle that checks if rKt(x) ≤ γ for a given

threshold γ.
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contrast, the aforementioned reductions require an oracle to the decision problem that is correct
on all or at least on a large fraction of inputs. More broadly, search-to-decision reductions for
problems in other domains such as circuit satisfiability and graph theory tend to query inputs that
modify the original input x.

As a result of the property described above, we are able to derive consequences from Theorem 2
that do not follow from other reductions. Unsurprisingly, our approach employs significantly differ-
ent techniques compared to the papers cited above. In particular, it departs from the PRG-based
approach of [ABK+06] and of a few other subsequent works.

We elaborate next on some aspects of Theorem 2 that make it particularly interesting, at least to
the authors. Note that Kt (similarly for rKt and probabilistic algorithms) is a universal complexity
measure for data compression, in the following precise sense. If a string x can be encoded/decoded
by some uniform compression scheme in time ≤ T and using a description of length ≤ log T , then
its Kt complexity is at most O(log T ). As a consequence, compressing a string x to O(Kt(x)) bits
is not far from optimal in a strong sense.

Now suppose we have a string x of length n, and we estimate its Kt complexity to be at most,
say, O(

√
n). Then finding a valid Kt representation of this complexity via exhaustive search would

take time 2O(
√
n). Assuming the widely believed hardness of estimating the Kt complexity of a

string (which is provably true for rKt by [Oli19]), one is tempted to conjecture that nothing better
can be done. Still, Theorem 2 tells us that there is an algorithm that can produce a valid Kt
representation of x of complexity O(

√
n) in time just poly(n).6 This result addresses to some

extent in the time-bounded setting a question from [Lev84, Page 5] on the efficiency of generating
programs of length close to the optimal description length.

It is unclear to us whether there are deterministic search-to-decision reductions for Items (i) and
(ii) of Theorem 2. Although this requires more investigation, it is possible that these reductions
provide natural examples of randomized algorithms that cannot be replaced by deterministic ones
with only a polynomial overhead.7

1.1.2 Further applications and open problems

Efficient construction of time-bounded programs and complexity lower bounds for
estimating rKt. By executing the efficient search-to-decision reduction from Theorem 2 with all
values of k = O(n) that are powers of 2, the following corollary is immediate.

Corollary 3 (Effective short lists with short programs in short time). Given an arbitrary string
x of length n, it is possible to compute with high probability and in polynomial time a collection of
at most d = log(n) + O(1) strings w1, . . . , wd such that at least one of these strings is a valid rKt
encoding of x of complexity O(rKt(x)).

The same result can be obtained for Kt complexity. Corollary 31 should be contrasted with
the results from [BZ14, BMVZ18] in the context of (time-unbounded) Kolmogorov complexity.
They achieve optimal compression rates, by mapping a string of Kolmogorov complexity k to a
collection of strings that contains a valid representation of length k +O(1). While we are not able
to achieve this level of compression, our setting is more stringent, since we need to construct a
short representation that can be decompressed under a time constraint. It would be interesting to

6This does not contradict the intractability result from [Oli19]. Indeed, it implies that checking if a given repre-
sentation generates a particular string is the problem that requires super-polynomial time.

7Note that this is not inconsistent with P = BPP because these are not decision problems.

7



explore connections between our techniques and those employed in Kolmogorov complexity to see
if our parameters can be further improved.

In light of Corollary 3 and the complexity lower bound for estimating the rKt complexity of
a string ([Oli19]; see Theorem 18), it follows that the intractability of estimating rKt does not
lie in the exhaustive search required to find a succinct representation. Instead, the hardness is a
consequence of the intractability of checking if a given rKt representation is valid for a string x.

It is unlikely that circuit minimization of a given truth-table (MCSP) admits a search-to-decision
reduction of the form given by Theorem 2. This would allow one to construct in time polynomial
in the size of the input truth-table a collection of circuits that contains a circuit of near-optimal
size for the truth-table. As opposed to rKt, checking if a circuit correctly encodes a string can be
done in polynomial time, which implies that such a search-to-decision reduction provides a natural
property in the sense of [RR97]. Consequently, under cryptographic assumptions, minimizing cir-
cuit size and minimizing Kt/rKt behave differently with respect to instance-based search-to-decision
reductions.

Hardness of approximately sampling distributions. It is not hard to show that if Promise-
BPP ⊆ Promise-P then BPTIME[·] admits a time hierarchy theorem. This easily follows from the
deterministic time hierarchy theorem for decision problems. As a consequence of our results, we
observe that a similar derandomization hypothesis for decision problems implies a strong time
hierarchy theorem for sampling distributions.

To our knowledge, a uniform time hierarchy theorem for sampling distributions was first estab-
lished in [Wat14]. While the results of his work are unconditional, [Wat14] left open the problems of
proving an almost-everywhere lower bound and of achieving a larger statistical gap [Wat14, Section
5]. Our next result provides a conditional solution to these questions.

Theorem 4 (A strong time hierarchy theorem for sampling distributions). Under the assumption
that Promise-BPE ⊆ Promise-E, there is a constant ζ > 0 for which the following holds. Let
n1/ζ ≤ T (n) ≤ 2n be any constructive time bound. There is an ensemble {Dn}n≥1 of distributions
Dn such that:

(i) Each distribution Dn is supported over a single string zn ∈ {0, 1}n.

(ii) There is a deterministic algorithm A(1n) that samples Dn and runs in time O(T (n)).

(iii) For each randomized algorithm B(1n) that runs in time O(T (n)ζ) and for every large enough
n, the statistical distance of Dn and B(1n) is at least 1− 1/T (n)ζ .

We are not aware of a previous time hierarchy theorem for sampling distributions able to produce
hard distributions of support size one, even under computational assumptions. (Interestingly, the
unconditional results of [Wat14] hold for support size k ≥ 2.) Note that Theorem 4 exploits
uniformity in a crucial way: each distribution Dn can be sampled by a (non-uniform) linear-size
circuit Cn that ignores its random input and outputs the unique string zn in the support of Dn.

Computational patterns in prime numbers. We now step back and revisit one of the most
basic questions associated with the power of probabilistic representations. The problem stated
below is concerned with the computational (in)compressibility of n-bit prime numbers.

Problem 5 (Primes with short descriptions). Is there an infinite sequence {pn}n≥1 of prime num-
bers pn ∈ [2n−1, 2n − 1] such that rKt(pn) = o(n)?

8



This would show that there are primes of every large length that admit effective short encod-
ings, i.e., such primes possess computational patterns that translate into effective representations
(e.g. Mersenne primes). A partial result appears in [OS17], where this is proved for infinitely many
n. Consequently, some primes can have short descriptions. Is this a rare phenomenon, or does it
happen for primes of all lengths? This is the question captured by Problem 5.

We note that obtaining a solution to Problem 5 is necessary before showing the existence of a
deterministic algorithm that generates n-bit primes in time 2o(n). We refer to [TCH12] for more
background on this problem.

Theorem 1 offers a path to solving this problem. In other words, it shows that it is enough to
sample n-bit numbers in time 2o(n) in a way that assigns enough weight to some (possibly unknown)
prime. Given that many advances to our understanding of prime numbers employ probabilistic ideas
(see e.g. [Ten15, May19] and references therein), this perspective could be fruitful.

Our last result shows that the existence of a sampler of this form is in fact equivalent to a
positive solution to Problem 5.

Theorem 6 (Equivalence between faster samplability and improved time-bounded descriptions).
The following statements are equivalent:

(i) Sampling Algorithm. For every ε > 0, there is a randomized algorithm A(1n) sampling strings
in {0, 1}∗ that runs in time T (n) = O(2εn) and for which the following holds. For every large
n, there is an n-bit prime qn such that Pr[A(1n) outputs qn] ≥ 2−εn.

(ii) Short Descriptions. Let δ > 0 be an arbitrary constant. For every large n, there is an n-bit
prime pn such that rKt(pn) ≤ δn.

We stress that the equivalence in Theorem 6 is not particular to prime numbers and to expo-
nential time bounds. It can be seen as the analogue for rKt of Levin’s fundamental insight that a
sequence of objects (such as n-bit primes or solutions to search problems) can be deterministically
generated in time T (n) if and only if they have Kt complexity of order log(T (n)).

Finally, complementing the applications and open problems mentioned above, it would be in-
teresting to understand when a mathematical method employed to show the existence of certain
combinatorial objects also implies the existence of objects of bounded rKt complexity. This is
particularly interesting in settings where the desired objects are “rare” and the probability of pro-
ducing them is small (e.g. Lovász local lemma and techniques from discrepancy theory). Extracting
rKt upper bounds from existential proofs offers an alternate way of designing non-trivial algorithms
for generating the corresponding objects, since it is sufficient to exhaustively search for objects of
bounded description length.8

1.2 Techniques

In this section, we describe the main conceptual ideas behind Theorems 1 and 2. Since our
goal is to establish a coding theorem in a time-bounded setting and our applications require an
algorithm that produces a valid encoding in polynomial time, it is not clear if arguments employed
in the context of (unbounded) Kolmogorov complexity can be adapted to our setting. For instance,

8In some applications, one might need to consider conditional rKt complexity. The techniques employed in this
work also extend in this direction (see Section 3.3 for more details).
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it is not hard to construct an encoding given all strings in the support of the distribution and their
corresponding probabilities, but we cannot assume in the time-bounded setting that this is avail-
able. Similarly, under additional assumptions on the distribution, such as the ability to compute
its cumulative probability function, producing an encoding is easier. However, we are aiming for a
result that applies to the larger class of samplable distributions.

Sketch of the proof of Theorem 1. We are given a randomized algorithm A(1m) that runs in time T
and samples from a distribution Dm. Fix a string x ∈ Support(Dm), and assume that its probability
weight Dm(x) ≥ δ. Our goal is to (efficiently) produce a succinct probabilistic representation of
x in the sense of rKt complexity. The first thing to notice is that there are at most 1/δ strings

y ∈ Support(Dm) such that Dm(y) ≥ δ. Let Sδ
def
= {y ∈ {0, 1}∗ | Dm(y) ≥ δ} be the set of

such strings, which includes our target string x. We assume for simplicity of the exposition that
Sδ ⊆ {0, 1}n, where n = |x| is the length of x.

Let’s pretend for now that we know the set Sδ. Note that this is not really a realistic assumption,
since we are aiming to output a valid rKt description of x in a number of steps that might not even
allow us to sample a single string from Dm. We will revisit this assumption later on, and argue
that explicit knowledge of Sδ is not needed to produce a probabilistic representation of x.

Our current goal is to be able to identify x among the elements of Sδ, ideally with an advice
string of length close to O(log |Sδ|) = O(log(1/δ)). A natural way to try to achieve this goal is by
producing a “fingerprint” or “hash value” from x that uniquely specifies this string. In other words,
we would like to have a function h : Sδ → {0, 1}∗ such that h(x) 6= h(y) for every y ∈ Sδ\{x}. Then
we can identify x in Sδ using h and the value z = h(x). Assuming that we know Sδ, the total
description length of x would be upper bounded by roughly |h| + |z|, where |h| is the description
length of h and |z| is the length of z.

This is a basic algorithmic problem, and one way to achieve this goal with a reasonable upper
bound on the description length is as follows. Given an explicit polynomial-time computable error-

correcting code E : {0, 1}n → {0, 1}O(n), let Tδ
def
= E(Sδ), i.e., each string y′ ∈ Tδ is obtained by

applying E to a string y ∈ Sδ. Consequently, for every distinct pair y′, y′′ ∈ Tδ, their relative
hamming distance d(y′, y′′) = Ω(1). For this reason, it follows by a simple probabilistic analysis
that if we randomly project about O(log(1/δ)) coordinates of the strings in Tδ, we are likely to
produce a “fingerprint” that uniquely specifies each string. Thus to specify x in Sδ it is enough to

compute E(x) and to store O(log(1/δ)) random pairs (i, bi), where i ∼ [O(n)] and bi
def
= E(x)i, the

i-th bit of the string E(x). Following our notation from above, one can think of h as being given
by the sequence of coordinates, and z by the bits obtained from the projection of E(x).9

There are two potential issues with this approach:

(a) In order to store x’s fingerprint information (h and z), we still need O(|h|+ |z|) = O(log(1/δ) ·
log(n) + log(1/δ)) bits, instead of just O(log(1/δ)).

(b) We have assumed explicit knowledge of Sδ to recover x from h and z.

The first issue is of a quantitative nature, and it can be handled via standard techniques. By
projecting coordinates of E(x) according to a random walk on an explicit constant-degree expander
graph on O(n) vertices, the total description length can be reduced to O(log(n) + log(1/δ)).

9Notice that an explicit error-correcting code together with a bounded number of random coordinates of the string
E(x) were used to minimize the description length of x’s fingerprint. We can also generate a fingerprint by collecting
the value of random XORs χS applied to x, but storing the relevant sets S would have been expensive.
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Regarding the more challenging issue (b), first notice that the argument we have described so
far uses randomness only to produce h. In particular, it gives a randomized algorithm that with
high probability produces a deterministic representation of x from h, z = h(x), and Sδ. Therefore,
we have not yet exploited the power of probabilistic representations.

A simple but crucial idea is that we can use the code of the sampler A and m to efficiently
compute a valid rKt representation of x, without ever running A(1m). More precisely, the rKt
instructions to output x include running A(1m) about O((1/δ) · log(1/δ)) times to collect (with
high probability) a superset Wδ ⊇ Sδ. Let’s assume for simplicity that Wδ = Sδ (it is possible
to take care of extra elements by a more delicate argument). Given the set Wδ, n = |x|, and an
independently generated h obtained before we compute the rKt representation, h and the hash
value z = h(x) are likely to isolate x among the elements in Wδ. A careful implementation of
these ideas allows us in randomized polynomial-time to generate an rKt representation of x whose
description length is O(log(m) + log(1/δ) + log(n)) and whose logarithm of the running time is
O(log(T (m)) + log(1/δ)). Since generating an n-bit string x takes time T ≥ n, the overall rKt
complexity (description length + log of the running time) is O(log(1/δ) + log(T (m)) + log(m)).

Sketch of the proof of Theorem 2. First, we discuss a reduction for rKt. Given a string x and an
upper bound k ≥ rKt(x), we need to output a valid rKt representation of x of complexity O(k).
This is not a lot of information, but we have a general tool at our disposal: the Coding Theorem
for rKt (Theorem 1). In particular, if we could sample x in time 2O(k) and with probability 2−Ω(k)

using an explicit algorithm A, we would be done by the moreover part of this result. The only
potential challenge is to uniformly construct an explicit sampler of this form.

Fortunately, it is not hard to show that there is a universal sampler U that works for all strings
of rKt complexity at most k. In more detail, the sampler randomly selects the code of a randomized
machine M of length at most k, simulates M with its internal randomness for at most 2k steps,
and outputs whatever is left on the output tape of M after this simulation. Using that rKt(x) ≤ k,
which implies that some randomized machine of length at most k outputs x within 2k steps with
probability at least 2/3, it is easy to see that x has probability weight at least 2−Ω(k) under U .

Given that the code of U is explicit and we know x and k, the desired representation of x can
be generated with high probability in polynomial time via Theorem 1.

We now consider a search-to-decision reduction for Kt. Recall that, under a derandomization
assumption, Kt(x) = Θ(rKt(x)). Moreover, as we observe in Lemma 32, there is an efficient deter-
ministic algorithm that converts a probabilistic representation in the sense of rKt into a deterministic
one in the sense of Kt. For this reason, it is not hard to show, under a plausible computational
assumption, that there is an instance-based search-to-decision reduction for Kt, given the same
result for rKt.

The most interesting aspect of Item (ii) of Theorem 2 is that it is possible to unconditionally
establish the result. This is obtained by a more careful investigation of the elements employed in
the proofs of Theorem 1 and Theorem 2 Item (i), which reveals that the derandomization assump-
tion is not really needed. We refer the reader to the main body of the paper for the details.

Organization. The proof of Theorem 1 appears in Section 3, while the remaining results are
established in Section 4. In Appendix A, we provide alternate proofs of Theorem 1, compare the
result to the coding theorem in Kolmogorov complexity, and discuss its parameters in detail. In
Appendix B, we optimise the space complexity of the encoding and decoding procedures behind
Theorem 1.
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2 Preliminaries

2.1 Basic notions

We use |x| to denote the length of a binary string x ∈ {0, 1}∗. We abuse notation and use |M |
denote the length of the binary encoding of a machine M with respect to a fixed universal machine.
Although this will not be essential, we assume a prefix-free encoding of machines, and remark that
our statements are robust with respect to encoding choices.

Probabilistic machines have an extra tape with random bits. We use M≤t to denote a random
variable that represents the content of the output tape of M when it computes for t steps over the
empty string ε (or its final content if the machine halts before that).

Definition 7 (rKtδ Complexity). For δ ∈ [0, 1] and a string x ∈ {0, 1}∗, we let

rKtδ(x) = min
M,t

{
|M |+ dlog te | Pr[M≤t = x] ≥ δ

}
.

The randomized time-bounded Kolmogorov complexity of x is given by rKt(x)
def
= rKt2/3(x).

Levin’s complexity Kt(x) can be defined similarly, either by taking δ = 1 in the definition above
or by restricting the minimization over M and t to deterministic machines. For more information
about rKt, see [Oli19].

We will assume from our encoding that for every string x of length n, rKt(x) ≤ γ · n, where
γ ∈ N is a universal constant. This is achieved by a trivial machine that simply stores x and
prints it when given an empty string. Since printing a string x takes time at least |x|, we have
rKt(x) ≥ Kt(x) ≥ log |x|. We might implicitly use this fact to omit certain log n additive factors in
our upper bounds.

These definitions and conventions are sufficient for the formalization of our results, given that
the proof of Theorem 1 incurs a constant factor overhead in the resulting rKt upper bound. For the
interested reader, we present a careful discussion of the parameters of Theorem 1 in Appendix A.
For more background in time-bounded Kolmogorov complexity, see [LV08].

For a discrete probability distribution D, we use Support(D) to denote its support. For x ∈
Support(D), we let D(x) denote its probability weight under D. We extend this definition to a set T
in the natural way, i.e., D(T ) =

∑
x∈T D(x). If D and D′ are distributions with support contained

in a set S, their statistical distance |D − D′| is defined as maxT⊆[S] |D(T )−D′(T )|.

Definition 8 (Entropy). The entropy H(D) of a discrete probability distribution D is defined as

H(D) =
∑

x∈Support(D)

D(x) · log
1

D(x)
,

where log is the binary logarithm function.

We will also require a standard application of expander graphs in order to minimize the amount
of randomness in one of our constructions.

Definition 9 (Expander Graph). An m-vertex undirected graph G is an (m, d, λ)-expander if G is
d-regular and λ(G) ≤ λ, where λ(G) denotes the second largest eigenvalue (in absolute value) of
the normalized adjacency matrix of G (i.e., the adjacency matrix of G divided by d).

12



2.2 Technical tools

The version of the concentration bound appearing below can be found for instance in [Val19].

Theorem 10 (Chernoff Bound). Let X =
∑n

i=1Xi, where each Xi is an independent 0/1-valued
random variable. The following inequalities hold.

(i) For every γ > 0, if µ ≥ E[X] then Pr[X ≥ (1 + γ)µ] ≤
(

eγ

(1+γ)(1+γ)

)µ
.

(ii) For every 0 < γ ≤ 1, if µ ≤ E[X] then Pr[X ≤ (1− γ)µ] ≤
(

e−γ

(1−γ)(1−γ)

)µ
.

Theorem 11 (Explicit ECCs; see e.g. [Spi96]). There is a constant C ∈ N and a polynomial-time
computable function En : {0, 1}n → {0, 1}Cn such that for each n ≥ 1 and for any distinct strings
a, b ∈ {0, 1}n, the relative hamming distance between En(a) and En(b) is at least 1/10.

We will rely on the following explicit construction of expander graphs.

Theorem 12 ((Strongly) Explicit Expander Graphs [GG81]). There are constants d ∈ N and
0 < λ < 1 for which the following holds. There is an (m, d, λ)-expander family {Gm} of m-vertex
graphs and a deterministic algorithm A that on inputs m ∈ N, v ∈ [m], and i ∈ [d] outputs the i-th
neighbor of v in Gm in time polynomial in log(m).

We will also need the following well-known property of a random walk on an expander graph.

Theorem 13 (Expander Chernoff Bound [Gil98]). Let Gm = (V,E) be an (m, d, λ)-expander,

f : V → {0, 1} be an arbitrary function, and µ
def
= Ev∼V [f(v)]. Let v1 ∼ V be a uniformly chosen

vertex and v1, . . . , vt be a random walk on G of length t. Then, for any α > 0,

Pr
v1,...,vt

[
1

t

t∑
i=1

f(vi) < µ− α

]
≤ e−(1−λ)α2t/4.

For convenience of the reader, we recall the following basic result from information theory. (We
state the lower bound component only.)

Theorem 14 (Shannon’s Source Coding Theorem; see e.g [CT06]). Let D be a discrete probability
distribution, and f : Support(D) → {0, 1}∗ be an injective function. Then its expected encoding
length satisfies

E
x∼D

[|f(x)|] ≥ H(D).

Some results rely on the following hardness hypothesis and its consequences.

Conjecture 15 (Exponential circuit lower bounds for a language in E). There exists a language
L ∈ E and a constant ε > 0 such that Ln requires circuits of size 2εn for all but finitely many n.

Theorem 16 ([NW94, IW97], see also [Uma03]). If Conjecture 15 holds, then there exists a de-
terministic algorithm G such that for any integer s > 0, G(1s) runs in sO(1) time and outputs a
collection R of sO(1) strings, each of which is s-bit, such that for any circuit C of size at most s, R
(1/s)-fools C, meaning that∣∣∣∣ Pr

x∼{0,1}s
[C(x) = 1]− Pr

x∼R
[C(x) = 1]

∣∣∣∣ ≤ 1/s.
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Theorem 17 (Conditional equivalence of Kt and rKt [Oli19]). If Promise-BPE ⊆ Promise-E then
Kt(x) = Θ(rKt(x)) for every string x ∈ {0, 1}∗. In particular, the same conclusion holds under
Conjecture 15.

It is known that estimating the rKt complexity of an input string is intractable.

Theorem 18 (Hardness of estimating rKt [Oli19]). Let ε ∈ (0, 1) and C ∈ N. There is no random-

ized algorithm A running in time T (n) = O(n(logn)C ) such that for every large enough n:

• For every x ∈ {0, 1}n such that rKt(x) ≤ nε, PrA[A(x) = 1] ≥ 2/3.

• For every x ∈ {0, 1}n such that rKt(x) ≥ n− 10, PrA[A(x) = 0] ≥ 2/3.

3 A Coding Theorem via Probabilistic Representations

3.1 An efficient String Isolation Lemma

The next lemma allows us to efficiently isolate a string x from a collection W of strings using
a short advice string v whose length depends on the logarithm of the size of W . We follow a
construction described in the proof of [CJW20, Lemma 6.1].

Lemma 19 (String Isolation Lemma). There is a deterministic algorithm M for which the following

holds. For any set W ⊆ {0, 1}n of size `, there exists a string u ∈ {0, 1}O(log(n·`)) such that
M(1n, u) runs in poly(n) time and outputs a Boolean circuit that computes a function H : {0, 1}n →
{0, 1}O(log `) with the following property:

H(w) 6= H(w′) for every distinct pair w,w′ ∈W.

Moreover, the same guarantee is achieved by a random string u of the same length with probability
at least 0.99.

Proof. Let En : {0, 1}n → {0, 1}Cn be the error-correcting code from Theorem 11. Moreover, let
t = c1 log `, where c1 is a large enough universal constant. Finally, let GCn be the expander graph
from Theorem 12, where m = Cn.

Given a walk γ = (v1, . . . , vt) in GCn, we define the function Hγ : {0, 1}n → {0, 1}t as follows.
On a string z, let z′ = En(z), and set Hγ(z)i = z′vi , where vi ∈ [Cn] is given by γ and z′j denotes
the j-th bit of z′.

For distinct strings z1, z2 ∈ {0, 1}n, En(z1) and En(z2) have relative distance at least 1/10.
As a consequence, if γ is a length-t random walk on GCn, it follows from the Expander Chernoff
Bound (Theorem 13) that

Pr
γ

[
Hγ(z1) = Hγ(z2)

]
≤ Pr

γ

[
1

t
·

t∑
i=1

1[Hγ(z1)i 6=Hγ(z2)i] <
1

20

]
≤ e−Ω(t) <

1

100`2
,

where we have used that c1 is a large enough constant in the definition of t. By a union bound over
all distinct pairs of strings in W , there is some length-t random walk such that the corresponding
function H satisfies the condition of the lemma.

Note that any length-t walk γ = (v1, . . . , vt) can be described by a string of length log(Cn) +
O(t) = O(log(n · `)), given that GCn is an m-vertex d-regular graph with d = O(1) and m = Cn.
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Finally, given 1n and a description u of a length-t walk γ, it is possible to produce a circuit
that computes as the function Hγ in time polynomial in n. This is because En, GCn and the walk
encoded by u can be computed in time poly(n, t) = poly(n, log `) = poly(n), where the last step
uses that ` ≤ 2n. This completes the proof of the lemma.

The power of Lemma 19 comes from the fact that we don’t need to know the set W , i.e., an
upper bound on its size is sufficient. We remark that it is possible to achieve better parameters
in Lemma 19 if we do not consider the efficiency of M . However, we need an efficient M for our
applications in time-bounded Kolmogorov complexity. We also note that in our proofs we will only
need that for a particular string x ∈ W fixed in advance the value H(x) is not contained in the
image of H on W\{x}.

We provide alternate proofs of Lemma 19 in Appendix A, where we take a closer look at the
asymptotic parameters of Theorem 1.

3.2 An efficient Coding Theorem for rKt

We prove Theorem 1 in this section, restated below for convenience of the reader.

Theorem 20 (Efficient Coding Theorem for rKt). Suppose there is a randomized algorithm A for
sampling strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗ of length
n ≤ T (m) with probability at least δ > 0. Then

rKt(x) = O(log(1/δ) + log(T (m)) + log(m)),

where the constant behind the O(·) depends on |A| and is independent of the remaining parameters.
Moreover, given x, m, the code of A, and δ, it is possible to compute with probability ≥ 0.99 some
rKt encoding of x of at most this complexity in randomized time poly(|A|, log(m), |x|, log(1/δ)).

Proof. Let x be a string generated with probability at least δ by a sampler A(1m). Since we
only need a lower bound on the probability and our rKt upper bound is stated asymptotically, for
representation purposes we assume without loss of generality that δ is of the form 2−` for some
` ∈ N. We now show how to obtain an rKt description of x.

With the binary descriptions of m and 1/δ, we first run the sampler A(1m) for t = 64 · (1/δ) ·
log(1/δ) times to obtain a multi-set of strings S0 of size t. Let V be the set

V
def
= {y | A(1m) outputs y with probability at least δ}.

Note that x ∈ V and that |V | ≤ 1/δ. Also, without loss of generality, we assume δ < 2/3; otherwise
the sampler A(1m) yields a desired rKt description of x.

Claim 21. With probability at least 5/6 (over S0), every y ∈ V appears in S0 at least α =
32 · log(1/δ) times.

Proof of Claim 21. Fix a y ∈ V . Note that the expected number of times that y appears in S0 is
at least

µ
def
= t · δ = 64 · log(1/δ).
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By the Chernoff bound (Item (ii) of Theorem 10), we have

Pr
S0

[y appears in S0 less than α times] ≤

(
e−1/2

(1/2)(1/2)

)64·log(1/δ)

< δ6.

By a union bound over the strings in V , where |V | ≤ 1/δ, we have that the probability that there
exists a y ∈ V such that y appears in S0 less than α times is less than δ5 < 1/6. � (Claim 21)

Claim 22. With probability at most 1/6 (over S0), there exists a string z in S0 such that z appears
at least α = 32 · log(1/δ) times in S0 and that A(1m) outputs z with probability less than δ/32.

Proof of Claim 22. Let’s view S0 as an ordered multi-set (z1, z2, . . . , zt). For zi ∈ S0, we say “zi is
bad” if that A(1m) outputs zi with probability less than δ/32 and that it appears in S0 at least α
times. Let E be the event that there exists some zi ∈ S0 such that zi is bad. Then we have

Pr[E ] ≤
t∑
i=1

Pr[zi is bad]. (1)

Fix an i ∈ [t], we have

Pr
z1,z2,...,zt∼A

[zi is bad] =
∑

z : A outputs z
w.p. less than δ/32

Pr[zi = z AND zi appears in S0 at least α times]

≤
∑

z as above

Pr[zi appears in S0 at least α times | zi = z] ·Pr[zi = z]

≤ max
z as above

Pr[zi appears in S0 at least α times | zi = z]

≤ max
z as above

Pr[z appears S0\{zi} at least α− 1 times]. (2)

Note that if for a string z, A outputs z with probability less than δ/32, then the expected number
of times that z appears in the multi-set S0\{zi} is less than

µ
def
= (t− 1) · δ/32 = 2 · log(1/δ)− δ/32,

and hence α− 1 > 11 · µ. Then by the Chernoff bound (Item (i) of Theorem 10), we have

Equation (2) ≤
(

e9

1010

)log(1/δ)

< δ18.

Therefore, we have
Equation (1) ≤ t · δ18 < 64 · (1/δ)2 · δ18 < 1/6,

as desired. � (Claim 22)

Next, from S0, we build a set S by removing every string in S0 that appears less than α =
32 · log(1/δ) times in S0, and keeping only one copy for each of the remaining strings. Let W be
the set

W
def
= {w | A(1m) outputs w with probability at least δ/32}.
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Note that |W | ≤ 32/δ. From Claim 21 and Claim 22, we get that with probability at least 2/3 over
the choices of S0, we obtain a “good” set S in the sense that V ⊆ S (hence x ∈ S) and S ⊆W .

Consider the algorithm in the String Isolation Lemma (Lemma 19), and let n = |x| ≤ T (m).
Let u be a string of length O(log(n · |W |)) = O(log(T (m)) + log(1/δ)) such that the algorithm
in Lemma 19 running on u produces a good hash function H : {0, 1}n → {0, 1}τ for all length-n
strings in W , where τ = O(log(|W |)) = O(log(1/δ)). That is, for every distinct w,w′ ∈W ∩{0, 1}n,
we have H(w) 6= H(w′). Then for every “good” set S, H maps the strings in S of length n into
different buckets. Therefore, given u, n, and the hash value for x, H(x), we can recover x from a
good set S.

The whole algorithm runs in randomized time poly(m,T (m), 1/δ) and requires an advice of
length O(log(1/δ) + log(m) + log(n)), which gives the desired upper bound for rKt(x).

For the moreover part of the theorem, first observe that to output a description of x it is not
necessary to run the sampling algorithm A(1m) nor to know an upper bound on its running time.
We need instead the following information: the code of A, the input parameter m, the probability
lower bound δ, the length n = |x|, the advice string u given by Lemma 19, and the hash value
H(x). Crucially, the proof of Lemma 19 shows that a random string u (encoding a random walk)
satisfies the conditions of the lemma with probability ≥ 0.99. Furthermore, the same proof shows
that, given u and x, we can compute H(x) in time poly(n) = poly(|x|). Therefore, by sampling
a random string u of an appropriate length that depends on n and δ, it is possible to compute a
correct description of x with probability at least 0.99. The necessary information can be computed
from x, the code of A, n, and δ in time poly(|A|, log(m), |x|, log(1/δ)).

3.3 Further remarks

In this section, we make a few additional comments about the coding theorem for rKt and its
applications.

Short time-bounded programs from many time-bounded programs. As a consequence of Theorem 20,
by defining an appropriate sampler (see Section 4.1), it is possible to show that if a string admits
many time-bounded programs, then it admits a short time-bounded program. To our knowledge,
this is the first unconditional proof of a phenomenon of this form in the setting of time-bounded
Kolmogorov complexity. We remark that a quantitatively tighter connection can be obtained if
one could show that the dependence on δ in Theorem 20 can be improved from O(log(1/δ)) to just
log(1/δ). This is discussed in detail in Appendix A.

On the optimality of the rKt upper bound. A dependency of order log(1/δ) in the rKt upper bound
appearing in Theorem 20 is clearly needed, since the uniform distribution on {0, 1}n is trivially
samplable, and most n-bit strings have nearly maximum rKt complexity.

A bit more precisely, for a polynomial-time computable sampler A(1m), Theorem 20 gives the
upper bound

E
x∼A(1m)

[rKt(x)] ≤ E
x∼A(1m)

[O(log(m)) +O(log(1/px))] = O
(

log(m) +H(A(1m))
)
,

where px denotes the probability of x under A(1m), and H(·) is the entropy function. Since a
valid rKt representation specifies a unique string, it follows from Shannon’s Source Coding Theo-
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rem (Theorem 14) that the expected encoding length achieved by Theorem 20 is also nearly optimal.

On the robustness of the definition of rKt complexity. We have defined rKt(x) with a probability
threshold of 2/3 for machines generating x. It is not hard to see that any constant threshold
probability > 1/2 leads essentially to the same definition, using standard amplification. On the
other hand, it is not hard to prove from Theorem 20 that, for every string x ∈ {0, 1}∗,

rKt(x) = O
(

min
δ∈(0,1)

rKtδ(x) + log(1/δ)
)
.

The proof uses that a machine witnessing the bound rKtδ(x) for x can be seen as a sampler, and
that for every x we have rKt(x) ≥ log |x|. (A weaker result was observed in [Oli19, Footnote 6].)

A coding theorem for rKt with advice. It is possible to consider a sampler A(1m, am) in the state-
ment of Theorem 20, where A receives in addition to 1m an advice string am ∈ {0, 1}∗. In this case,
our techniques easily extend to show an upper bound on the conditional rKt complexity rKt(x | am)
of x given the string am, where rKt(x | am) is defined in the natural way.

In Appendix B, we optimise the space of the encoding and decoding algorithms implicit in the
proof of Theorem 20.

4 Applications

4.1 Equivalence between samplability and succinct probabilistic descriptions

It will be useful in the proof of some results to introduce the following sampler.

Definition of U(1m):

1. Given 1m, U samples an integer ` ∼ [m]. It then samples a uniformly random string z of
length `, and an independent uniformly random string r of length 2m.

2. U interprets z as the code of a randomized machine Mz, simulates Mz on the empty input
string with randomness r for 2m steps, and outputs the string y that is left on the output tape of
Mz after this simulation.

This sampler satisfies the following properties.

Claim 23. On every input 1m and for every choice of its randomness, U(1m) runs in time at most
2O(m).

Proof. This is immediate from the definition.

Claim 24. Suppose x ∈ {0, 1}∗ is a string such that rKt(x) ≤ k. Then the probability of x under
U(1k) is at least (1/k) · 2−k · (2/3).

Proof. Since rKt(x) ≤ k, there is a randomized machine M running in time at most t such that

Pr[M≤t = x] ≥ 2/3 and |M |+ log t ≤ k.
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Let ` = |M | ≤ k, and note that t ≤ 2k. It is clear that x is output by U(1k) with probability at
least (1/`) · 2−` · (2/3) ≥ (1/k) · 2−k · (2/3).

There are some additional properties of U that make it a “universal” time-bounded sampler.
We explain two of these properties next.

First, we note that if a function f is hard under some (possibly unknown) polynomial-time
samplable distribution Dn, in the sense that any algorithm from a class C fails to compute f with
probability at least 1/poly(n) under Dn, then f is also average-case hard for C under the explicit

polynomial-time samplable distribution Vn
def
= U(1α·logn), where α is a constant that depends on

D = {Dn}n∈N.

Lemma 25 (“Hardness Universality” of U(1O(logn)) among efficiently samplable distributions). Let
f = {fn}n≥1 be a sequence of functions fn : {0, 1}n → {0, 1}, and assume that there is a polynomial
p(n) and a polynomial-time samplable ensemble D = {Dn}n≥1, where each Dn is supported over
{0, 1}n, such that for every function gn ∈ C, Prx∼Dn [fn(x) 6= gn(x)] ≥ 1/p(n). Then there is a
constant α ∈ N and a polynomial q(n) such that for each large enough n and for every function

gn ∈ C, Prx∼Vn [fn(x) 6= gn(x)] ≥ 1/q(n), where Vn
def
= U(1α·logn).

Proof. Suppose that D = {Dn}n≥1 is samplable by a randomized algorithm S(1n) running in time
≤ c1n

c1 . Then there is a sequence {Mn}n≥1 of randomized machines Mn running in time at most
≤ c2n

c2 when given the empty string such that Mn(ε) and S(1n) sample the same distribution
and |Mn| ≤ β · log n, for constants β and c2 that depend on S but are independent of n. We set

α
def
= max{c2 + 1, β} and q(n)

def
= p(n) · 2|Mn| · (α · log n). Note that q(n) is upper bounded by some

polynomial in n.
Assume that n is sufficiently large, and fix a function gn ∈ C. Then, recalling the definitions of

Vn
def
= U(1α·logn) and of the sampler U(·), let E be the event that (` = |Mn|) ∧ (Mz = Mn). We

have

Pr
y∼Vn

[fn(y) 6= gn(y)] ≥ Pr
(`,z,y)∼U(1α·logn)

[fn(y) 6= gn(y) | E ] · Pr
(`,z,y)∼U(1α·logn)

[E ]

≥ Pr
x∼Dn

[fn(x) 6= gn(x)] · 1

α · log n
· 2−|Mn|

≥ 1

p(n) · (α · log n) · 2|Mn| =
1

q(n)
.

This completes the proof of the lemma.

A similar argument establishes the following lemma.

Lemma 26 (“Weight Universality” of U(1O(logn)) among efficiently samplable distributions). If a
string x ∈ {0, 1}n is assigned weight δ ≥ 1/poly(n) under some efficiently samplable distribution
A(1n), then the weight of x under U(1O(logn)) is at least 1/poly(n).

Analogues of Lemmas 25 and 26 with optimal parameters are known in the context of Kol-
mogorov complexity (see e.g. [LV08]). We refer to [AF09] for related results in the time-bounded
setting, with some of them requiring computational assumptions.

We state next an immediate consequence of the coding theorem for rKt and the existence of
universal time-bounded samplers. For concreteness, we focus on the generation of prime numbers
in the context of Problem 5.
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Theorem 27 (Equivalence between fast samplability and short time-bounded descriptions). The
following statements are equivalent:

(i) Sampling Algorithm. For every ε > 0, there is a randomized algorithm A(1n) sampling strings
in {0, 1}∗ that runs in time T (n) = O(2εn) and for which the following holds. For every large
n, there is an n-bit prime qn such that Pr[A(1n) outputs qn] ≥ 2−εn.

(ii) Short Descriptions. Let δ > 0 be an arbitrary constant. For every large n, there is an n-bit
prime pn such that rKt(pn) ≤ δn.

Proof. That samplability as in the first item leads to short descriptions follows immediately from
Theorem 20 by taking ε > 0 small enough as a function of the given δ > 0. For the other direction,

for a given ε > 0, we consider the sampler A(1n)
def
= U(1m) with m = ε′n, where ε′ = ε/C for

a large constant C. By Claim 23, A(1n) runs in time O(2εn). Under the assumption that (ii)
holds, Claim 24 guarantees that for large n there is an n-bit prime qn that is output by A(1n) with
probability at least 2−εn.

This should be contrasted with the equivalence between the existence of primes of bounded
Kt complexity and fast deterministic generation of primes. As mentioned in Section 1.1.2, the
equivalence in Theorem 27 also holds in a broader sense.

4.2 Instance-based search-to-decision reduction for rKt and its consequences

In this section, we show that there is a uniform polynomial-time “approximate” search-to-
decision reduction for rKt. More precisely, we show that given a linear approximation of the rKt
complexity of the input string, it is possible to output a valid rKt representation that is optimal up
to a constant factor.

We will need the following definition.

Definition 28. Let γ : N → R. We say that a function O : {0, 1}∗ → N γ-approximates rKt
complexity if for every string x ∈ {0, 1}∗,

rKt(x)

γ(|x|)
≤ O(x) ≤ γ(|x|) · rKt(x).

If this holds for a constant γ ∈ N, we say that O linearly approximates rKt.

Theorem 29 (An instance-based search-to-decision reduction for rKt). Let O be a function that
linearly approximates rKt complexity. There is a randomized polynomial-time algorithm with access
to O that, when given an input string x, outputs with probability ≥ 0.99 a valid rKt representation
of x of complexity O(rKt(x)). Furthermore, this algorithm makes a single query q to O, where
q = x.

Proof. Given an input x ∈ {0, 1}∗, let k̃
def
= O(x) be the estimate provided by the oracle, and

recall that rKt(x)/C ≤ k̃ ≤ C · rKt(x) for a universal constant C. We proceed as in the proof
of Theorem 30, but this time we will invoke the “moreover” part of Theorem 20 with sampler

A = U(1C·k̃). By Claim 24, since rKt(x) ≤ C · k̃, we get that U(1C·k̃) outputs x with probability

at least δ
def
= (1/(C · k̃)) · 2−C·k̃ · (2/3). In addition, the running time of this sampler is bounded by

2O(C·k̃). It then follows from Theorem 20 that it is possible to efficiently compute with probability
at least 0.99 a valid rKt representation of x of complexity O(C ·k̃) = O(C2 ·rKt(x)) = O(rKt(x)).
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As explained in Section 1, an interesting aspect of this reduction is that it works on an input by
input basis. In other words, if we are able to linearly approximate the rKt complexity of the input
string, then we can compute a near-optimal representation for the same string.

We note that a reduction that works on an input by input basis is easy to come up with in the
setting of (time-unbounded) Kolmogorov complexity: from an upper bound on K(x), it is possible
to compute a string that represents x of complexity at most K(x) simply by running in parallel all
machines of at most this description length. Theorem 29 can be interpreted as an analogue result
in the more challenging setting of time-bounded Kolmogorov complexity.

The next result should be contrasted with the unconditional lower bound of [Oli19] for estimat-
ing the rKt complexity of an input string x.

Theorem 30 (Efficient generation of rKt descriptions). There is a randomized polynomial-time
algorithm E such that on any input string x ∈ {0, 1}n, given as advice a string α = α(x) of length
≤ log log n + O(1), E(x, α) outputs with probability ≥ 0.99 an rKt description of x of complexity
O(rKt(x)).

Proof. Algorithm E computes on x ∈ {0, 1}n as follows. It expects α ∈ {0, 1}log logn+O(1) to encode

a tight approximation k̃ to the value k
def
= rKt(x) ∈ [γ ·n], where γ ∈ N is a universal constant, and

γ ·n is an upper bound on max{rKt(x) | x ∈ {0, 1}n}. Since we are only aiming for a constant factor
approximation of rKt(x), we use α to encode the smallest integer β such that 2β ≥ rKt(x). Since
β ≤ log n+Oγ(1), α can be encoded with just log log n+O(1) bits, and a value k̃ such that k ≤ k̃ ≤
2k can be obtained from α. E(x, α) considers the universal sampler U(1k̃) as the algorithm A(1k̃)

in Theorem 20. Furthermore, it sets δ
def
= (1/k̃) · 2−k̃ · (2/3). By Claims 23 and 24, A(1k̃) ≡ U(1k̃)

outputs x with probability at least δ and in time at most T = 2O(k̃). As a consequence, from the
“moreover” part of Theorem 20 it follows that E(x, α) can compute with probability at least 0.99
a valid rKt representation of x of complexity O(log(k̃) + log(T ) + log(1/δ)) = O(k̃) = O(rKt(x)) in
time poly(|U |, log(k̃), n, log(1/δ)) = poly(n).

The next corollary is immediate from Theorem 29.

Corollary 31 (Time-bounded short lists with short programs in short time). Given an arbitrary
string x of length n, it is possible to compute with high probability and in polynomial time a collection
of at most d = log(n) +O(1) strings w1, . . . , wd such that at least one of these strings is a valid rKt
encoding of x of complexity O(rKt(x)).

Proof. We can enumerate all values of k ∈ [O(n)] that are a power of 2, and run the instance-based
search-to-decision reduction from Theorem 29 on x using k as the query answer. One of such k will
be a linear approximation of rKt(x), and the output of the search-to-decision reduction for this k
will be a rKt description of x with complexity O(rKt(x).

4.3 Implications for Levin’s Kt complexity

In this section, we investigate applications of rKt to Levin’s Kt complexity [Lev84]. We start
with the following lemma, which provides a conditional but general way of translating results for
rKt to Kt.
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Lemma 32 (Conditional rKt-to-Kt Conversion Lemma). Assume that Conjecture 15 holds, and
let G be the algorithm from Theorem 16. For every string x ∈ {0, 1}∗, given any valid rKt rep-
resentation w of x and an upper bound T on the running time of the corresponding randomized
machine Mw, we can compute in deterministic time poly(|w|, log(T )) a valid Kt representation of
x of complexity O(|w|+ log(T )).

Proof. Consider the following computation: Let R ⊆ {0, 1}s be the output of the algorithm G(1s),
where s = poly(T ). Run Mw over the empty string using as its source of randomness each string
in R and output the most common string output by Mw.

We claim that this deterministic computation produces x. Let C be a (multi-output) determin-
istic circuit on at most T input bits that interprets its input as a random string z and outputs Mw

on the empty string using randomness z. Note that C has size at most poly(T ), and that it outputs
x with probability at least 2/3. Next consider the (single-output) Boolean circuit C ′ obtained by
adding a circuit on top of C that checks if the output of C is x, i.e., C ′ outputs 1 if and only if
this is the case. Note that C ′ also has size poly(T ) ≤ s, since |x| ≤ T . Since the set R (1/10)-fools
C ′, on more than a 1/2 fraction of the strings in R, C ′ outputs 1. The only way for this to happen
is if C (and also Mz) outputs x on every such string in R. Therefore, the computation described
above must produce x.

It is not hard to see that, given the string w, the code of G, and the upper bound T , we
can produce the code of a deterministic machine that performs the computation described above.
We need to hardcode log(T ) in this description, which extends the description length from |w| to
O(|w|+ log(T )), where the constant in O(·) depends on |G| as well. Since the computation runs in
time poly(T ), the overall Kt complexity is bounded by O(|w|+ log(T )).

Lemma 32 provides a natural example of a deterministic algorithm manipulating probabilistic
data representations.

Theorem 33 (Conditional Effective Coding Theorem for Kt). Assume that Conjecture 15 holds,
and let G be the algorithm from Theorem 16. If there is a randomized algorithm A for sampling
strings such that A(1m) runs in time T (m) and outputs a string x ∈ {0, 1}∗ of length n ≤ T (m)
with probability at least δ > 0, then

Kt(x) = O(log(1/δ) + log(T (m)) + log(m)),

where the constant behind the O(·) depends on |A| and |G|, and is independent of the remaining
parameters. Moreover, given x, m, T (m), δ, and the codes of A and G, it is possible to compute
with probability ≥ 0.99 some Kt encoding of x of at most this complexity in randomized poly(n)
time.

Proof. We can assume without loss of generality that max{|A|, log(m), log(T (m)), log(1/δ)} ≤ n,
since otherwise outputting a trivial Kt representation for x of complexity O(n) is sufficient. The
result is then immediate from the Coding Theorem for rKt (Theorem 20) and Lemma 32.

Given the result above, it is not hard to show a conditional instance-based search-to-decision
reduction for Kt. However, using ideas from the proof the coding theorem for rKt, we can also show
an unconditional instance-based search-to-decision reduction for Kt.
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Theorem 34 (An instance-based search-to-decision reduction for Kt). Let O be a function that
linearly approximates Kt complexity. There is a randomized polynomial-time algorithm with access
to O that, when given an input string x, outputs with probability ≥ 0.99 a valid Kt representation of
x of complexity O(Kt(x)). Furthermore, this algorithm makes a single query q to O, where q = x.

Proof. We are given an input x ∈ {0, 1}∗ where |x| = n, and Kt(x)/C ≤ k̃ ≤ C · Kt(x) for a
universal constant C, where k̃ is obtained via a single query to O on x. Our encoding algorithm is
as follows:

1. Pick u ∈ {0, 1}d uniformly at random, where d = O
(

log
(
n · 2 · 2C·k̃

))
= O(k̃ + log(n)).

2. Invoke the deterministic algorithm M(1n, u) from Lemma 19 to obtain a hash function

H : {0, 1}n → {0, 1}O(k̃), and compute z = H(x).

3. Output (n, k̃, u, z).

It is easy to verify that the output of the above procedure has length

O(log(k̃) + log(n)) = O(Kt(x) + log(n)) = O(Kt(x)).

Next, we claim that with probability at least 0.99 over the choice of u, the tuple generated in Step
3 can be easily converted into a valid Kt representation of x. (Note that the randomness is only
over the encoding algorithm that generates the Kt representation, which provides a deterministic
description.) To decode x from this information, we first run M(1n, u) from Lemma 19 to recover
the hash function H. We then enumerate each deterministic machine of description length at most

C · k̃ and simulate it for at most 2C·k̃ steps. For each output y of these machines that is in {0, 1}n,

we compute H(y) and output the first y such that H(y) = z. Note that there are at most ` = 2·2C·k̃
distinct machines of length at most C · k̃, and each machine produces at most one output string.
By the fact that Kt(x) ≤ C · k̃, at least one of them will output x. Also, by Lemma 19, for at least
a fraction of .99 of the u’s, the hash function H obtained from u isolates every n-bit string in the
set of outputs of these ` machines, and x is the only string such that H(x) = z. Therefore, for any
such “good” u, the string x can be decoded correctly from n, k̃, u, and z. It is easy to see that

the running time of the decoding algorithm is poly(n) · 2O(k̃), so the Kt complexity of the resulting
representation for x is O(Kt(x)).

Note that Theorem 29 (search-to-decision reduction for rKt) and Theorem 34 (search-to-decision
reduction for Kt) complete the proof of Theorem 2 from Section 1.

It is unclear to us how to use the hardness hypothesis in Conjecture 15 to derandomize the
reduction. Indeed, even under stronger assumptions, we don’t see how the reductions for rKt and Kt
can be derandomized in polynomial time. We suspect that the use of randomness might be inherent
in any efficient algorithm that produces succinct descriptions with respect to Kt complexity.

4.4 Time hierarchies for sampling distributions

In this section, we observe that a derandomization hypothesis for decision problems implies a
strong time hierarchy theorem for sampling distributions.
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Theorem 35 (A strong time hierarchy theorem for sampling distributions). Under the assumption
that Promise-BPE ⊆ Promise-E, there is a constant ζ > 0 for which the following holds. Let
n1/ζ ≤ T (n) ≤ 2n be any constructive time bound. There is an ensemble {Dn}n≥1 of distributions
Dn supported over {0, 1}n such that:

(i) Each distribution Dn is supported over a single string zn.

(ii) There is a deterministic algorithm A(1n) that samples Dn and runs in time O(T (n)).

(iii) For each randomized algorithm B(1n) that runs in time O(T (n)ζ) and for every large enough
n, the statistical distance of Dn and B(1n) is at least 1− 1/T (n)ζ .

Proof. The assumption implies via Theorem 17 that there is a universal constant C such that

Kt(x) ≤ C · rKt(x) (3)

for all x ∈ {0, 1}∗. Consider the constructive time bound T (n), and let λ
def
= ε · log(T (n)), where

ε > 0 is a small constant independent of the remaining parameters in the statement of the theorem.
By exhaustive search, we can enumerate in time O(T (n)) all strings in {0, 1}n of Kt complexity
at most λ. Note that this does not exhaust the set of all n-bit strings, since λ < n under our
assumption that T (n) ≤ 2n. Let zn be the lexicographic first n-bit string that is not in this list,
and let Dn be the distribution supported on zn. Note that Items (i) and (ii) hold due to our
construction.

In order to prove Item (iii), let B(1n) be a randomized algorithm running in time O(T (n)ζ), and
assume that n is large enough. Finally, toward a contradiction, suppose |Dn−B(1n)| ≤ 1−1/T (n)ζ .
From the definition of statistical distance,

|Dn(zn)− (B(1n))(zn)| = 1− (B(1n))(zn) ≤ 1− 1/T (n)ζ ,

i.e., B(1n) outputs zn with probability ≥ 1/T (n)ζ . By Theorem 20,

rKt(zn) ≤ C ′ · (log n+ ζ · log(T (n))),

where C ′ is a universal constant. Finally, due to Equation (3) and the definitions of zn and λ,

ε · log(T (n)) ≤ Kt(zn) ≤ C · C ′ · (log n+ ζ · log(T (n))).

Since T (n) ≥ n1/ζ , the last equation is contradictory if ζ is small enough compared to the universal
constants C, C ′, and ε.
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A On the Parameters of the Coding Theorem for rKt

The contents of this section are organized as follows.

Appendix A.1. We compare the parameters of the coding theorem for rKt with the analogous
result in Kolmogorov complexity.

Appendix A.2. We describe two alternate proofs of the String Isolation Lemma (Lemma 19)
which provide a small constant in the asymptotic bounds.

Appendix A.3. We explain Levin’s conditional result showing that simultaneously achieving effi-
cient encoding and decoding is impossible, even with probabilistic descriptions. This has implica-
tions to the discussion on optimality appearing in the preceding sections.

As a consequence of the results from this section, the constant in front of log(1/δ) in the rKt
upper bound provided by Theorem 1 is at most 5.

A.1 An optimal coding theorem for rKt?

As mentioned in Section 1, a fundamental result in the study of Kolmogorov complexity is the
following coding theorem.

Theorem 36 (Coding Theorem in Kolmogorov Complexity [Lev74]). Let D be an enumerable
distribution. Then for every x,

K(x) ≤ log(1/δ) + CA,

where δ = D(x) and CD is a constant that depends only on the distribution D.

Among many interesting implications of Theorem 36 and its variants in complexity theory (see
e.g. [Lee06]), we would like to bring to the attention of the reader the following results:

• Li and Vitányi [LV92] used it to show that there is a probability distribution Duniversal over
{0, 1}∗ such that if a language L is hard in the worst case then it is hard in the average case
with respect to Duniversal
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• Under a strong derandomization assumption, Fortnow and Antunes [AF09] implicitly proved
a coding theorem for P-samplable distributions in the setting of time-bounded Kolmogorov
complexity, and used it to characterize the worst-case running time of languages that are in
average polynomial-time over all P-samplable distributions.

• Aaronson [Aar14] employed Theorem 36 to show a beautiful equivalence between sampling
and search problems for a given computational model C.

Given these consequences of Theorem 36, it is natural to ask whether we can use the uncondi-
tional coding theorem for rKt to show analogous results in the setting of time-bounded Kolmogorov
complexity. It turns out that all the aforementioned applications also crucially rely on the fact that
the coding theorem has an optimal dependence on log(1/δ), in the sense that the constant before
the log(1/δ) term is 1. In contrast with Theorem 36, our coding theorem for rKt (Theorem 1)
has a fixed but arbitrary constant factor in the log(1/δ) term. This motivates the investigation of
optimized coding theorems for rKt with a better dependence on the probability parameter δ.

In order to be very precise about the rKt complexity of a string x, it is helpful to consider a
definition where one fixes an efficient universal Turing machine U that specifies the encoding length
of a machine M , and to distinguish the input corresponding to M from auxiliary information a that
is used to produce x. One them redefines rKt in the natural way by minimizing over |M |+ |a|+log t,
where U(M,a) outputs x with probability at least 2/3 when it simulates M(a) for t steps.

Problem 37. Establish a coding theorem for rKt with optimal dependence on log(1/δ). In partic-
ular, suppose there is a randomized algorithm A for sampling strings such that A(1n) runs in time
T (n) and outputs a string x ∈ {0, 1}n with probability at least δ > 0. Is it the case that

rKt(x) ≤ 2.01 · log(1/δ) +O(log T (n)) ?

(In order to obtain even more precise bounds, one might need to decouple description length and
running time in the definition of rKt.)

From the proof of our coding theorem for rKt (Theorem 1), one thing that contributes to the
constant factor in the log(1/δ) term is the use of the String Isolation Lemma, where we need to
include in the rKt description the encoding of a hash function and a hash value. Using Lemma 19,
this requires C · (log(1/δ) + log(n)) bits, for some arbitrary constant C. Therefore, a natural
attempt toward an improved coding theorem would be to prove a string isolation lemma with
better parameters.

In the next subsection, we provide different proofs of the lemma which imply that the constant
in front of log(1/δ) in Theorem 1 is small, and in particular ≤ 10. We then discuss some difficulties
on getting an optimal coding theorem for rKt using our techniques.

A.2 Alternate proofs of the string isolation lemma with better parameters

We describe two alternate proofs of the String Isolation Lemma (Lemma 19). While we can use
Lemma 38 or Lemma 45 below to improve the description length in terms of the constant factor in
the log(1/δ) term, in order to reason about rKt complexity, we also need to consider the running
time of the decoding procedure for such a description. In our proof of Theorem 1, we need to run
the sampler at least Ω(1/δ) times to observe x, so the running time is at least Ω(1/δ). This adds
another log(1/δ) to our upper bound on the rKt complexity of x.
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We are not aware of an off-the-shelf explicit construction that would allow us to obtain the
parameters mentioned in Problem 37. However, as far as we know, a coding theorem for rKt with
these parameters might be true and within reach of existing techniques.

A.2.1 String isolation lemma via modular arithmetic

Our first proof uses hashing that is based on modular arithmetic and prime numbers. We will
identify {0, 1}n with {0, 1, . . . , 2n − 1} in the natural way.

Lemma 38 (String Isolation Lemma via Modulo Primes). There is a randomized algorithm M
for which the following holds. For any set W ⊆ {0, 1}n of size (at most) K, and x ∈ W , with
probability at least 0.99, M(1n,K) runs in time poly(n) and outputs a prime p with the following
properties:

• x 6≡ y mod p for every y ∈W such that y 6= x.

• p ≤ O(K · n2).

Proof. We follow a similar argument that appears in [BFL01, Lemma 3.1]. Fix any x ∈ W , and
note that by the Chinese Remainder Theorem, for every y ∈ W such that y 6= x, there can be at
most n primes for which x ≡ y mod p. Therefore, there are at most (K − 1) · n many primes such
that x ≡ y mod p for some y ∈W such that y 6= x. Let’s call such primes bad for x.

Consider the set of all positive integers with magnitude at most m
def
= 1000 · K · n2. By the

prime number theorem, there are at least m/ log(m) > 200 · (K−1) ·n primes in this set, and hence
less than a 0.005 fraction of these primes are bad.

Consider the following procedure M for outputting a good prime:

Repeats t
def
= 6 · log(m) times:

1. Randomly pick a positive integer p with magnitude at most m.

2. Check if p is prime. If so, output p and halt.

Then, the probability that M fails to output a “good” prime is

≤ Pr[M fails to output a prime] + Pr[the prime output by M is bad]

< (1− 1/ logm)t + 0.005

< 0.01.

It is easy to verify that the running time of M is poly(n).

Note that for every x ∈ W , a “good” prime for x as described in Lemma 38 yields a hash
function that isolates x from all other elements in W . Such a hash function can be encoded using
at most log(K) +O(log n) bits, and a hash value can be specified using at most log(K) +O(log n)
bits, where K is a upper bound on the size of the set W . Then using such a hash function in our
decoding procedure described in the proof of Theorem 1, in order to recover an n-bit string x which
is output by a uniform sampler A(1m) with probability at least δ, we need to know the code of A,
the values of n, m, δ, a “good”prime p for x, and the value x mod p. Recall that in this decoding
procedure we need to consider a set W of size at most O(1/δ). Also note that, since we can assume
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1/δ is a power of 2, we can recover the value of δ given the value of log(1/δ), so we can specify δ
using only dlog log(1/δ)e = O(log n) bits. In total, we get a description of length

2 · log(1/δ) +O(log(m) + log(n)).

A.2.2 String isolation via lossless condensers

Our second proof will use lossless condensers in the very low error regime. We first introduce
some basic definitions and facts regarding condensers.

A.2.2.1 Technical tools

A distribution has high min-entropy if no element in its sample space has large probability
weight.

Definition 39 (Min-Entropy). Let X be a distribution over some sample space Ω. The min-entropy
of X , denoted by H∞(X ), is the largest real number k such that Pr[X = x] ≤ 2−k for every x ∈ Ω.
We call X a k-source if H∞(X ) ≥ k.

Definition 40 (Flat Distribution). A distribution X over some finite sample space Ω is called flat
if it is uniform on a set S ⊆ Ω. That is, for every x ∈ S, Pr[X = x] = 1/|S|.

Note that a flat distribution on a set S has min-entropy log(|S|).
A condenser is a function that converts a source with a certain amount of min-entropy into

another source with about the same amount of min-entropy but on a much smaller domain, so that
the output source has a high min-entropy rate.

Definition 41 (Strong Condenser). For any integers n, d, τ, k, k′ and 0 < ε < 1, let X be a
distribution over {0, 1}n with min-entropy at least k and Y be the uniform distribution over {0, 1}d.
A function f : {0, 1}n × {0, 1}d → {0, 1}τ is called a strong k →ε k

′ condenser if the distribution
(Y, f(X , Y )) is ε-close in statistical distance to some distribution with min-entropy at least k′. The
condenser f is called lossless if k′ = k, and is called explicit if f can be computed in time poly(n).

We will need the following useful properties about strong condensers.

Lemma 42 (See e.g. [Che10, Corollary 2.13]). Let f : {0, 1}n × {0, 1}d → {0, 1}τ be a strong
k →ε k

′ condenser. Let γ > 0 and X be a k-source. Then for all but a γ fraction of the seeds
u ∈ {0, 1}d, the distribution f(X , u) is (ε/γ)-close to a k′-source.

Lemma 43 (See e.g. [Che10, Proof of Proposition 2.14]). Let X be a flat distribution with min-
entropy log(K) over a finite sample space Ω, and let g : Ω→ Γ be a mapping to a finite set Γ such
that g(X ) is ε′-close to having min-entropy log(K). Finally, let

T
def
= {y ∈ Γ | |g−1(y) ∩ Support(X )| = 1}.

Then |T | ≥ (1− 2ε′) ·K.

We will use the following construction of a strong lossless condenser which has a short seed
length and a high min-entropy rate.

Theorem 44 ([GUV09], see also [Che10, Theorem 2.22]). For every constant 0 < α < 1, every
integer 0 < k ≤ n, and every 0 < ε < 1, there is an explicit strong k →ε k condenser f : {0, 1}n ×
{0, 1}d → {0, 1}τ , with seed length d = (1 + 1/α) · (log(n) + log(1/ε) + log(k)) + O(1) and output
length τ = d+ (1 + α) · k.
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A.2.2.2 Proof of string isolation via lossless condenser

We obtain the following optimized version of Lemma 19. (Recall that in our applications we
assume that an upper bound on K is known.)

Lemma 45 (String Isolation Lemma via Condensers). For every constant α ∈ (0, 1), there is a
deterministic polynomial-time algorithm M for which the following holds. For any set W ⊆ {0, 1}n
of size (at most) K, for at least a 0.99 fraction of the strings u ∈ {0, 1}d, M(1n, u) outputs a
Boolean circuit that computes a function Hu : {0, 1}n → {0, 1}τ with the following properties:

• Isolating: Hu(w) 6= Hu(w′) for every distinct pair w,w′ ∈W .

• Succinct Encoding: d = (1 + 1/α) · (log(n) + log(K) + log log(K)) +O(1).

• Small Range: τ = d+ (1 + α) · log(K).

Proof. The algorithm M from the statement of the lemma outputs

Hu(·) def
= f(·, u),

where f is the explicit condenser from Theorem 44 with k = log(K) and ε = 1/(300K). It is easy
to verify that the parameters in Items 2 and 3 above are as claimed.

We now show that with probability at least 0.99 (over u), Hu isolates every string in the set
W . Let XW be the uniform distribution over the set W . Note that XW is a flat distribution with
min-entropy log(K). Since f is a strong k →ε k condenser, where k = log(K) and ε = 1/(300K),
by Lemma 42, with probability at least 0.99 over the u’s, Hu(XW ) is ε′-close to having min-entropy
log(K), where

ε′ = ε/0.01 = 1/(3K).

Then, by Lemma 43, the set

T
def
= {y ∈ {0, 1}τ | |H−1

u (y) ∩W | = 1}

has size at least

(1− 2ε′) ·K = K − 2

3K
·K = K − 2

3
.

This means that there are at least K buckets in Hu that contain exactly one string from W . Since
|W | = K, this implies that every string in W was mapped to a bucket on its own. This concludes
the proof of Item 1.

Note that in Lemma 45, we have

d+ τ = 2 · (1 + 1/α) · (log(n) + log(K) + log log(K)) + (1 + α) · log(K) +O(1)

= (3 + 2/α+ α) · log(K) +O(log n).

Choosing α =
√

2, we get

d+ τ = (3 + 2
√

2) · log(K) +O(log n).

Therefore, we can get a description length of

(3 + 2
√

2) · log(1/δ) +O(log(m) + log(n)).
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A.3 On the (im)possibility of a coding theorem with efficient encoders and
decoders

Recall that our randomized “encoding” algorithm in Theorem 1 is efficient, i.e., we can efficiently
output a valid rKt description w of x with high probability. On the other hand, “decoding” x from
w is not necessarily an efficient randomized computation. In this section, we observe under a
standard assumption that this is unavoidable.

For simplicity of the exposition, our definition of one-way functions refers to security against
(non-uniform) polynomial-size adversaries.

Theorem 46. If one-way functions exist, then for any ε > 0, there exists a P-samplable distribution
D over {0, 1}n such that the set

Tn
def
= {x | D(x) ≥ 1/2n

ε}

is not compressible to length n − 3 by any encoding/decoding scheme that runs in randomized
polynomial time when n is sufficiently large.

Proof. The proof is adapted from that of [Lee06, Theorem 5.3.1], attributed to Levin.
If one-way functions exist, then by [HILL99], for any ε > 0, there is a pseudorandom generator

G : {0, 1}n
ε

→ {0, 1}n such that for any polynomial-size circuit C, it is the case that∣∣∣∣∣ Pr
z∼{0,1}nε

[C(G(z)) = 1]− Pr
x∼{0,1}n

[C(x) = 1]

∣∣∣∣∣ ≤ 1/n. (4)

Let D be the distribution over {0, 1}n that is induced by the pseudorandom generator G, and
let

T
def
= Support(D).

Note that for every x ∈ T , D(x) ≥ 1/2n
ε
. Moreover, D is P-samplable.

For the sake of contradiction, suppose there are polynomial-time algorithms Enc and Dec such
that for every x ∈ T ,

Dec(Enc(x, r1), r2) = x and |Enc(x, r1)| ≤ n− 3, (5)

with probability at least 3/4 over r1, r2 ∈ {0, 1}n
c

, where c > 0 is some constant. Then by an
averaging argument, there exist fixings of r1, r2 such that Condition 5 holds with probability at
least 3/4 with respect to x ∼ D. For such fixed r1, r2, define the circuit

C(x) = 1 ⇐⇒ Condition 5 holds for x.

On the one hand, by the fact that Enc and Dec are polynomial-time computable, we have that C
can be implemented in polynomial size, and by definition, we have

Pr
x∼D

[C(x) = 1] ≥ 3/4.

On the other hand, we know by counting that the number of x’s from {0, 1}n that satisfies Condition
5 is at most 2n−2, so

Pr
x∼{0,1}n

[C(x) = 1] ≤ 1/4.

This contradicts Equation (4).
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This result has the following implication in connection to the problem of optimizing the de-
pendence on log(1/δ) in the coding theorem for rKt. Our proof of Theorem 1 provides an efficient
encoding algorithm. On the other hand, our decoder, implicit in the rKt representation, has a
running time t satisfying log t ≥ log(1/δ). (This is how we sidestep Theorem 46.) Given that
log(1/δ) bits are necessary for description length by Shannon’s Coding Theorem (Section 3.3), any
approach via efficient encoders is unlikely to lead to a coding theorem for rKt that goes beyond the
parameters in Problem 37, since contributions that depend on δ will come both from running time
and description length.

B On the Space Complexity of the Encoding and Decoding Algo-
rithms

One way to interpret Theorem 1 is that it probabilistically compresses strings that can be
generated with non-trivial probability by a time-bounded procedure. Since data compression is
often performed to reduce space usage, it is also important to have space-efficient compression
and decompression algorithms. In this section, we revisit the time and space complexities of the
compression scheme provided in the proof of Theorem 1, which appears in Section 3 (restated as
Theorem 20). For simplicity and concreteness, we assume the RAM computational model for the
analysis of the space and time complexities below.

Theorem 47 (Space complexity in the proof of Theorem 20). Suppose there is a randomized
algorithm A for sampling strings such that A(1n) runs in time T (n) and space S(n), and outputs a
string x ∈ {0, 1}n with probability at least δ > 0. Then given x, δ, and the code of A, it is possible
to probabilistically encode x using O(log(1/δ) + log(n)) bits in time O(n) + log(1/δ) · polylog(n)
and space O(n). Such an encoding can be probabilistically decoded in time (1/δ) ·T (n) ·poly(n) and
space (1/δ) · poly(n) + S(n).

Proof Sketch. We first address the complexity of the encoding algorithm. Recall that in the en-
coding procedure described in the proof of Theorem 20, given x, we first find a hash function
Hu by randomly picking a string u which specifies a random walk (u1, u2, . . . , ut) on an expander
with O(n) vertices (given by Theorem 12), where t = O(log(1/δ)). We then obtain the value of

Hu(x) = E(x)u1 , E(x)u2 , . . . , E(x)ut , where E : {0, 1}n → {0, 1}O(n) is the error-correcting code in
Theorem 11. To implement this procedure, we can first compute E(x) in time O(n); it is known that
there exists such an error-correcting code whose encoding can be done in linear time [Spi96, GI02].
We then generate the string u by simulating a random walk of length t on the expander and store
only the current vertex in the work tape. That is, as we make a move on the graph, we randomly
pick a direction and append it to u in the output (except for the first move where we randomly
pick a starting vertex). We then compute the next vertex in the walk, replacing the current vertex
in the work tape. Note that computing the next vertex can be done in time polylog(n). Then at
the i-th step with the current vertex being ui, we can write the i-th bit of Hu(x) as E(x)ui to the
output. It is easy to verify that the above can be done in O(n)+ t ·polylog(n) time and O(n) space.

Next, we address the complexity of the decoding algorithm, for a non-trivial value δ ≥ 2−n.
Recall that in the proof of Theorem 20, we run the sampler t = 64 · (1/δ) · log(1/δ)) times and
store the resulting samples in the multi-set S0. This requires time t · T (n) and space t · n + S(n).
Next, we keep only the elements in S0 that appear more than α = 32 · log(1/δ) times to obtain a
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set S. This can be done in time t · poly(n) by sorting the elements in S0. Finally, we need to apply
hashing to each element in S, which takes time at most t · poly(n) in total.

One disadvantage of Theorem 47 is that the encoding and decoding algorithms require large
space. In particular, the decoding algorithm requires super-polynomial space if 1/δ is super-
polynomial, even when the sampler runs in bounded space. Next, we present encoding and decoding
algorithms that have a slightly larger running time but are space efficient.

Theorem 48. Suppose there is a randomized algorithm A for sampling strings such that A(1n) runs
in time T (n) and space S(n), and outputs a string x ∈ {0, 1}n with probability at least δ > 0. Then
given x, δ, and the code of A, it is possible to probabilistically encode x using O(log(1/δ) + log(n))
bits in time n · log(1/δ) ·polylog(n) and space polylog(n). Such an encoding can be probabilistically
decoded in time (1/δ)2 · T (n) · poly(n) and space poly(n) + S(n).

Proof. We describe and analyse our encoding and decoding algorithms below. These algorithms
are variants of the procedures from the proof of Theorem 20. We start with a modified encoding
algorithm.

Encoding. Recall that in the encoding procedure, given an input x, we want to find a good hash
function Hu which isolates every element in a set W of size O(1/δ) (which contains the strings that
are output by A with probability at least δ/32), and then compute the value Hu(x). In order to
make this space efficient, we will use the following hash family.

Claim 49. For any K > 0, there exists a hash family
{
Hu : {0, 1}n → {0, 1}t

}
, where t = O(logK),

such that

1. Each Hu can be encoded using O(log(n) + t) bits.

2. For every W ⊆ {0, 1}n of size K,

Pr
Hu

[Hu(x) 6= Hu(x′) for every distinct pair x, x′ ∈W ] ≥ 0.99.

3. There is a randomized algorithm that given K and x ∈ {0, 1}n, outputs (Hu, Hu(x)) in time
n · t · polylog(n) and space polylog(n), where Hu is a uniform function from the hash family.

Proof. We first describe the hash family. Let S ⊆ {0, 1}n be a (1/10)-biased set. That is, for every
v ∈ {0, 1}n \0n, we have

1/2− 1/10 ≤ Pr
w∈S

[〈v, w〉 = 0] ≤ 1/2 + 1/10,

where 〈v, w〉 =
∑n

i=1 vi ·wi mod 2. In particular, the above equation implies that for every distinct
x and x′,

Pr
w∈S

[〈x,w〉 6= 〈x′, w〉] ≥ 0.4. (6)

It is known that there exists such a set S with |S| = poly(n), and given j ∈ [n] and i ∈ [|S|],
the j-bit of the i-th element in S can be computed in polylog(n) time (see e.g. [AGHP92]). Let’s
denote S = {w1, w2, . . . w|S|}.
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Let G be an expander with |S| vertices given by Theorem 12, and let u = (u1, u2, . . . , ut) be a
walk on G, where t = O(logK). Then we define

Hu
def
= 〈x,wu1〉, 〈x,wu2〉, . . . , 〈x,wut〉.

We first show Item 3. We will generate the string u, which specifies the hash function Hu, by
simulating a random walk of length t on G and store only the current vertex in the work tape.
That is, as we make a move on the graph, we randomly pick a direction and append it to u in the
output (except for the first move where we randomly pick a starting vertex). We then compute
the next vertex in the walk, replacing the vertex in the work tape. Note that computing the next
vertex can be done in polylog(n) time and space. Also, at the i-th step with the current vertex
being ui, we will compute the i-th bit of Hu(x). Note that given ui, for every j ∈ [n], we can
compute zj = xj · (wui)j in polylog(n) time and space (since the set S is strongly explicit). In order
to compute the i-th bit of Hu(x), we need to compute the parity of the zj ’s for j ∈ [n], which can
be done in a streaming fashion using polylog(n) space (and n · polylog(n) time), by computing one
zj at a time. Therefore, we can output (Hu, Hu(x)) in time t · n · polylog(n) and space polylog(n).

Item 2 can be shown using the Expander Chernoff Bound (Theorem 13) and Equation (6), as
in the proof Lemma 19. We omit the details here.

Finally, Item 1 easily follows from the definition of the hash family, using that G is a constant-
degree expander and that both G and S are strongly explicit.

Proceeding as in the original proof, it is easy to see that we can use Claim 49 to get an encoding
algorithm with the claimed time and space complexities.

Decoding. Recall that in the decoding procedure described in the proof of Theorem 20, we run the
sampler t = O(1/δ · log(1/δ)) times and store the resulting samples, which requires space at least
t. The idea for our space-efficient decoding algorithm is to process these samples in a streaming
fashion without storing them in memory. More specifically, let Hu be an isolating hash function
for the set of strings that are output by A with probability at least δ/32, as described in the proof
of Theorem 20. Consider Algorithm 1 described below.

Note that we can assume that δ ≥ 2−n without loss of generality. It is easy to verify that
Algorithm 1 runs in time (1/δ)2 ·T (n) · poly(n) and uses space O(n) +S(n), by noting that we can
also compute each bit of Hu in polylog(n) space.

Next, we show the correctness of this algorithm. Let’s look at the part inside the outer for
loop. On the one hand, if y = x, then by Claim 21, with probability except δ6, we will end up
with count ≥ α and x will be recovered successfully. Also note that by our choice of parameter in
the outer for loop, with probability except (1 − δ)2/δ ≤ e−2, in at least one of the executions we
will have y = x. On the other hand, if y 6= x but H(y) = H(x), then we know that A outputs
y with probability less than δ/32 (since H is isolating for the set of strings that are output by A
with probability at least δ/32). Therefore, by Claim 22 the probability that count ≥ α is less than
64 · δ16. By a union bound (over i = 1, 2, . . . , 2/δ), the probability that we output an answer is
128 · δ15 ≤ 1/3. As a result, the probability that the above algorithm fails to recover x is at most
δ6 + e−2 + 128 · δ15 < 1/4. (Here we assume for simplicity that δ < 0.6.)
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Algorithm 1 A space-efficient decoding algorithm

1: procedure Decode(A,n, δ,Hu, Hu(x))

2: t
def
= 64 · (1/δ) · log(1/δ)

3: α
def
= 32 · log(1/δ)

4: for i = 1, 2, . . . , 2/δ do
5: y ← A(1n)
6: if Hu(y) = Hu(x) then

7: count
def
= 0

8: for j = 1, 2, . . . , t do
9: z ← A(1n)

10: if z = y then
11: count← count+ 1

12: if count ≥ α then
13: Output y

14: Output “Fail”
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