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Abstract

We consider C-compression games, a hybrid model between computational and communi-
cation complexity. A C-compression game for a function f : {0, 1}n → {0, 1} is a two-party
communication game, where the first party Alice knows the entire input x but is restricted to
use strategies computed by C-circuits, while the second party Bob initially has no information
about the input, but is computationally unbounded. The parties implement an interactive com-
munication protocol to decide the value of f(x), and the communication cost of the protocol is
the maximum number of bits sent by Alice as a function of n = |x|.

We show that any AC0
d[p]-compression protocol to compute Majorityn requires communication

n/(log n)2d+O(1), where p is prime, and AC0
d[p] denotes polynomial size unbounded fan-in depth-

d Boolean circuits extended with modulo p gates. This bound is essentially optimal, and settles
a question of Chattopadhyay and Santhanam (2012). This result has a number of consequences,
and yields a tight lower bound on the total fan-in of oracle gates in constant-depth oracle circuits
computing Majorityn.

We define multiparty compression games, where Alice interacts in parallel with a polynomial
number of players that are not allowed to communicate with each other, and communication
cost is defined as the sum of the lengths of the longest messages sent by Alice during each round.
In this setting, we prove that the randomized r-round AC0[p]-compression cost of Majorityn is
nΘ(1/r). This result implies almost tight lower bounds on the maximum individual fan-in of
oracle gates in certain restricted bounded-depth oracle circuits computing Majorityn. Stronger
lower bounds for functions in NP would separate NP from NC1.

Finally, we consider the round separation question for two-party AC0-compression games,
and significantly improve known separations between r-round and (r + 1)-round protocols, for
any constant r.
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1 Introduction

1.1 Motivation and Background

Computational complexity theory investigates the complexity of solving explicit problems in var-
ious computational models. While fairly strong lower bounds are known for restricted models
such as constant-depth circuits (Ajtai [Ajt83], Furst, Saxe, and Sipser [FSS84], Yao [Yao85], and
H̊astad [H̊as86]) and monotone circuits (Razborov [Raz85], Andreev [And85], and Alon and Bop-
pana [AB87]), our understanding of general Boolean circuits is still very limited. For example, our
current state of knowledge does not rule out that every function in NTIME(2n) is computed by
Boolean circuits of linear size.

Several barriers have been identified to proving lower bounds for general Boolean circuits,
such as relativization (Baker, Gill, and Solovay [BGS75]), algebrization (Aaronson and Wigderson
[AW09]), and the “natural proofs” barrier (Razborov and Rudich [RR97]). Most known lower
bound techniques for restricted models are “naturalizable”, and it is believed that substantially
different methods will be required in order to prove strong lower bounds for unrestricted models.

In spite of this, the techniques used to prove lower bounds for weaker models are still interesting,
and an improved understanding of these techniques can have substantial benefits. First, there is a
developing theory of connections between unconditional lower bounds and algorithmic results, which
involves satisfiability algorithms, learning algorithms, truth-table generation, among other models
(cf. Williams [Wil14a], Oliveira [Oli13], and Santhanam [San12]). In particular, such connections
provide new insights and results in both areas, and a better understanding of restricted classes
of circuits can lead to improved algorithms (cf. Williams [Wil14b]). Second, strong enough lower
bounds for weaker models imply lower bounds for more general models (Valiant [Val77, Val83], see
Viola [Vio09] for a modern exposition). In a similar vein, we mention the surprising results from
Allender and Koucký [AK10] showing that, in some cases, weak circuit size lower bounds of the
form n1+ε yield much stronger results.

Furthermore, even if known proof techniques individually naturalize, it is possible they could
be used as ingredients of a more sophisticated approach which is more powerful. A recent striking
example of this is the use by Williams [Wil14c] of structural characterizations of ACC0 circuits,
together with various complexity tools such as completeness for problems on succinctly represented
inputs, diagonalization, and the easy witness method, in order to separate NEXP from ACC0. Given
the paucity of techniques in the area of complexity lower bounds, it makes sense to try to properly
understand the techniques we do have.

We focus in this work on C-compression games (Chattopadhyay and Santhanam [CS12]), where
C is some class of Boolean circuits. A C-compression game is a 2-player (interactive) communication
game where the first player Alice is computationally bounded (by being restricted to play strategies
in C) and has access to the entire input x ∈ {0, 1}n, while the second player Bob is computationally
unbounded and initially has no information about the input. Alice and Bob communicate to
compute f(x) for a fixed Boolean function f : {0, 1}n → {0, 1}, and the question is how many
bits of communication sent by Alice are required. Note that if f is computable by C, then 1 bit of
communication suffices, as Alice can compute f(x) by herself, and send the answer to Bob. Thus, if
we are interested in unconditional lower bounds on the communication cost for an explicit function,
we must study circuit classes C where lower bounds are already known for explicit functions, such
as constant-depth circuits, and their extension with modulo p gates.

Compression games hybridize between communication complexity and computational complex-
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ity as follows. In the traditional two-party communication complexity model, Alice and Bob are
symmetric – they each know half of the input, and communicate to compute a given function on
the whole input. Neither party is computationally bounded. Thus they are equally constrained
(or unconstrained) informationally as well as computationally. In the compression game setting,
an asymmetry appears. Alice now has an informational advantage over Bob – she begins with
knowledge of the whole input, while Bob has no knowledge about the input at all. However, this
informational advantage is offset by a computational constraint – Alice can only use strategies
computable from C. Thus studying compression games can be thought of as studying the tradeoff
between information and computation. Typically, when studying the question of lower bounds
against C, we are merely interested in whether a function f is computable in C or not. Now, we
are concerned instead by how much information can be obtained about f(x) using merely circuits
from C, or conversely, how much assistance a C-bounded party requires from an unbounded one in
order to compute f(x). In other terms, we would like to obtain a refined quantitative picture of
solvability by C-circuits, rather than a purely qualitative one.

Communication complexity has long been an important tool in the complexity theorist’s toolkit.
In particular, several lower bound techniques such as the crossing sequence method, the Nečiporuk
method [Neč66] and the Khrapchenko method [Khr71] can be interpreted as uses of communication
complexity (cf. Kushilevitz and Nisan [KN97]). Often, when a computational model is relatively
weak, lower bound techniques exploit some sort of information bottleneck in the model, which is how
communication complexity enters the picture. By studying compression games, where the model
explicitly incorporates both communication and computation, we hope to better understand the
interplay between communication complexity techniques and computational complexity techniques.

We explore in this work the power of the polynomial approximation method (Razborov [Raz87],
Smolensky [Smo87]) and the random restriction method (cf. Furst, Saxe, and Sipser [FSS84] and
H̊astad [H̊as86]) in the context of interactive compression games. We use these techniques and the
compression framework to prove significant generalizations of known lower bounds for constant-
depth circuits.

Compression games have been considered before, both to prove unconditional and conditional
lower bounds. The pioneering work of Dubrov and Ishai [DI06] showed that Parityn requires AC0-
compression cost n1−ε (for any fixed ε > 0, and large enough n) when there is only one round of
communication between Alice and Bob. Dubrov and Ishai were motivated by questions about the
randomness complexity of sampling, and their work has later found applications in leakage-resilient
cryptography (Faust et al. [FRR+10]). Chattopadyay and Santhanam [CS12] strengthened the
Dubrov-Ishai lower bound to n/poly(log n), and showed that the lower bound holds for multi-round
games where Alice is allowed to use a randomized strategy. Their main technique was a generic
connection between correlation and multi-round compression. As strong correlation lower bounds
are not known for AC0[p] circuits (see e.g. Srinivasan [Sri13]), their technique does not yield strong
lower bounds for multi-round AC0[p]-compression games, which constitute the main topic of this
work.

The investigation of single-round compression (also known as instance compression) has found
connections to other topics in areas such as cryptography (Harnik and Naor [HN10]), parameter-
ized complexity (cf. Bodlaender et al. [BDFH09]), probabilistic checkable proofs (Fortnow and
Santhanam [FS11]), and structural complexity (Buhrman and Hitchcock [BH08]), and has received
considerable attention recently (see e.g. Drucker [Dru12] and Dell [Del14]). There has also been a
long line of work on proving lower bounds for SIZE(poly(n))-compression games under complexity-
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theoretic assumptions (cf. Dell and van Melkebeek [DvM14]), but papers along this line use very
different ideas, and hence are tangential to our work.

1.2 Main Results and Techniques

For a circuit class C, we use Cd to denote the restriction of C to polynomial size circuits of depth
d. For instance, AC0

d refers to polynomial size depth-d circuits. Recall that Majorityn : {0, 1}n →
{0, 1} is the function that is 1 on an input x if and only if

∑
i∈[n] xi ≥ n/2. Further, we let

MODnq : {0, 1}n → {0, 1} be the function that is 1 if and only if q divides
∑

i∈[n] xi.

The proof that Majorityn /∈ AC0
d[p] for d(n) = o(log n/ log log n) (Razborov [Raz87], Smolensky

[Smo87]) remains one of the strongest lower bounds for an explicit function. There are no known
explicit lower bounds for polynomial size circuits of depth d = ω(log n/ log logn), nor for constant
depth circuits with arbitrary (composite) modulo gates.

In the framework of compression games, the Razborov-Smolensky lower bound is equivalent to
the claim that in any AC0[p] game for Majority, there must be non-trivial communication between Al-
ice and Bob. More recently, Chattopadhyay and Santhanam [CS12] proved that in any randomized
single-round AC0

d[p]-compression protocol for this function, Alice must communicate
√
n/(log n)O(d)

bits. However, their technique does not extend to multiple-round compression games. Before this
work, the only known technique to prove unconditional lower bounds for games with an arbitrary
number of rounds used a connection between compressibility and correlation. The lack of strong
correlation bounds for low-degree Fp polynomials computing explicit Boolean functions prevents us
from using this connection to get AC0[p]-compression lower bounds (see Srinivasan [Sri13] for more
details).

In this work, we bypass this difficulty through a new application of the polynomial approxima-
tion method, obtaining the following result.

Theorem 1.1. Let p be a prime number. There exists a constant c ∈ N such that, for any d ∈ N,
and every n ∈ N sufficiently large, the following holds.

(i) Any AC0
d[p]-compression game for Majorityn (with any number of rounds) has communication

cost at least n/(log n)2d+c.

(ii) There exists a single-round AC0
d-compression game for Majorityn with communication cost at

most n/(log n)d−c.

The argument for the lower bound part of this result proceeds roughly as follows. First, we
show via a reduction in the interactive compression framework that a protocol for Majorityn can
be used to compress other symmetric functions, such as MODnq . In other words, it is enough to
prove a strong communication lower bound for MODnq in order to establish the lower bound in
Theorem 1.1. We then employ a general technique that allows us to transform an interactive
protocol for a Boolean function f into an exponentially large circuit computing f , following an
approach introduced in Chattopadhyay and Santhanam [CS12]. We have thus reduced the original
problem involving computation and communication to a certain circuit lower bound for MODq.

A crucial ingredient in our proof is a new exponential lower bound for a certain class of bounded-
depth circuits extended with modulo p gates computing the MODq function. Although obtaining

circuit lower bounds for depth d circuits beyond size roughly 2n
1/(d−1)

is a major open problem
in circuit complexity (see e.g. Viola [Vio09]), we show that, under a certain semantic constraint
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on the AC0
d[p] circuit, MODnq requires circuits of size 2n/(logn)O(d)

. More specifically, we consider
circuits consisting of a disjunction of exponentially many polynomial size circuits, for which the
following holds: whenever the top gate evaluates to true, precisely one subcircuit evaluates to true.

The proof of this circuit lower bound relies on the application of the polynomial approximation
method in the exponentially small error regime, as opposed to the original proofs of Razborov
and Smolensky, which are optimized with constant error. In particular, this approach allows us
to prove a stronger lower bound that avoids the correlation barrier mentioned before. In order to
implement this idea, we rely on a recent strengthening of their method introduced by Kopparty
and Srinivasan [KS12], and on an extension of the degree lower bounds of Razborov and Smolensky
to very small error. We believe that this new circuit lower bound may be of independent interest,
and that semantic restrictions will find more applications in circuit complexity. Altogether, these
results give the lower bound in Theorem 1.1.

Theorem 1.1 implies a new result for AC0[p] circuits extended with arbitrary oracle gates, which
we state next.

Corollary 1.2. Let p ≥ 2 be prime, and d ∈ N. There exists a constant c ∈ N such that, for every
sufficiently large n, the following holds. If Majorityn is computed by polynomial-size AC0

d[p] circuits
with arbitrary oracle gates, then the total fan-in of the oracle gates is at least n/(log n)2d+c.

Another interesting consequence of Theorem 1.1 is that it provides information about the struc-
ture of polynomial size circuits with modulo p gates computing Majorityn. More precisely, it implies
that in any layered circuit, at least bn/(log n)2k+cc gates must be present in the k-th layer, which
is essentially optimal.

Observe that Theorem 1.1 holds for deterministic compression games. For randomized protocols,
in which Alice can employ a probabilistic strategy, we use our techniques to prove the following
strengthening over previous results.

Theorem 1.3. Let p and q be distinct primes. There exists a constant c ∈ N such that, for any
d ∈ N, and n ∈ N sufficiently large, every randomized AC0

d[p]-compression game for MODnq with

any number of rounds and error at most 1/3 has communication cost at least
√
n/(log n)d+c.

We stress that Theorems 1.1 and 1.3 hold both for Majority and MODq, whenever p 6= q are
distinct primes. Determining the correct communication cost for probabilistic and average-case
games for these functions remains an interesting open problem. (We discuss these models in more
detail in Section 2.)

We also consider a model of multiparty compression games. In this framework, Alice is allowed
to interact during each round with k additional parties, and the communication cost of the round
is defined to be the length of the longest message sent by Alice to one of the parties. Further, the
cost of the protocol on a given input is defined as the sum of the costs of the individual rounds.
We stress that the extra parties are not allowed to interact with each other during the execution
of the protocol.

This is a natural communication framework, motivated by the question of lower bounds for
oracle circuits. Lower bounds in this model with a bounded number of rounds imply lower bounds
on the maximum individual fan-in of oracle gates in oracle circuits with a bounded number of such
layers.

We prove the following bounds on the randomized multiparty AC0[p]-compression cost of Majority.

Theorem 1.4. Let p ∈ N be a fixed prime. For every k, r, d ∈ N, the following holds.
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(i) There exists a deterministic n1/r-party r-round AC0[p]-compression game for Majorityn with
cost Õ(n1/r).

(ii) Every randomized nk-party r-round AC0
d[p]-compression game for Majorityn has cost Ω̃(n1/2r).

The proof of Theorem 1.4 also employs the polynomial approximation method, although the
argument is different in this case. Observe that this result says that the communication cost of
Majorityn in the randomized multiparty framework is nΘ(1/r) for r-round protocols. In other words,
allowing Alice to interact with more parties for more time reduces communication considerably
(under the definition of communication cost for multiparty games).

We obtain a consequence of Theorem 1.4 for oracle circuits where there are a bounded number
r of such layers, i.e., there are no more than r oracle gates on any input-output path in the circuit.

Corollary 1.5. Let p ≥ 2 be prime, and r, d ∈ N. If Majorityn is computed by an AC0
d[p] circuit of

polynomial size with arbitrary oracle gates that contains at most r layers of such gates, then there
is some oracle gate with fan-in at least Ω̃(n1/2r).

In fact, lower bounds for multiparty games are connected to the NP versus NC1 question. It
is possible to show that every Boolean function in NC1/poly admits poly(n)-party r-round AC0-
compression games with cost nO(1/r). Thus, proving a lower bound of nΩ(1) on the cost of poly(n)-
party AC0-compression games with ω(1) rounds for a function in NP would separate NP from
NC1/poly. We conjecture that such a lower bound holds for the Clique function. Note that it
is already known that strong enough lower bounds on the size of constant-depth circuits for NP
functions implies a separation between NP and NC1 (cf. Viola [Vio09]). The novelty here is that
sufficiently strong results about polynomial-size constant depth circuits imply similar separations.
Essentially, the computation of logarithmic-depth circuits can be factored into constant-depth and
low-communication components, and our multiparty communication game models precisely this
mixture of notions.

There is an interesting contrast in the statement of Theorem 1.1: while the lower bound holds
for protocols with any number of rounds, the upper bound is given by a single-round protocol.
It is natural to wonder whether in the compression setting interaction allows Alice to solve more
computational problems. We provide a natural example of the power of interaction in our framework
in Section 6, where we observe that, while the inner product function cannot be computed by
polynomial size MAJ ◦MAJ circuits (Hajnal et al. [HMP+93]), there exists an efficient two-party
(MAJ ◦MAJ)-compression game for this function.

In a similar direction, a quantitative study of the power of interaction in two-party compression
games was initiated by Chattopadhyay and Santhanam [CS12] (with respect to AC0-compression
games). They obtained a quadratic gap in communication when one considers r and (r− 1)-round
protocols for a specific Boolean function. We obtain the following strengthening of their round
separation theorem.

Theorem 1.6. Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of functions
f = {fn}n∈N with the following properties:

(i) There exists an AC0
2(n)-bounded protocol Πn for fn with r rounds and cost c(n) ≤ nε, for

every n ≥ nf , where nf is a fixed constant that depends on f .

(ii) Any AC0(poly(n))-bounded protocol Π for f with r− 1 rounds has cost c(n) ≥ n1−ε, for every
n ≥ nΠ, where nΠ is a fixed constant that depends on Π.
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Our hard function is based on a pointer jumping problem with a grid structure, while Chat-
topadhyay and Santhanam uses a tree structure. Similar constructions have been used in other
works in communication complexity in the information theoretic setting (Papadimitriou and Sipser
[PS84], and subsequent works), but our analysis needs to take into account computational consid-
erations as well.

The proof of Theorem 1.6 relies on a careful application of the random restriction method,
coupled with a round elimination strategy. Observe that the upper bound is achieved by protocols
where Alice’s strategy can be implemented by linear-size DNFs, while the communication lower
bound holds for polynomial size circuits.

1.3 Organization

We define interactive compression games and introduce notation in the next section. In Section
3, we give the proof of our main result, deferring the discussion of some auxiliary results to the
Appendix. Multiparty compression games are discussed in Section 4, followed by applications of
our communication lower bounds to circuits with oracle gates in Section 5. A natural example for
which interactive compression can be easier than computation is presented in Section 6. The round
separation theorem for AC0 games is proved in Section 7. Finally, we mention a few open problems
and research directions in Section 8.

2 Preliminaries and Notation

The results of this paper are essentially self-contained, but some familiarity with basic notions from
complexity theory and communication complexity can be helpful. A good introduction to these
areas can be found in [AB09] and [KN97], respectively.

Basic definitions. For any positive integer m ∈ N, let [m]
def
= {1, . . . ,m}. We use Majorityn to

denote the Boolean function over n variables that is 1 if and only if
∑

i xi ≥ n/2. For a prime
p, we let MODnp be the Boolean function over n variables that is 1 if and only if p divides

∑
i xi.

We let Parityn
def
= ¬MODn2 . A function h : {0, 1}n → {0, 1} is symmetric if there exists a func-

tion φ : [n] → {0, 1} such that h(x) = φ(
∑

i xi), for every x ∈ {0, 1}n. Clearly, Majorityn and
MODnp are symmetric functions. We say that a Boolean function f ε-approximates a Boolean
function g over a distribution D if Prx∼D[f(x) 6= g(x)] ≤ ε. An ε-error probabilistic polynomial
Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] for a Boolean function f : {0, 1}n → {0, 1} is a distribution E over
polynomials such that, for every x ∈ {0, 1}n, PrQ∼E [f(x) 6= Q(x)] ≤ ε.1 The degree of a prob-
abilistic polynomial is the maximum degree over the polynomials on which E is supported. We
say that functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} are disjoint if f−1(1) ∩ g−1(1) = ∅.
Given a string w, we use |w| to denote the length of w, and |w|1 to denote the number of 1s in w.
We will use p and q to denote prime numbers throughout the text, unless noted otherwise.

Languages and circuit classes. Given a language L ⊆ {0, 1}∗, we let Ln
def
= L ∩ {0, 1}n. We

view Ln as a Boolean function in the natural way. We will use C to denote a circuit class, such
as AC0 and AC0[p]. Unless stated otherwise, assume that any circuit class discussed in this paper

1We will use boldface notation whenever we want to emphasize that we are referring to a random variable or a
probability distribution over the corresponding structures.
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contains AND, OR, and NOT gates of unbounded fan-in. Our results hold with more general circuit
classes, but we stick with this definition for simplicity. The size of a circuit corresponds to the total
number of gates in the circuit. We use Cd(s(n)) to denote the same class restricted to circuits of
depth d and size O(s(n)). For instance, we abuse notation and write AC0

d[p](poly(n)) to denote the
set of languages decided by polynomial size circuits of depth at most d consisting of unbounded
fan-in AND, OR, NOT and MODp gates, for a fixed prime p ∈ N. As a convention, if we write C
without a depth and size specialization, assume that it consists of constant depth polynomial size
circuits with gates from C. As usual, we will identify C both as a set of languages, and as a class
of circuits, depending on the context. Furthermore, if C is a fixed circuit, we may also use C to
refer to the Boolean function computed by this circuit. The correct meaning will always be clear
in both cases.

Deterministic compression games. Given a circuit class C and a language L, we define a
communication game between two players Alice and Bob. The goal is to decide whether a given
string x ∈ {0, 1}n belongs to L. We describe this game informally as follows. Alice knows x, but
her computational power is limited to functions computed by circuits from C. On the other hand,
Bob can perform arbitrary computations, but has no information about x during the beginning of
the game. The players exchange messages during the execution of the protocol, and at the end
should be able to decide whether x ∈ L. The goal is to compute the initial function correctly while
minimizing the total number of bits sent by Alice during the game.

Formally, a C-bounded protocol Πn = 〈C(1), . . . , C(r), f (1), . . . , f (r−1), En〉 with r = r(n) rounds
consists of a sequence of C-circuits for Alice, a strategy for Bob, given by functions f (1), . . . , f (r−1),
and a set of accepting transcripts En. We associate to every protocol Πn its signature signature(Πn) =
(n, s1, t1, . . . , tr−1, sr), which is the sequence corresponding to the input size n = |x| and the length
of the messages exchanged by Alice and Bob during the execution of the protocol. For conve-
nience, let s =

∑
i∈[r] si, and t =

∑
i∈[r−1] ti. We always have En ⊆ {0, 1}t+s. In addition, we let

rounds(Πn)
def
= r. For every i ∈ [r],

C(i) : {0, 1}n+
∑
j<i(sj+tj) → {0, 1}si ,

and for every i ∈ [r − 1],

f (i) : {0, 1}
∑
j≤i sj → {0, 1}ti .

In other words, before the beginning of the i-th round, Alice has sent messages a(i), . . . , a(i−1) of
size s1, . . . , si−1, respectively, and Bob has replied with messages b(1), . . . , b(i−1) of size t1, . . . , ti−1,

respectively. The next message sent by Alice is given by a(i) def
= C(i)(x, a(1), b(1), . . . , a(i−1), b(i−1)).

On the other hand, since Bob has unlimited computational power, its message during the i-th

round is given simply by b(i)
def
= f (i)(a(1), . . . , a(i)). The transcript of Πn on x ∈ {0, 1}n is the

sequence of messages exchanged by Alice and Bob during the execution of the protocol on x, and

will be denoted by transcriptΠn(x)
def
= 〈a(1), b(1), . . . , a(r)〉 ∈ {0, 1}s+t. We say that Πn solves the

compression game of a function hn : {0, 1}n → {0, 1} if

h(x) = 1 ⇐⇒ transcriptΠn(x) ∈ En.

Finally, we let cost(Πn)
def
= s. We stress that the length of the messages sent by Bob does not

contribute to the cost of the protocol, and we assume for convenience that the length of these
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messages are limited by the size of the circuits in C. Observe that a single-round game consists
of a protocol Πn with signature(Πn) = (n, s1). Put another way, Alice sends a single message
a(1) ∈ {0, 1}s1 , and a decision is made.

Given a language L and a circuit class C, we say that a sequence of C-bounded protocols
Π = {Πn}n∈N solves the compression game of L with cost c(n) and r(n) rounds if, for every n, Πn

solves the compression game of Ln, and in addition satisfies cost(Πn) ≤ c(n) and rounds(Πn) ≤ r(n).
Observe that if L ∈ C then Alice can compute L(x) by herself, and there is a trivial protocol

of cost c(n) = 1 for L. On the other hand, for every language L there exists a protocol solving its
compression game with cost c(n) ≤ n, since Alice can simply send her whole input to Bob.

Probabilistic and average-case compression games. The definition presented before captures
deterministic games computing a function correctly on every input x. Our framework can be
extended naturally to probabilistic and average-case games.

First, in a probabilistic C-compression game, Alice is allowed to use randomness when computing
her next message, while Bob’s strategy remains deterministic. Formally, each circuit C(i) has an
additional input of uniformly distributed bits, and different circuits have access to independent bits.
Clearly, on any x ∈ {0, 1}n, TranscriptΠn(x) is now a random variable distributed over {0, 1}s+t.
The other definitions remain the same. We say that Πn solves the compression game of a function
hn : {0, 1}n → {0, 1} with error probability at most γ(n) ∈ [0, 1] if, for every x ∈ {0, 1}n,

hn(x) = 1 =⇒ Pr
Πn

[TranscriptΠn(x) ∈ En] ≥ 1− γ(n), and if

hn(x) = 0 =⇒ Pr
Πn

[TranscriptΠn(x) ∈ En] ≤ γ(n).

On the other hand, in a average-case C-compression game, we have deterministic games as
defined before, but allow a small error during the computation of hn with respect to the uni-
form distribution over {0, 1}n. More precisely, we say that a deterministic protocol Πn solves the
compression game of hn with error at most γ(n) ∈ [0, 1] if

Pr
x∼{0,1}n

[hn(x) = 1⇐⇒ transcriptΠn(x) ∈ En] ≥ 1− γ(n).

These definitions are extended to languages in the natural way. Since in this paper all circuit
classes are non-uniform, any probabilistic protocol for a language L with error at most γ(n) can be
converted into an average-case protocol with error at most γ(n) (simply by fixing the randomness
of Alice in order to minimize the error probability over {0, 1}n).

Interacting with several Bobs. We discuss here a more general family of multi-party compres-
sion games that allow Alice to interact with multiple Bobs during a single round of the game. The
different Bobs are not allowed to communicate with each other, only with Alice. The definition of
round complexity for such games is slightly different than for standard 2-party compression games.
The reason is as follows. For 2-party games, we can assume that the game concludes with a message
to Bob, as Bob is all-powerful and can determine the result of the protocol from the final message.
In the case of multi-party games, this assumption isn’t well motivated, as no individual Bob might
have access to all the information about the protocol. It makes more sense to say the game for a
Boolean function h concludes with Alice computing whether h(x) = 1, where x is her input. Thus,
a 1-round game will consist of Alice sending messages to the various Bobs, the Bobs responding,
and finally Alice computing the answer. This naturally extends to a definition of r-round games.
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We will also measure the cost of a protocol somewhat differently. We will again count only the
communication from Alice to Bob, but the cost of a protocol will not be the sum of the lengths of
all messages sent by Alice. Instead, we will define the cost of a round to be the maximum length of
a message sent by Alice to some Bob, and then the cost of the protocol to be the sum of the costs
over all rounds. This definition of protocol cost is motivated by the connection of our model with
lower bounds on oracle circuits, which we elaborate later. A formal definition is presented below.

Let C be a circuit class, and k = k(n), r = r(n) be arbitrary functions. A C-bounded (k+1)-party

protocol Π
[k]
n = 〈D(1,1), . . . , D(1,k);D(2,1), . . . , D(2,k); . . . ;D(r+1,1), g(1,1), . . . , g(r,1); g(1,2), . . . , g(r,2);

. . . ; g(1,k), . . . , g(r,k)〉 with r rounds consists of a sequence of C-circuits for Alice, and strategies

for each Bobi, given by g(1,i) . . . g(r,i). We associate to every k-party protocol Π
[k]
n its signature

signature(Π
[k]
n ) = (n, s1, t1, . . . sr, tr), where for each j ∈ [r], i ∈ [k], sj is the maximum length of

a message sent by Alice to any Bobi during the j-th round, and tj is the maximum length of a
message sent by any Bobi to Alice during the j-th round. For every i ∈ [r], j ∈ [k], D(i,j) maps the
sequence of the input x, all messages sent to Alice before the i-th round and all of Alice’s messages
before the i-th round to Alice’s message in the j-th round to Bobj . D

(r+1,1) maps the sequence of
x and all messages sent during the protocol to a single bit. For every i ∈ [r], j ∈ [k], g(i,j) maps
the sequence of all Alice’s messages to Bobj from the first to the i-th round to Bobj ’s message to

Alice in the i-th round. We say that Π
[k]
n solves the compression game for a function hn on n bits

if D(r+1,1) outputs 1 on x if and only if hn(x) = 1.

Finally, we let cost(Π
[k]
n )

def
= s, where s =

∑
i∈[r] si. We assume for convenience that the number

of parties is always limited by the size of the circuits used by Alice. These definitions extend to
languages, probabilistic games, and average-case games in the natural way.

3 The communication cost of AC0[p]-compression games

We start with a construction of single-round compression games for an arbitrary symmetric function.

Lemma 3.1. Let f : {0, 1}n → {0, 1} be an arbitrary symmetric function. Then, for every 1 ≤
d(n) ≤ log n/ log log n, the function f admits a single-round AC0

d(poly(n))-compression game with
communication

cd(n) = O

(
(d− 1)! · n ·

(
log logn

log n

)d−1
)
.

In particular, for every fixed integer d ≥ 1, we have cd(n) = O
(
n/(log n)(d−1)−o(1)

)
.

Proof. Let f be a symmetric function that receives as input an n-bit string x ∈ {0, 1}[n]. We
sketch the construction of depth-d circuits for the corresponding compression games. Observe that
any integer n ∈ N can be represented with at most dlog(n + 1)e bits. For simplicity, we will
approximate these values by log n. This will be compensated by the use of asymptotic notation in
the final bounds.

Observe that for d = 1 the result is obvious, since Alice can simply send x to Bob. For every

d ≥ 2, we design an AC0
d(poly(n)) circuit that, on a given input x, outputs md

def
= (d − 2)! · n ·

(log log n)d−2/(log n)d−1 binary strings a1
d, . . . , a

md
d of size sd

def
= (d − 1) · log log n, which together

encode the number of 1’s in x. More precisely, |x|1 =
∑md

i=1 dec(a
i
d), where dec(a) denotes the integer

encoded by the binary string a. Therefore, it is enough that Alice communicates in a single-round
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at most md · sd bits to Bob, which is then able to compute the original value f(x). This last step
relies on the assumption that f is a symmetric function.

First, we give a depth-2 circuit with these properties. Partition the n input bits into m2 =
n/ log n blocks of size t = log n. In other words, let [n] = B1∪̇ . . . ∪̇Bm2 , where |Bi| = t. For each
block Bi, there exists CNFs φi1, . . . , φ

i
log logn of size O(n) that compute the string ai2 ∈ {0, 1}log logn =

{0, 1}s2 corresponding to the number of 1’s in xBi ∈ {0, 1}Bi (the projection of x to Bi). A small
formula of this form exists because the number of input bits is log n. Together with the previous
discussion, this completes the proof for d = 2.

Now fix an arbitrary d > 2. We will construct the corresponding AC0
d circuit by induction.

It will be clear from the description that its final size is a polynomial whose leading exponent
does not depend on d. Assume that there is a depth d − 1 circuit C that outputs md−1 strings
a1
d−1, . . . , a

md−1

d−1 , as described before, on any given input x ∈ {0, 1}n. Assume also that its top gates
are AND gates. This is without loss of generality, given the argument we use below.

Recall that aid−1 ∈ {0, 1}sd−1 . We partition these strings into md sets, each containing t
def
=

md−1/md = log n/((d− 2) · log logn) ≥ 1 strings, given our upper bound on d. More precisely, we
have [md−1] = T1∪̇ . . . ∪̇Tmd , where |Ti| = t. For convenience, let Ai = {ajd−1 | j ∈ Ti}. For any

ajd−1, we have dec(ajd−1) ≤ 2sd−1 = (log n)d−2. Consequently,∑
j∈Ai

dec(ajd−1) ≤ |Ai| · (log n)d−2 = t · (log n)d−2 ≤ (log n)d−1.

In particular, this sum can be represented with sd = (d−1) · log logn bits. Observe that the strings
in Ai have, together, t · sd−1 = log n bits. Therefore, there exists DNFs ψi1, . . . , ψ

i
sd

of size O(n)
that compute the sum of the strings in Ai, which we represent as a string aid ∈ {0, 1}sd . Since this
is the case for every i ∈ [md], we obtain circuits ψi ◦ C computing each string aid. Finally, notice
that the top three layers of ψij ◦ C can be collapsed into a depth-2 circuit, which gives us an AC0

d

circuit for the same function. This completes the proof of Lemma 3.1.

Notice that this upper bound comes from a very restricted class of compression games, as there
is no continuing interaction with Bob. A simpler and more efficient construction can be obtained
for the MODq functions, as for them there is no need to keep track of the exact number of 1s in
the original input.

As observed by [CS12], any compression game for Majority2n can be used to solve the compression
game for Parityn, with some overhead. In general, the same argument provides the following
connection, which implies that in order to prove lower bounds for Majority, it is sufficient to get
lower bounds for MODq.

Proposition 3.2. Let h : {0, 1}n → {0, 1} be an arbitrary symmetric function, C be a circuit class,
and d ≥ 1. Assume that the Cd(poly(n))-compression game for Majorityn can be solved with cost
c(n) in r(n) rounds. Then the Cd+O(1)(poly(n))-compression game for h can be solved with cost
ch(n) = O(c(2n) · log n) in rh(n) = O(r(2n) · log n) rounds.

Proof. Let ΠMaj
2n be a protocol for Majority2n. We sketch the construction of a protocol Πh

n for h.

The idea is to run ΠMaj
2n about log n times in order to obtain the hamming weight |x|1 of x ∈ {0, 1}n,

the input given to Alice in the compression game for h.
In order to achieve this, Alice runs ΠMaj

2n on appropriate inputs of the form y = x1k0n−k ∈
{0, 1}2n, where a different k is used during each stage of Πh

n. Here a stage is simply a complete
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execution of ΠMaj
2n , and Alice performs a binary search with at most O(log n) stages to obtain |x|1.

Although we have defined protocols with an implicit set E of accepting transcripts, observe that
with an extra round we can ensure that Bob sends the correct output Majority2n(y) to Alice.

Finally, it is enough to verify that each string y can be computed by constant-depth polynomial
size circuits. However, since there are no more than O(log n) stages, and since Bob sends one bit
at each stage, each string y is a function of at most O(log n) bits, and can certainly be computed
by depth-two polynomial size circuits.

For our main theorem, we will need the following result, whose proof is discussed in more detail
in Section B.

Proposition 3.3 ([Raz87, Smo87], folklore). Let p, q ≥ 2 be distinct primes. There exist fixed
constants ζ > 0 and n0 ∈ N for which the following holds. For every n ≥ n0 and ε(n) ∈ [2−n, 1/10q],
any polynomial P ∈ Fp[x1, . . . , xn] that ε-approximates the MODnq function with respect to the

uniform distribution has degree at least ζ ·
√
n · log(1/ε).

Interestingly, our argument relies on a crucial way on the approximation of Boolean circuits by
polynomials with exponentially small error. For convenience of the reader, we include the proof of
the next result in Section C.

Proposition 3.4 ([Raz87, Smo87, KS12]). Let p be a fixed prime. There exists a constant α =
α(p) ∈ N such that, for every δ ∈ (0, 1/2) and d(n) ≥ 1, any AC0

d[p](s(n)) circuit C admits a δ-error
probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most (α · log s)d−1 · log(1/δ). In
particular, it follows that for any distribution D over {0, 1}n, C is δ-approximated with respect to
D by a polynomial of degree at most (α · log s)d−1 · log(1/δ).

The next proposition is a minor extension of a result implicit in [CS12]. It allows us to transform
an interactive compression protocol for a function into a certain Boolean circuit that computes the
same function.

Proposition 3.5. Let c : N → N be a function such that c(n) ≤ n, s : N → N be a function with
s(n) = Ω(n), γ : N→ [0, 1/2), L be a language, and C be a circuit class. If there exists an average-
case Cd(poly(n))-compression game for L with cost c(n) and error probability γ(n) with respect to
the uniform distribution over {0, 1}n, then there exist circuits C1, . . . , CT from Cd+O(1)(poly(n)),

where T ≤ 2c(n), such that

Pr
x∼{0,1}n

[L(x) 6=
∨
i∈[T ]

Ci(x)] ≤ γ(n).

Furthermore, these circuits are disjoint: C−1
i (1) ∩ C−1

j (1) = ∅ for every pair i, j ∈ [T ] with i 6= j.

Proof. Let Πn = 〈C(1), . . . , C(r), f (1), . . . , f (r−1), En〉 be an average-case protocol for Ln with r(n)
rounds and error probability γ(n). Observe that Πn solves the C-compression game of some
function hn : {0, 1}n → {0, 1}, and that hn is γ(n)-close to Ln. Recall that Πn has a signature

signature(Πn) = (n, s1, t1, . . . , tr−1, sr). For convenience, let t
def
=
∑

i∈[r−1] ti, and s
def
= c(n) =∑

i∈[r] si.

Given a string w ∈ {0, 1}s+t, we write w = (w(A,1), w(B,1), . . . , w(B,r−1), w(A,r)) as a concatena-
tion of strings whose sizes respect the signature of Πn. In other words, |w(A,i)| = si and |w(B,j)| = ti,
for all i ∈ [r] and j ∈ [r − 1]. We say that w is Alice-consistent on an input x if, for every i ∈ [r],
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w(A,i) = C(i)(x,w(A,1), w(B,1), . . . , w(B,i−1)). On the other hand, we say that w is Bob-consistent
if, for every j ∈ [r − 1], w(B,j) = f (j)(w(A,1), . . . , w(A,j−1)). Observe that whether a string w is
Bob-consistent or not does not depend on x. Let Bn ⊆ {0, 1}t+s denote the set of Bob-consistent

strings. For convenience, set Wn
def
= En ∩Bn.

We claim that h(x) = 1 if and only if there exists a string w ∈ Wn that is Alice-consistent
on x. One direction is clear, since if h(x) = 1 then transcriptΠn(x) ∈ En, and this string is both
Bob-consistent and Alice-consistent on x. On the other hand, assume there exists w ∈ {0, 1}s+t
that is Bob-consistent and Alice-consistent on x. An easy induction on the number of rounds of
the protocol shows that w = transcriptΠn(x). Furthermore, if w ∈Wn then w ∈ En, and it must be
the case that h(x) = 1, since Πn is a protocol for hn. Observe that this argument also shows that
if h(x) = 1 then there is a unique w ∈Wn that serves as a certificate for x.

Notice that there are at most 2c(n) Bob-consistent strings. This is because for every string
wA = (w(A,1), w(A,2), . . . , w(A,r)) ∈ {0, 1}s, there exists a unique completion of wA by a string
w ∈ {0, 1}s+t that is Bob-consistent. In particular, |Wn| ≤ 2c(n).

For every fixed w ∈ Wn, we claim that there exists a circuit Cw(x) from Cd+O(1)(poly(n)) that

checks if w is Alice-consistent on x. Recall that for every i ∈ [r], C(i) is a circuit from Cd(poly(n)).
Therefore, we can check in parallel whether w(A,i) = C(i)(w(A,1), w(B,1), . . . , w(B,i−1)), for all i ∈ [r],
using just a constant number of additional layers, since we assume throughout that C has unbounded
fan-in AND and OR gates. which proves the claim. It follows that

h(x) =
∨

w∈Wn

Cw(x),

for every x ∈ {0, 1}n. In addition, Cw1 and Cw2 are disjoint whenever w1 6= w2, since exactly one
w ∈ Wn is Alice-consistent on x. Finally, recall that hn is γ(n)-close to Ln, which completes the
proof of Proposition 3.5.

Proposition 3.5 implies that in order to prove communication lower bounds for interactive
compression games, it is enough to prove circuit lower bounds of a particular form. We obtain the
following result.

Lemma 3.6. Let p and q be distinct primes, γ : N → (0, 1) be an arbitrary function, k ∈ N, and
d = d(n) ∈ N. Assume that

Pr
x∼{0,1}n

[MODnq (x) 6=
∨

i∈[T (n)]

Ci(x)] ≤ γ(n),

where each Ci is computed by an AC0
d[p](n

k) circuit, and Ci and Cj are disjoint whenever i 6= j.
Then, the following holds.

(i) log T (n) ≥
√
n/(log n)d+O(1) if γ(n) ≤ 1/20q;

(ii) log T (n) ≥ n/(log n)2d+O(1) in the case of an exact compression game (i.e., γ = 0).

Proof. We employ the polynomial approximation method, i.e., we show that if MODnq admits a
circuit of this form, then it can be approximated by a polynomial Q whose degree is upper bounded
by a function depending on T . We then invoke Proposition 3.3 in order to obtain a lower bound
on T . More details follow.
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First, Proposition 3.4 guarantees that for any δ > 0, each circuit Ci can be δ-approximated under
the uniform distribution by a polynomial Qi ∈ Fp[x1, . . . , xn] of degree at most (` · log n)d · log(1/δ),

where ` is a fixed positive constant. We let δ
def
= ε/T , where ε = ε(n) will be set conveniently later

in the proof. Now let

Q(x)
def
=
∑
i∈[T ]

Qi(x).

We claim that Q ∈ Fp[x1, . . . , xn] is a polynomial that (ε + γ)-approximates MODnq under the
uniform distribution. Clearly,

Pr
x∼{0,1}n

[MODnq (x) 6= Q(x)] ≤ Pr
[
MODnq (x) 6=

∨
i∈[T (n)]

Ci(x)
]

+ Pr
[ ∨
i∈[T (n)]

Ci(x) 6= Q(x)
]

≤ γ +
(

1− Pr
[ ∨
i∈[T (n)]

Ci(x) = Q(x)
])
.

For each i ∈ [T ], let Si
def
= {x ∈ {0, 1}n | Qi(x) 6= Ci(x)} be the set of bad inputs for Qi, and set

S
def
=
⋃
i∈[T ] Si. In order to complete the proof of our claim, we argue next that for every y /∈ S,

Q(y) =
∨
i∈[T (n)]Ci(y).

First, if
∨
i∈[T (n)]Ci(y) = 0, then Qi(y) = 0 for every i ∈ [T ], and we get Q(y) = 0. On the

other hand, if
∨
i∈[T (n)]Ci(y) = 1, using the disjointness assumption for the family of circuits, it

follows that there is exactly one circuit with Ci(y) = 1. Since y /∈ S, we get that Qi(y) = 1, while
Qj(y) = 0 for every j 6= i. Consequently, we have Q(y) = 1. (Observe that the extra assumption
over the family of circuits is crucial for this case, since the original circuits produce Boolean values,
while Q is an Fp-polynomial.) Overall, it follows that Pr[

∨
i∈[T (n)]Ci(x) = Q(x)] ≥ (2n−|S|)·2−n ≥

1− T · δ = 1− ε, which establishes our initial claim.
Therefore, for every ε(n) > 0, there exists a polynomial Q ∈ Fp[x1, . . . , xn] that (ε + γ)-

approximates the MODnq function over the uniform distribution, where

deg(Q) ≤ ((` · log n)d · log(1/δ)) ≤ (` · log n)d · (log T + log(1/ε)). (1)

On the other hand, we obtain from Proposition 3.3 that for every ε(n) ∈ [2−n, 1/10q], and every
large enough n,

ζ ·
√
n · log(1/(ε+ γ)) ≤ deg(Q). (2)

Our result follows by combining Equations 1 and 2. Observe that we are free to set ε(n) in
order to maximize our lower bound on T , depending on the value of γ. If 0 < γ ≤ 1/20q, the first
case of Lemma 3.6 follows if we let ε = 1/20q. On the other hand, when γ = 0, we get that

log T (n) ≥
ζ ·
√
n · log(1/ε)− log(1/ε) · (` · log n)d

(` · log n)d
,

and the second case of Lemma 3.6 now follows by setting ε = exp(−Θ(n/ log2d n)).

We are now ready to prove an essentially optimal communication lower bound for AC0
d[p]-

compression games for Majority.

Theorem 3.7. Let p be a prime number. There exists a constant c ∈ N such that, for any d ∈ N,
and every n ∈ N sufficiently large, the following holds.
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(i) Any AC0
d[p]-compression game for Majorityn (with any number of rounds) has communication

cost at least n/(log n)2d+c.

(ii) There exists a single-round AC0
d-compression game for Majorityn with communication cost at

most n/(log n)d−c.

Proof. The lower bound follows immediately from Proposition 3.2, Proposition 3.5, and Lemma
3.6 (ii). The upper bound is given by Lemma 3.1.

For randomized compression games, we are able to generalize the lower bound for single-round
protocols obtained by Chattopadhyay and Santhanam [CS12] to protocols with any number of
rounds.

Theorem 3.8. Let p and q be distinct primes. There exists a constant c ∈ N such that, for any
d ∈ N, and n ∈ N sufficiently large, every randomized AC0

d[p]-compression game for MODnq with

any number of rounds and error at most 1/3 has communication cost at least
√
n/(log n)d+c.

Proof. If there exists a randomized compression protocol with these properties, we can boost its
success probability to 1 − 1/20q on every input by repeating it a constant number of times, and
applying a majority vote. Observe that the communication increases by a constant factor only,
and that the majority vote can be computed efficiently, as it is over a constant number of bits.
Since any randomized protocol with this success probability provides an average-case protocol that
is correct on at least a (1− 1/20q)-fraction of the inputs under the uniform distribution, the result
follows from Proposition 3.5 and Lemma 3.6 (i).

We stress that the results in Theorems 3.7 and 3.8 hold both for Majority and MODq, but we
restricted each statement to a particular function for simplicity. In order to see this, first notice
that the proof of Theorem 3.7 includes the argument for MODq. On the other hand, in order to
extend Theorem 3.8 to Majority, we can employ a reduction through Proposition 3.2. A subtle point
is that for probabilistic protocols one has to make sure that the final error probability after the
reduction is bounded. However, this can be achieved during the proof by boosting the correctness
probability of the initial protocol for Majority via repetition.

The proof of Theorem 3.7 can be generalized to an essentially optimal bound for AC0
d[p](s(n))-

compression games computing MODnq . The argument implies that this function has communication

cost n/(log s)Θ(d). Observe that the original circuit size lower bounds obtained by Razborov [Raz87]
and Smolensky [Smo87] follows from the analysis of communication protocols for Majority and MODq
with constant communication cost. Interestingly, the polynomial method interpolates between
essentially optimal communication lower bounds and circuit size lower bounds when applied with
exponentially small error and constant error, respectively.

4 Multiparty Interactive Compression

4.1 The communication cost of k-party AC0[p]-compression games

We will prove in this section that Majorityn requires Ω̃(n1/2r) communication in the (k + 1)-party
r-round AC0[p]-compression game, for any k = poly(n). Put another way, although Alice is allowed
to send roughly n1/2r bits to each individual Bob, even if n100 such parties are present, she will not
be able to combine their answers in order to compute Majorityn.
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We start with the following upper bound, which can be seen as the corresponding analogue of
Lemma 3.1.

Lemma 4.1. Let f : {0, 1}n → {0, 1} be an arbitrary symmetric function, and p be any prime. For
any r ∈ N, f admits an (dn1/re+1)-party r-round AC0-compression game with cost O(rn1/r log(n)).

Proof. We set up some notation first. Given n and r, let Tn,r be the complete dn1/re-ary tree of
depth r. We assume the leaves of Tn,r to be ordered from left to right. Given an input x of length
n, label the leaves of Tn,r with bits of x in the natural way: the leftmost leaf is labelled with the
first bit of x, the second to leftmost with the second bit, etc. Note that some leaves may remain
unlabelled in this process.

Let Vd be the set of nodes at depth d in this tree, where 0 ≤ d ≤ r. The protocol will proceed
with Alice iteratively labelling nodes in the tree with numbers in [n], each node being labelled with
the sum of all the leaves in the subtree rooted at the node. Any unlabelled leaf is assumed to have
label 0. After round i, where 0 ≤ i ≤ r, all nodes at depth r − i or greater will be labelled. Once
the root is labelled, Alice can compute f(x) by herself, as f(x) is purely a function of the label at
the root (which is the weight of the input x), and any function of O(log n) bits can be computed
in AC0

2.
We assume inductively that after round i, all nodes at depth r− i or greater have been labelled.

The base case i = 0 clearly holds, as Alice can label the leaves herself. Assume that the inductive
hypothesis holds after round i, where 0 ≤ i < r. We show it holds after round i+ 1. In round i+ 1,
Alice arbitrarily associates a unique Bob with each node v ∈ Vr−i−1. This can be done as long
as the number of parties is greater than dn1/re, as assumed. We denote the Bob associated with
v by Bob(v). For each v, Alice sends to Bob(v) the sequence of labels of the children of v. Note
that by the inductive assumption, the children of v have already been labelled. For each v, Bob(v)
responds with the sum of all the integer labels sent by Alice to Bob(v) in the (i+ 1)-th round.

This is clearly a correct protocol. In any one round, Alice sends at most dn1/re · dlog(n + 1)e
bits to any Bob, as the number of children of any node in the tree is at most dn1/re, and each
labelled node has a label in [n]. Thus, the cost of the protocol is O(rn1/r log n), as claimed.

Our lower bound is also based on algebraic arguments, but it employs a slightly different ap-
proach to that in the previous section. In particular, it does not rely on Proposition 3.5. We will
need the following result.

Proposition 4.2 ([Raz87]). Let p be a fixed prime, and P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] be a degree-`
polynomial. Then,

Pr
x∼{0,1}n

[Majorityn(x) = P (x)] ≤ 1/2 +O(`/
√
n).

The next lemma allows us to construct low-degree probabilistic polynomials from multiparty
compression games.

Lemma 4.3. Let Φ
[k]
n be a randomized (k+ 1)-party r-round AC0

d[p](poly(n))-compression protocol
with signature (n, s1, t1, . . . , sr, tr) computing a Boolean function h : {0, 1}n → {0, 1} with error
γ, where si ≤ n for each i ∈ [r], and r ∈ N. Then, for every δ > 0, h admits a (γ + δ)-error
probabilistic polynomial over Fp with degree O

(
(
∑

i∈[r] si)
r · ((log n)d+r · (log 1/δ))r+1

)
.

17



Proof. We start with a proof of the lemma for r = 1 and deterministic protocols that are always
correct, then observe that the same proof can be generalized to randomized r-round protocols.

Suppose Φ
[k]
n is a (k + 1)-party 1-round AC0

d[p](poly(n))-compression protocol with signature
(n, s1, t1) for a Boolean function h on inputs x of n bits. For each i ∈ [k], let ai1 . . . a

i
ni be the

message bits sent by Alice to Bobi in the first round, and let bi1 . . . b
i
mi be Bobi’s response. Let a be

the bit output by Alice at the conclusion of the protocol. By the definition of signature, we have
that for each i ∈ [k], ni ≤ s1 and mi ≤ t1. We also have that a = 1 if and only if h(x) = 1.

Each of the message bits sent by Alice in the first round is a function of x, and since Alice
is AC0

d[p](poly(n))-bounded, we can use Proposition 3.4 to obtain ε-error probabilistic polynomials
P ij ∈ Fp[x1, . . . , xn], where i ∈ [k], j ∈ [ni], for each of these message bits. The degree of each

polynomial is at most d1 = O((log n)d−1 · log 1/ε), where ε > 0 is a parameter to be determined
later. Since each message bit of each Bobi is a function of the message bits sent by Alice to Bobi,
we can express each bit bij of Bobi as an exact polynomial Qij in the message bits of Alice. Notice
that each such polynomial has degree at most s1. Now, again by Proposition 3.4, there is an ε-error
probabilistic polynomial P of degree at most d2 = O((log n)d−1 · log 1/ε) for a as a function of x,
the message bits sent by Alice in the first round, and the message bits sent by each Bob in the first
round.

If we set ε = δ/(s1 · k + 1), by using the union bound, we have that

P ′
def
= P (x, P 1

1 (x), . . . , P knk(x), Q1
1(P 1

1 (x), . . . , P 1
n1

(x)), . . . , Qkmk(P k1 (x), . . . , P knk(x)))

is a δ-error probabilistic polynomial for h as a function of x. The degree of P ′ is at most d1 ·s1 ·d2 =
O(s1 · ((log n)d · log 1/δ)2), where we have used that log 1/ε = O(log n · log 1/δ) due to the upper
bound on s1 and k ≤ poly(n). This completes the proof for (deterministic) single-round protocols.

The proof for deterministic protocols with r ≥ 2 rounds is by induction on the number of

rounds. Let Φ
[k]
n be a (k + 1)-party r-round AC0

d[p](poly(n))-compression protocol with signature
(n, s1, t1, . . . , sr, tr) for a Boolean function h. Observe that during the last round of the protocol,

each Bob` receives a message containing at most s
def
=
∑

i∈[r] si bits (recall that Bob` has access
to the messages he received from Alice in previous rounds, and to no other message). We can
view each bit a`j of each such message as a Boolean function computed by a (k + 1)-party (r − 1)-
round protocol, where ` ∈ [k], and j ≤ s. It follows from the induction hypothesis that there is a
probabilistic polynomial P `j ∈ Fp[z1, . . . , zs′ ] for an appropriate s′ ≤ s of degree at most

d1 ≤ O
(
sr−1 · ((log n)d+(r−1) · (log 1/ε))r

)
that ε-approximates a`j , where ε > 0 will be set conveniently later in the proof.2 Further, during the

last round of the protocol, each bit b`j sent by Bob` can be computed exactly by a (deterministic)

polynomial Q`j of degree at most s. Finally, the last bit output by Alice during the execution of

Φ
[k]
n is computed by an AC0

d[p] circuit over polynomially many input bits. According to Proposition
3.4, it can be ε-approximated by a probabilistic polynomial P ∈ Fp[y1, . . . , ypoly(n)] of degree d2 ≤
O((log n)d−1 · log 1/ε).

We now compose these polynomials appropriately, similarly to the base case, in order to obtain
a probabilistic polynomial P ′ ∈ Fp[x1, . . . , xn] that approximates the original Boolean function h

2Our abuse of the asymptotic notation in this inductive proof is harmless, as we are proving the result for a fixed
number of rounds only.
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compressed by Φ
[k]
n . If we set ε

def
= δ/(sk + 1) = δ/poly(n), we get via an union bound that P ′ is a

probabilistic polynomial that δ-approximates h. Finally, the degree of P ′ is upper bounded by

d1 · s · d2 ≤ O
(
sr−1 · ((log n)d+(r−1) · (log 1/ε))r · s · (log n)d−1 · log 1/ε

)
≤ O

(
sr · ((log n)d+r · (log 1/δ))r · (log n)d · log 1/δ

)
≤ O

(
(Σi∈[r]si)

r · ((log n)d+r · (log 1/δ))r+1
)
,

which completes the induction step.
It remains to handle the case of randomized protocols. Observe that for every fixed setting of

the randomness of Alice, we obtain a multiparty compression protocol computing some Boolean
function hr. We can apply the procedure described above to get a probabilistic polynomial Pr ∈
Fp[x1, . . . , xn] that agrees with hr on every input x ∈ {0, 1}n except with probability δ. Since over
the choice of r we know that h(x) = hr(x) except with probability γ, we can obtain from the family
of distributions Pr a single distribution over polynomials of the same degree that agrees with h on
every input x except with probability γ + δ, which completes the proof.

We now have all ingredients to prove the main result of this section.

Theorem 4.4. Let p ∈ N be a fixed prime. For every k, r, d ∈ N, the following holds.

(i) There exists a deterministic n1/r-party r-round AC0[p]-compression game for Majorityn with
cost O(n1/r · log n).

(ii) Every randomized nk-party r-round AC0
d[p]-compression game for Majorityn has cost

Ω
(
n1/2r/(log n)2(d+r)

)
.

Proof. The upper bound follows from Lemma 4.1. For the lower bound, assume Π
[k]
n has signature

(n, s1, t1, . . . , sr, tr) and satisfies the assumption of the theorem. Since Π
[k]
n is a randomized protocol,

we can reduce its error probability to 1/20 by running it in parallel and computing a majority vote
during the last round. Observe that the depth of the circuits used by Alice increases by at most 1 if
this computation is performed by an appropriate DNF or CNF. Setting δ = 1/20 in Lemma 4.3 and
fixing the randomness, we can obtain an average-case (deterministic) polynomial for Majorityn of the
stated degree and error 1/10 with respect to the uniform distribution. Now applying Proposition
4.2 and using 1/δ = O(1), we get that

(s1 + s2 + . . .+ sr)
r · (log n)(d+r)(r+1) ≥ Ω(

√
n),

which completes the proof of the lower bound, since cost(Π
[k]
n ) =

∑
i∈[r] si and r ≥ 1.

As opposed to the statement of Theorem 3.7, we have not tried to optimize the logarithmic
factors here, since there is still a polynomial gap in the bounds as a function of r.3

Corollary 4.5. For any r, `, d ∈ N, the randomized n`-party r-round AC0
d[p]-compression cost of

Majorityn is nΘ(1/r).

3For instance, in the proof of Lemma 4.1, it is possible to break the information passed to each Bob into multiple
blocks as done in the proof of Lemma 3.1, and save an extra (logn)Θ(d) factor during each round by allowing Alice
to make partial progress towards the computation of Majority.
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In addition, observe that Theorem 4.4 implies a round separation result for multiparty AC0[p]-
compression games. In particular, we get the following consequence for single-round AC0[p] proto-
cols versus protocols with more rounds.

Corollary 4.6. For every ε > 0 and ` ∈ N, there exists r ∈ N with r = O(1/ε) for which the
following holds, whenever n is sufficiently large. There exists an explicit function fn : {0, 1}n →
{0, 1} such that : fn admits no randomized n`-party single-round AC0[p]-compression games with
cost n1/2−ε, but it admits deterministic nε-party r-round AC0[p]-compression games of cost nε.

4.2 Randomized versus deterministic games

Note that for two-party games we were able to obtain almost linear lower bounds for deterministic
protocols (Theorem 3.7), while for probabilistic and average-case protocols we encountered a barrier
at c(n) ≈

√
n (Theorems 3.8 and 4.4). We are not aware of explicit lower bounds of the form n1/2+ε

for a fixed ε > 0 for randomized two-party AC0[p] games. It is natural to wonder if we can improve
Theorem 4.4 in the case of deterministic k-party games.

We prove next that this is unlikely without the introduction of new ideas to handle probabilistic
protocols. More precisely, we observe that k-party protocols can be derandomized without increas-
ing communication cost. The proof relies on the definition of cost for such protocols as the length
of the longest message sent by Alice to any particular Bob, and on the fact that we are dealing
with non-uniform protocols/circuits. The argument is based on parallel repetition and composition
of k-party protocols with an approximate majority function. We provide the details next.

We say that a Boolean function hn : {0, 1}n → {0, 1} is an (`1, `2)-approximate majority if
hn(x) = 0 on every x with |x|1 ≤ `1, and hn(x) = 1 on every x with |x|1 ≥ `2.

Proposition 4.7 ([ABO84]). There exists a family h = {hn}n∈N of Boolean functions in AC0
3(poly(n))

for which every hn is an (0.49n, 0.51n)-approximate majority.

Theorem 4.8. Let C be a circuit class, d ≥ 1, and f = {fn}n∈N be a family of Boolean functions,
where fn : {0, 1}n → {0, 1}. Suppose f admits a k-party probabilistic Cd(poly(n))-compression game
with cost c(n) and error γ(n) ≤ 1/3, where k = O(poly(n)). Then f admits a k′-party deterministic
Cd+O(1)(poly(n))-compression game with the same cost c(n) and k′ = O(poly(n)).

Proof. By assumption, f has a k-party probabilistic Cd(poly(n))-compression protocol Π with cost
c(n) and error γ(n) ≤ 1/3, where k = O(poly(n)). We define a new probabilistic protocol for f with

the same cost but with k′
def
= `n · k parties and with error γ′(n) < 2−n, where ` > 0 is a constant

which we determine later. We then use Adleman’s trick to fix the random bits used by Alice, thus
making the protocol deterministic.

The new probabilistic protocol Π′ for f simply simulates `n copies of the protocol Π in parallel.
Namely, we interpret the Bobs to be partitioned into `n sets, each of size k, and Alice independently
executes the protocol in parallel for each set of Bobs. Note that by our definition of cost, the cost
for each round of Π′ is the same as the cost for each round of Π. In the final step of the protocol, Π′

applies the Approximate Majority function h`n to the answers of Π for the `n parallel executions.
Using Proposition 4.7, Alice can be implemented to work in Cd+O(1)(poly(n)). It follows by a
standard application of Proposition A.1 that if we set ` to be a large enough constant, the error
probability of the new protocol Π′ is strictly less than 2−n.
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Now, there must exist some setting of the random bits of Alice that yields the correct answer for
every x ∈ {0, 1}n, simply by using the union bound. By fixing the random bits of Alice accordingly,
we derive a deterministic protocol with cost c(n), which completes the proof.

5 The connection with circuits augmented with oracle gates

In this section we observe that lower bounds on interactive compressibility are closely connected
to lower bounds against oracle circuits with arbitrary oracles. We first show such a connection for
2-party compression games, and then for multiparty compression games.

In order to formalize these connections, we need to define classes of oracle circuits corresponding
to classes of Boolean circuits. Such a definition is especially non-obvious for bounded-depth circuit
classes – should we consider oracle gates when counting the depth or not? We use a very generous
notion of oracle circuits. We say that an oracle circuit C belongs to the oracle analogue of a Boolean
circuit class C if every maximal subcircuit of C without oracle gates belongs to C. Put another
way, every subcircuit induced by a connected subgraph of the acyclic graph encoding C that does
not contain an oracle gate is a circuit from C. The generosity of this notion only makes the lower
bounds we derive from the connections below stronger.

For the sake of convenience, we abuse notation and occasionally use C to refer both to a Boolean
circuit class and its oracle analogue.

Proposition 5.1. Let C be a circuit class. Let C be an oracle circuit over n variables from
C(poly(n)) with oracle gates fi : {0, 1}si → {0, 1}ti, where i ∈ [r], for some r = r(n). In addition,
let s = s1 + . . .+ sr be the total fan-in of these oracle gates, and h : {0, 1}n → {0, 1} be the Boolean
function computed by C. Then h admits a C(poly(n))-compression game with communication cost
c(n) ≤ s+ 1 consisting of at most r + 1 rounds.

Proof. We describe a protocol for the compression game for h in which Alice sends at most s + 1
bits to Bob, and where each of Alice’s messages is computable by a small circuit from C.

First Alice topologically sorts the circuit C with respect to oracle gates, namely she constructs
a graph G whose nodes are the oracle gates of the circuit, and there is an edge from a node u
to a node v if and only if there is a path from the oracle gate represented by u to the oracle
gate represented by v in the digraph C. The graph G is a DAG, and hence its vertices can be
topologically sorted. Let g1, g2 . . . gr be the topological ordering of the oracle gates. Alice proceeds
inductively as follows. In round i, where i ∈ [r], she computes all inputs to the gate gi using her
input x and previous messages sent by Bob. She then sends the values of these input bits to Bob,
who in turn computes the value of the gate gi applied to these bits, and sends her the answer. Note
that g1 has no predecessors which are oracle gates, and therefore Alice can compute all the inputs
to g1 herself using circuits from C (which are sub-circuits of C) applied to the input x. Gate gi
only has gates g1 . . . gi−1 as predecessors, and by the definition of the protocol, Alice has already
received the values of these gates from Bob in previous rounds, hence she can calculate values of
inputs to gi from x and previous messages using circuits from C. In round r + 1, Alice computes
the value of the circuit C on x and sends it to Bob, thus completing the protocol.

The total number of bits sent by Alice to Bob is the total fan-in of the oracle gates plus one,
i.e., s+ 1, and there are r + 1 rounds in the protocol.
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Note that Proposition 5.1 only gives useful information when the total fan-in of oracle gates
is sub-linear. We’d like to also show lower bounds on oracle gates where the total fan-in is not
bounded in this way. This is where multiparty compression games, and the modified notion of
protocol cost for such games, come in useful.

We need some more terminology for oracle circuits. An oracle circuit C has r layers if the oracle
gates can be partitioned into r sets such that no two gates within any set are connected by a path
in C. Equivalently, there are at most r oracle gates on any path from an input of C to the output.

Proposition 5.2. Let D be an oracle circuit over n variables from C(poly(n)) augmented with r
layers of oracle gates, where for each i ∈ [r], si is the maximum fan-in of a gate in the i-th layer, and
where there are at most k gates in each layer. Let s =

∑
i∈[r] si. In addition, let h : {0, 1}n → {0, 1}

be the Boolean function computed by D. Then h admits a (k + 1)-party C(poly(n))-compression
game with r rounds and communication cost c(n) ≤ s.

Proof. Alice orders the layers of oracle gates topologically, so that there are no paths from gates
in layer i to gates in layer j for i > j. The protocol proceeds with Alice inductively computing all
input bis to oracle gates in the i-th layer, where i ∈ [r], and then delegating the computations of
gates in the i-th layer to the Bobs, a different Bob for each oracle gate. Since there are at most
k gates in each such layer, she can successfully assign a different Bob to each oracle gate in any
specific layer. Alice can compute all inputs to an oracle gate in the first layer by herself, as all of
these can be computed by circuits in C(poly(n)). In the i-th round, where i ∈ [r], Alice chooses a
different Bob for each oracle gate in layer i, and sends to the corresponding Bob the values of the
inputs to the corresponding gate. She can compute these values using circuits in C, as the output
bits of all oracle gates in layer i − 1 or below are already known to her by the definition of the
protocol. The Bob corresponding to a gate responds with the output values of that gate. After the
r-th round, Alice computes the output value of the circuit C, and outputs it.

Notice that Alice sends at most si bits to any individual Bob in round i by our assumption on
the fan-in of oracle gates in C. Thus the cost of the protocol is s. It is clear that the protocol
operates in r rounds.

Observe that Propositions 5.1 and 5.2, together with Theorems 3.7 and 4.4, imply strong limi-
tations on the progress that AC0[p] circuits can make towards the goal of computing the Majority
function. In particular, a circuit of this form extended with arbitrary oracle gates can only compute
Majorityn if it delegates essentially all the work to these extra gates. We can formalize this claim
as follows.

Corollary 5.3. Let p ≥ 2 be prime, and d ∈ N. There exists a constant c ∈ N such that, for every
sufficiently large n, the following holds. If Majorityn is computed by AC0

d[p] circuits of polynomial
size with arbitrary oracle gates, then the total fan-in of the oracle gates is at least n/(log n)2d+c.

Proof. This result follows immediately from Proposition 5.1 and Theorem 3.7. The fan-in lower
bound is independent of the number of oracle gates, as Theorem 3.7 holds for protocols with any
number of rounds.

This result has an interesting consequence on the structure of AC0[p] circuits computing Majority.
More precisely, Corollary 5.3 implies that in any layered circuit computing Majorityn, at least
bn/(log n)O(k)c gates must be present at the k-th layer of the circuit (in order to see this, transform
the circuit into an equivalent circuit with a single oracle gate at the top after the first k layers).
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On the other hand, the construction in Lemma 3.1 shows that this bound is not far from optimal.
A similar consequence holds for polynomial size circuits computing the MODq function.

Using Proposition 5.2 and Theorem 4.4, we derive lower bounds on the maximum fan-in of
oracle gates in oracle circuits with a bounded number of such layers computing Majority. The
number of oracle gates is now allowed to be polynomially large.

Corollary 5.4. Let p ≥ 2 be prime, and r, d ∈ N. If Majorityn is computed by an AC0
d[p] circuit of

polynomial size with arbitrary oracle gates that contains at most r layers of such gates, then there
is some oracle gate with fan-in at least n1/2r/polylog(n).

Proposition 5.2 suggests an approach to the NP vs. NC1/poly problem. The key observation
is that for any r, every Boolean function in NC1/poly has oracle circuits of polynomial size with r
layers, where the maximum fan-in of any oracle gate is nO(1/r).

Proposition 5.5. Let f = {fn}n∈N be a family of Boolean functions in NC1/poly, and r ∈ N.
Then f has AC0 oracle circuits of polynomial size with r layers, where the maximum fan-in of any
oracle gate is nO(1/r).

Proof. Let {Cn}n∈N be a sequence of circuits for f , where each Cn has size at most nk and depth
at most c log n, for fixed constants k and c. We define oracle circuits Dn as follows. Divide Cn into
r equally spaced layers of gates, with the distance between any two layers being at most (c/r) log n.
Replace each node at a layer boundary by an oracle gate whose inputs are its predecessors on the
previous layer boundary. Note that any oracle gate has at most nc/r inputs, since the circuit has
bounded fan-in. There are clearly a polynomially bounded number of oracle gates. Also, the circuit
is an AC0 circuit, since it consists purely of inputs and oracle gates.

Applying Proposition 5.2 yields the following corollary.

Corollary 5.6. Let r be any positive integer. Every function in NC1/poly admits poly(n)-party
AC0(poly(n))-compression games with r rounds and cost nO(1/r).

Thus a stronger lower bound than in Corollary 5.4 for an explicit function in NP would imply
a separation of NP and NC1/poly. We conjecture that Clique is such a function.

6 Interactive Compression versus Computation

The results of this paper and in [CS12] show that two important techniques in circuit complexity,
namely, random restrictions and approximation by low-degree polynomials, can be used to prove
strong incompressibility lower bounds. It is natural to wonder if other important lower bounds in
complexity theory can be extended in a similar way. A related problem is whether compression can
be easier than exact computation. Our next result sheds more light into these questions.

Let IPn : {0, 1}n × {0, 1}n → {0, 1} be the Inner Product function. In other words, for x, y ∈
{0, 1}n, IPn(x, y)

def
=
∑

i∈[n] xi · yi (mod 2). It is known that IPn /∈ THR ◦MAJ, i.e., this function
cannot be computed by polynomial size circuits consisting of a bottom layer of linear threshold func-
tions with polynomial weights, connected to a top gate computed by an arbitrary linear threshold
function ([For02, FKL+01]).4

4Recall that a function f : {0, 1}n → {0, 1} is a linear threshold function if there exist weights w1, . . . , wn ∈ Z and
a threshold θ ∈ Z such that f(x) = sign(

∑
i∈[n] wi · xi − θ).
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We observe below that IPn admits a (MAJ ◦MAJ)-compression game with communication cost
O(log n). In other words, there is a natural Boolean function that cannot be computed by certain
circuits, but whose computation becomes feasible if Alice is allowed to interact with a more powerful
party.

Proposition 6.1. Let IP = {IPn}n∈N be the family of Inner Product functions. There exists a
(MAJ ◦MAJ)-compression game for IP with communication cost c(n) = O(log n).

Proof. The protocol consists of O(log n) rounds, where in each round Alice sends a single bit, and
Bob replies with a string v ∈ {0, 1}n. After the last round, Bob knows the sum

∑
i∈[n] xi · yi, and

therefore the transcript reveals the value IPn(x, y). More details follow.

Alice’s circuits are of the form C(x, y, v). In the first layer of the circuit, C computes zi
def
= xi∧yi,

for every i ∈ [n]. In the second layer, C outputs sign(
∑

i∈[n] zi−vi). Put another way, Alice uses the
same circuit in every round, and we assume that the first bit sent by Alice during the first round is
discarded. Bob does all the work, and simulates a binary search by sending to Alice an appropriate
string v during each round. For instance, Bob sends v = 0n/21n/2 during the first round, and the
next bit computed by Alice reveals if

∑
i∈[n] xi · yi is at least n/2. After each round, Bob sends

a string corresponding to the next step of the binary search, and so on. Clearly, after O(log n)
rounds, Bob knows the value

∑
i∈[n] xi · yi. Finally, observe that Alice communicates O(log n) bits,

and that her circuits are of the form MAJ ◦MAJ.

7 An improved round separation theorem for AC0

Recall that Chattopadhyay and Santhanam [CS12] proved that there are Boolean functions on n
variables that admit AC0-bounded protocols with r rounds and cost O(n1/r), but for which any
correct AC0-bounded (r− 1)-round protocol has cost Ω(n2/r−o(1)). We use a different construction
and refine their techniques, obtaining the following result.

Theorem 7.1. Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of functions
f = {fn}n∈N with the following properties:

(i) There exists an AC0
2(n)-bounded protocol Πn for fn with r rounds and cost c(n) ≤ nε, for

every n ≥ nf , where nf is a fixed constant that depends on f .

(ii) Any AC0(poly(n))-bounded protocol Π for f with r− 1 rounds has cost c(n) ≥ n1−ε, for every
n ≥ nΠ, where nΠ is a fixed constant that depends on Π.

We will need some additional definitions and notation in order to establish this result. For
any n ∈ N, let gn : {0, 1}n → {0, 1} be the parity function on n variables, and g = {gn}n∈N.

Let m, `, and r be positive integers. Set n = n(m, `, r)
def
= m + ` · r · m. We define a function

fm,`,r : {0, 1}n → {0, 1} that will be used to prove round separation results for AC0-compression

games. For convenience, let k
def
= log ` and v

def
= m/ log `. The definition of fm,`,r depends on g and

a given function h : {0, 1}k → [`], which we assume to be some fixed one-to-one function.
Given any string z ∈ {0, 1}n, we write z = (x, y(·,1), . . . , y(·,r)), where x ∈ {0, 1}m, and y(·,j) =

(y(1,j), . . . , y(`,j)), where j ∈ [r], and y(i,j) ∈ {0, 1}m, for every i ∈ [`]. In addition, for any string
w ∈ {0, 1}m, we write w = (w(1), . . . , w(k)), where each w(u) ∈ {0, 1}v, for u ∈ [k]. For convenience,
instead of writing y(i,j)(u), we may also use y(i,j,u).
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The function fm,`,r is defined by induction on r. It is simply a pointer jumping function, where h
is applied to certain bits computed from the current string (initially x) using k = log ` independent
applications of gv. After jumping from the initial x to a new string x′, which will be one of the y’s
in y(·,1), we recurse. After r steps, some string y from y(·,r) will be reached. The output of fm,`,r is
then set to be gm(y).

Formally, when r = 1, for any z ∈ {0, 1}n,

fm,`,1(z)
def
= gm(y(i,1)), where i = h(gv(x

(1)), . . . , gv(x
(k))).

Now let r ≥ 2 be arbitrary. Then, for any z ∈ {0, 1}n,

fm,`,r(z)
def
= fm,`,r−1(z′), where z′ = (x′, y(·,2), . . . , y(·,r)), x′ = y(i,1), and i = h(gv(x

(1)), . . . , gv(x
(k))).

This completes the definition of fm,`,r.

Lemma 7.2 (Upper Bound). For any m, `, r ≥ 1, the function fm,`,r admits an AC0
2(m · `)-

compression game with r + 1 rounds and communication cost c(n) = (r + 1) ·m.

Proof. During each round j, Alice sends her current string x′ ∈ {0, 1}m to Bob, which replies with
` strings v(i) ∈ {0, 1}m satisfying the following property: v(i) = 1m if the next round of the game is
played on y(i,j+1), and v(i) = 0m otherwise. Observe that the next message that Alice has to send
is simply the m-bit string given by ∨

i∈[`]

(
v(i) ∧ y(i,j+1)

)
.

The cost and round complexity of this protocol is clear.

We now proceed with the proof that in any AC0-bounded protocol for fm,`,r with r rounds, Alice
has to communicate roughly ` ·m bits, for an appropriate choice of ` that we would like to make
as large as possible. The argument is based on random restrictions, which allow us to simplify the
AC0 circuits used by Alice considerably, while still maintaining the resulting function sufficiently
hard for compression games. At a high level, we apply a round elimination technique, combined
with a strong lower bound for fm,`,1. More details follow.

From now on we will also view fn,`,r as a function fm,`,r : {0, 1}[n] → {0, 1}, where each input
z for fm,`,r can also be interpreted as a function z : [n] → {0, 1}. This will give us more flexibility
when manipulating restrictions. A restriction ρ ∈ {0, 1, ∗}[n] is simply a function ρ : [n]→ {0, 1, ∗}.
Given a restriction ρ and a function f : {0, 1}[n] → {0, 1}, we let fρ : {0, 1}ρ−1(∗) → {0, 1} be the
following function. For every z− ∈ {0, 1}ρ−1(∗),

fρ(z−)
def
= f(z), where z ∈ {0, 1}[n] is the function with z|ρ−1({∗}) = z− and z|ρ−1({0,1}) = ρ|ρ−1({0,1}).

Let N
def
= [n]. Recall that we write z ∈ {0, 1}n as z = (x, y(1,1), . . . , y(`,r)). Similarly, we

let S(i,j,u) ⊆ N index the variables corresponding to y(i,j,u), for i ∈ [`], j ∈ [r] and u ∈ [k].

We define S(i,j) def
=
⋃
u S

(i,j,u). Further, we use M ⊆ N to index the variables corresponding
to x, and M (1), . . . ,M (k) for the corresponding variables x(1), . . . , x(k). Let ΓN be the set of all

restrictions with domain N , i.e., ΓN
def
= {0, 1, ∗}N . Given ρ1, ρ2 ∈ ΓN , we say that ρ2 extends ρ1 if

ρ−1
2 (∗) ⊆ ρ−1

1 (∗) and ρ2|ρ−1
1 ({0,1}) = ρ1|ρ−1

1 ({0,1}).
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Our round separation theorem will be derived from lower bounds on a class of functions
φs,d,` : N× N× R+ → N, defined as follows:

φs,d,`
(
m, r, δ

) def
= min

σ∈ΓN,δ
min

Π∈Protσs,d,r
cost(Π),

where:5

(i) ΓN,δ ⊆ ΓN is the set of all restrictions σ for which the following holds: there exists sets

Dj ⊆ [`] with j ∈ [r] such that |Dj | ≤ δ · `, and σ−1({0, 1}) =
⋃
j∈[r]

(⋃
i∈Dj S

(i,j)
)

,

(ii) Protσs,d,r is the set of all AC0
d(s)-bounded r-round protocols Π solving the compression game

of fσm,`,r.

The parameters m, r, and δ will vary during our inductive proof, while s, d, and ` remain fixed
(observe that this is reflected in our notation for φ). The proof of Theorem 7.1 relies on the following
lemmas, whose proof we present later in this section.

Lemma 7.3 (Lower Bound: Base case). Let s = nc1, d ∈ N, ` = mc2, δ ∈ (0, 1/10), and r = 1,
where c1 and c2 are fixed positive integers. Then, for every fixed β ∈ (0, 1/10) and m sufficiently
large,

φs,d,`
(
m, 1, δ

)
≥ ` ·m1−β.

Lemma 7.4 (Lower Bound: Induction step). Let s = nc1, d ∈ N, ` = mc2, δ ∈ (0, 1/10), and r ≥ 2,
where c1 and c2 are fixed positive integers. Then, for every fixed β ∈ (0, 1/10) and m sufficiently
large,

φs,d,`
(
m, r, δ

)
≥ min

{
` ·m1−β , φs,d,`

(
m1−β, r − 1, δ + β

)}
.

These lemmas imply the following result.

Proposition 7.5. For every fixed r ≥ 1, c ∈ N, and ζ > 0, for m sufficiently large, we have

φpoly(n),O(1),mc
(
m, r, 1/(100r)

)
≥ ` ·m1−ζ .

Proof. The result follows easily from Lemmas 7.3 and 7.4 using that r is constant and that we can
take β and δ sufficiently small.

Finally, it is not hard to derive the main lower bound of this section from these results.

Proof of Theorem 7.1. Given any r ≥ 2 and ε > 0, it is enough to consider an appropriate family
of functions fm,`,r−1, where c = c(ε) is sufficiently large, and set ` = mc. The result then follows
from Lemma 7.2 and Proposition 7.5.

We proceed now with the proof of the lemmas. We will need the notion of a random restriction.
Let p ∈ [0, 1] be a real number. We let ΓpN denote the distribution over restrictions ρ ∈ ΓN
generated by independently fixing each ρ(i) (where i ∈ N) as follows:

Pr[ρ(i) = ∗] = p, Pr[ρ(i) = 1] = (1− p)/2, Pr[ρ(i) = 0] = (1− p)/2.

Given a Boolean function fn : {0, 1}n → {0, 1} over n variables, we let DTdepth(f) be the smallest
decision tree depth among all decision trees computing fn. The next statement is independent of
the number of inputs of f .

5For the sake of this proof, we consider circuits of size at most s (exactly), instead of O(s).
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Lemma 7.6 (Switching Lemma [H̊as86]). Let f be a Boolean function that can be written as a
conjunction or disjunction of any number of depth-t decision trees. Then, for every p ∈ [0, 1] and
r ∈ N,

Pr
ρ∼Γp

[DTdepth(fρ) > r] ≤ (5pt)r.

The next result is a standard consequence of Lemma 7.6 (cf. Gopalan and Servedio [GS10]).

Proposition 7.7. Let f be a Boolean function computed by an AC0 circuit of size M and depth d.
For every t ∈ N, if p ≤ 1/(10t)d then

Pr
ρ∼Γp

[DTdepth(fρ) > t] ≤M · 2−t.

Given a function C : {0, 1}[n] → {0, 1}, we let live(C) ⊆ [n] denote the set of input variables
of C with influence greater than zero. It will be more convenient for us to rely on the following
straightforward consequence of Lemma 7.6 and Proposition 7.7.

Lemma 7.8. Let C1, . . . , Cs1 : {0, 1}n1 → {0, 1} be functions computed by depth-d AC0 circuits
of size at most nc11 , where d, c1 ∈ N and s1 = m1−γ · `, and these parameters satisfy m, ` ∈ N,
γ ∈ (0, 1/5), ` = mc2, where c2 ∈ N, and n1 = Θ(m · `). Then, for p = m−γ/2, there exists a
constant c3 such that, as m→∞,

Pr
ρ∼Γp

[n1]

[ ∣∣∣ ⋃
i∈[s1]

live (Cρi )
∣∣∣ ≤ c3 · (m1−γ · `)

]
→ 1.

Proof. Let p = p1 · p2, where p1 = p2 = m−γ/4. Observe that sampling a restriction ρ ∼ Γp[n1]

is equivalent to first sampling some ρ1 ∼ Γp1

[n1], followed by a restriction ρ2 ∼ Γp2

W , where W
def
=

[n1] \ ρ−1
1 ({0, 1}), and finally setting ρ = ρ2 ◦ ρ1, where the composition operation is defined in the

natural way. Let c = c1 + 10, and t = c · log n1. Furthermore, we let r = d8(1 + c2)/γe, and c3 = 2r.
Then,

Pr
ρ∼Γp

[n1]

[ ∣∣∣ ⋃
i∈[s1]

live (Cρi )
∣∣∣ > c3 · (m1−γ · `)

]
≤ Pr

ρ
def
= ρ2◦ρ1

[
∃i ∈ [s1] s.t. |live(Cρi )| > 2r

]
≤ Pr

ρ1,ρ2

[
∃i ∈ [s1] s.t. DTdepth(Cρi ) > r

]
In order to conclude the proof, it is enough to show that for every j ∈ [s1] and sufficiently large
m, Prρ1,ρ2 [DTdepth(Cρj ) > r] ≤ (1/n1)2. However, by our choice of parameters (and with room to
spare), this follows from an application of Proposition 7.7 with ρ1 and t, followed by an application
of Lemma 7.6 with ρ2 and r (notice that these statements are true with respect to any input
size).

We are now ready to prove Lemmas 7.3 and 7.4.

Proof of Lemma 7.3. Let σ : [n]→ {0, 1, ∗} be a restriction in ΓN,δ, where n = m+`·m and N = [n],

as usual. Let N1
def
= N \σ−1({0, 1}), and set n1

def
= |N1|. Observe that n1 ≥ (1−δ) · ` ·m = Θ(m · `).

In addition, let Π = (C(1), g(1), E) be a single-round protocol for fσm,`,1, where C(1) = (C1, . . . , Cs1),

and these are AC0 circuits of depth d and size s = nc1 ≤ n2c1
1 (for large enough m) that compute the
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message in {0, 1}s1 that Alice sends to Bob. By definition, for each i ∈ [s1], Ci : {0, 1}n1 → {0, 1}.
We prove that if s1 < ` ·m1−β, then there exists an input z ∈ {0, 1}n1 for which Π(z) 6= fσm,`,1(z).

Let D1 ⊆ [`] be the set identifying the variables y fixed by σ (according to our definition of
ΓN,δ). For any z ∈ {0, 1}N1 , we write z = (x, y(i1,1), . . . , y(ik,1)), where [`] \ D1 = {i1, . . . , ik},
k ≥ (1 − δ) · `, and x ∈ {0, 1}m. Recall that we use sets S(i1,1), . . . , S(ik,1) and M to address the
elements of [N1] corresponding to these input positions.

Now consider a random restriction ρ ∼ ΓpN1
, where p = m−β/2. Applying Lemma 7.8 with

γ = β and Proposition A.1, it follows that, for every large enough m, with high probability:

(i) C(1),ρ depends on at most O(m1−β · `) variables.

(ii) For every j ∈ [log `], it is the case that ρ−1(∗) ∩M (j) 6= ∅.

(iii) |ρ−1(∗)∩ (S(i1,1) ∪ . . .∪ S(ik,1))| ≥ 1
2 ·

(1−δ)·m·`
mβ/2

= Ω(m1−β/2 · `). In particular, from (i) we get

that there exists i ∈ [`] \D1 for which S(i,1) ∩
(
ρ−1(∗) \ live(C(1),ρ)

)
6= ∅.

Overall, it follows that there exists a restriction ρ ∈ ΓN with ρ = ρ ◦ σ, for an appropriate
choice of ρ ∈ ΓN1 , such that ρ fixes the message sent by Alice, but does not fix the value of fρm,`,1.
In particular, there exists a z ∈ {0, 1}n1 that agrees with ρ for which Π(z) 6= fσm,`,1(z), which
completes the proof.

The proof of Lemma 7.4 is not much harder than the argument used in the base case, but it
has a few technicalities that need to be handled.

Proof of Lemma 7.4. Let σ ∈ ΓN,δ and Π ∈ Protσs,d,r be a pair realizing φs,d,`(m, r, δ). In other
words, Π solves the compression game of fσm,`,r, and cost(Π) = φs,d,`(m, r, δ). Assume that Π =

(C(1), . . . , C(r), g(1), . . . , g(r−1), E), and signature(Π) = (n1, s1, t1, . . . , tr−1, sr), where n = m+m·`·r,
N = [n], N1 = N \ σ−1({0, 1}), and n1 = |N1|. For convenience, let C(1) = (C1, . . . , Cs1), where
each Ci is a depth-d AC0 circuit of size at most nc1 ≤ n2c1

1 (for large m), since n1 ≥ (1− δ) · n.
Notice that if cost(Π) ≥ ` ·m1−β then the statement of Lemma 7.4 is true. Otherwise, from

cost(Π) < ` ·m1−β we get that s1 < ` ·m1−β, which allows us to proceed as in the proof of Lemma
7.3. Let p = m−β/2, and set γ = β. It follows from Lemma 7.8 that, with high probability,∣∣live(C(1),ρ)

∣∣ = O(m1−β · `). (3)

Let Dj for j ∈ [r] be the sets identifying the variables y fixed by σ. By assumption, |Dj | ≤ δ · `
for every j ∈ [r]. From now on, whenever we consider a set S(i,j), we implicitly assume that j ∈ [r]
and i ∈ [`] \Dj . This time we will also be concerned about how the action of ρ affects the more
specific sets S(i,j,u), where u ∈ [log `]. Observe that, with high probability (Proposition A.1), for
every (i, j, u), we have:

∣∣S(i,j,u) ∩ ρ−1(∗)
∣∣ ≥ 1

2
· m

log `
· p =

1

2
· m

1−β/2

c2 logm
≥ m1−(3/4)β, (4)

for any sufficiently large m. We say that a set S(i,j) is bad with respect to C(1),ρ if |S(i,j) ∩
live(C(1),ρ)| ≥ 1

2 ·m
1−(3/4)β. Otherwise, the set is said to be good. It follows from Equation 3 that

Number of bad sets S(i,j) ≤ O(m1−β · `)
(1/2) ·m1−(3/4)β

=
2`

mβ/4
= o(`), (5)
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as m→∞. In particular, since r = O(1) and β is a fixed constant, with high probability, for every
j ∈ [r] there are at most β · ` sets S(i,j) that are bad with respect to C(1),ρ. Finally, with high
probability over ρ, we also get that, for every j ∈ [log `],∣∣M (j) ∩ ρ−1(∗)

∣∣ > 0.

It follows using the probabilistic method that there exists a fixed restriction ρ1 ∈ ΓN1 satisfying
all these properties. Let ρ2 = ρ1◦σ be the restriction obtained by combining ρ1 and σ in the obvious
way. Observe that ρ2 : N → {0, 1, ∗}. Fix arbitrarily all ∗-variables in ρ2 corresponding to bad sets
S(i,j). On every good set S(i,j), fix all ∗-variables intersecting live(C(1),ρ1), and also fix additional
variables in each set S(i,j,u) so that the new restriction ρ3 satisfies |ρ−1

3 (∗) ∩ S(i,j,u)| = m1−β, for
every appropriate triple (i, j, u). This is possible for any large enough m, since these sets are good.
Further, we assume that the number of variables corresponding to each S(i,j,u) that are set to 1 is
even, in order not to invert the parity inside each block, which will be important later in the proof.
Let fρ3

m,`,r : {0, 1}ρ
−1
3 (∗) → {0, 1} be the resulting function.

Given an input z̃ ∈ {0, 1}ρ
−1
3 (∗), write z̃ = (x̃, {ỹ(i,j)}), and let z = (x, {y(i,j)}) ∈ {0, 1}n be the

completion of z̃ that agrees with ρ3, where this notion is defined in the natural way. Observe that
h(x) still depends on x̃. Now we set all remaining ∗-variables in M in a way that, for the new
restriction σ : [N ] → {0, 1, ∗}, we have h(σ(M)) pointing to a pair (i, 1) corresponding to a good
set S(i,1). This is possible due to the properties of ρ1. Observe that C(1),σ computes a constant
function (i.e., Alice’s message a(1) has been fixed). Let b(1) ∈ {0, 1}t1 be the answer provided by
Bob, which is also fixed.

Now let Π = (C
(1)
, . . . , C

(r−1)
, g(1), . . . , g(r−2), E) be a new protocol obtained by setting each

C
(i)

to be C(i+1) with its input corresponding to the first message sent by Bob fixed to b(1), and
g(i) = g(i+1), for every appropriate i. If we also rename the input variables in fσm,`,r and in the

functions and circuits from Π, truncating irrelevant variables appropriately (recall the definition of
the original function as a pointer jumping function), we obtain a restriction σ′ : {0, 1}N ′ → {0, 1},
where n′ = |N ′| = m′ +m′ · ` · r′, m′ = m1−β, r′ = r − 1, σ′ ∈ ΓN ′,δ′ , δ

′ = δ + β, and the resulting

protocol Π′ ∈ Protσ
′
s,d,r′ . Crucially, Π′ is a protocol solving the compression game of fσ

′
m′,`,r′ in

r′ rounds, which implies that cost(Π) ≥ cost(Π′) ≥ φs,d,`(m
′, r′, δ′) = φs,d,`(m

1−β, r − 1, δ + β),
completing the proof of Lemma 7.4.

8 Open Problems and Further Research Directions

Our results and techniques raise a number of interesting questions, which we discuss more carefully
below.

The power of interaction in two-party AC0[p]-compression games. Observe that the ap-
proach to obtain communication lower bounds for AC0[p] games employed in the proof of Theorem
1.1 is insensitive to the number of rounds of the protocol. On the other hand, our round separation
result (Theorem 1.6) holds with respect to AC0 circuits only. Consequently, a natural question is
whether a strong round separation theorem is true for AC0[p] games. We conjecture that this is the
case, and that a hard function can be obtained via a similar construction that uses MODq instead
of parity.
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Randomized AC0[p]-compression games. While we have obtained essentially optimal lower
bounds for deterministic two-party AC0[p]-compression games, the situation is less clear with re-
spect to randomized protocols. Modulo logarithmic factors, there is a quadratic gap between our
upper and lower bounds for MODq and Majority (Theorem 1.3). On the other hand, it is known

that the communication cost of these games is n/ logΘ(d) n for randomized AC0
d-compression games

(Chattopadhyay and Santhanam [CS12]). We are unable to obtain better lower bounds here be-
cause our approach does not seem to tolerate the initial error probability from the protocol, as it
relies on the low error regime of the polynomial approximation method.

Extending circuit lower bounds to incompressibility results. The results presented in
this paper and in [CS12] show that recent extensions of the random restriction method and the
polynomial approximation method can provide optimal incompressibility results. However, our
construction from Section 6 implies that not every technique can be extended in this sense. Which
other techniques and results from circuit complexity can be strengthened to compressibility lower
bounds?

Understanding the structure of Boolean circuits. Our results shed more light into the
computation of Boolean functions such as MODq using AC0[p] circuits, as we are able to obtain
information about each layer of the circuit. Similar developments appear for instance in Tarui
[Tar10], Rudich and Berman [RB88], and Borodin [Bor71]. We believe that results of this form
can provide important insights in algorithms and computational complexity, and it would be very
interesting to see further advances in this direction.
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A Auxiliary results

We use the following standard concentration bound (cf. Alon and Spencer [AS92], Appendix A).

Proposition A.1. Let X1, . . . , Xm be independent {0, 1} random variables, where each Xi is 1

with probability p ∈ [0, 1]. In addition, set X
def
=
∑

iXi, and µ
def
= E[X] = pm. Then, for any fixed

ζ > 0, there exists a constant cζ > 0 such that

Pr[ |X − µ| > ζµ] < 2e−cζµ.

B The degree lower bound in the low-error regime

In this section we describe the proof of the degree lower bound for Fp-polynomials approximating
MODq in the low error regime. Recall that we use MODnq to denote the MODq function over n
input variables, and that a polynomial Q ∈ Fp[x1, . . . , xn] ε(n)-approximates a Boolean function
f : {0, 1}n → {0, 1} under the uniform distribution if

Pr
x∼{0,1}n

[Q(x) = f(x)] ≥ 1− ε(n),

where x is viewed as an element of Fnp or {0, 1}n, depending on the context.

Proposition B.1 ([Raz87, Smo87], folklore). Let p, q ≥ 2 be distinct primes. There exist fixed
constants δ > 0 and n0 ∈ N for which the following holds. For every n ≥ n0 and ε(n) ∈ [2−n, 1/10q],
any polynomial P ∈ Fp[x1, . . . , xn] that ε-approximates the MODnq function with respect to the

uniform distribution has degree at least δ ·
√
n · log(1/ε).

The proofs that appear in the literature are concerned with large values of ε, and our goal here
is to discuss the extension of the degree lower bound to very small ε, as stated in Proposition B.1.
For this reason, we will focus on the case where q = 2 and p > 2, which is slightly simpler. We
start with the following lemma.

Lemma B.2. For a prime p > 2, let P ∈ Fp[x1, . . . , xn] be a degree-d polynomial that ε(n)-
approximates MODn2 over the uniform distribution. Then there exists a polynomial Q ∈ Fp[y1, . . . , yn]
of degree at most d and a set S ⊆ {−1, 1}n ⊆ Fnp with |S| ≥ (1− ε)2n such that

∀y ∈ S, Q(y) =
n∏
i=1

yi.

Proof. Let T ⊆ {0, 1}n ⊆ Fnp be a set of size at least (1− ε)2n such that

∀x ∈ T, P (x) = MODn2 (x).

Consider the map γ : {−1, 1} → {0, 1} computed by the Fp-polynomial γ(y)
def
= (1−y)2−1. Observe

that γ(−1) = 1 and γ(1) = 0. Let Q(y1, . . . , yn) be a polynomial in Fp[y1, . . . , yn] with Q(y)
def
=

2P (γ(y1), . . . , γ(yn))− 1, and let

S
def
= {y ∈ {−1, 1}n | (y1, . . . , yn) = (γ−1(x1), . . . , γ−1(xn)), where x ∈ T}.
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Then, using the definition of P , Q, S, T , and γ, it is not hard to see that

∀y ∈ S, Q(y) =
n∏
i=1

yi.

Finally, observe that |S| = |T | and deg(Q) ≤ deg(P ), which completes the proof of the lemma.

The next lemma shows that polynomials with this property can be very useful when computing
functions defined over S ⊂ Fnp .

Lemma B.3. Let F be a finite field, and a, b ∈ F be distinct non-zero elements. Assume that
Q ∈ F[x1, . . . , xn] is a degree-d polynomial, and S ⊆ {a, b}n is a set such that

∀x ∈ S, Q(x) =
n∏
i=1

xi.

Then, for every function f : S → F, there is a polynomial Qf ∈ F[x1, . . . , xn] with degree at most
(n+ d)/2 such that

∀x ∈ S, Qf (x) = f(x).

Proof. Fix a function f : S → F, and let Pf be a multilinear polynomial such that, for all x ∈ S,
Pf (x) = f(x). For instance, since a and b are distinct elements of F, we can take

Pf (x)
def
=
∑
x∈S

f(x) ·

( ∏
i:xi=a

(b− xi)(b− a)−1

) ∏
i:xi=b

(a− xi)(a− b)−1

 .

Now consider any monomial M(x)
def
=
∏
i∈I xi, where I ⊆ [n]. Since a and b are non-zero, for any

y ∈ S ⊆ {a, b}n, we have

∏
i∈I

yi =

∏
i∈[n]

yi

(∏
i/∈I

y−1
i

)

= Q(y) ·

(∏
i/∈I

a−1(b− yi)(b− a)−1 + b−1(a− yi)(a− b)−1

)
,

where Q is the polynomial granted by the statement of the lemma. Therefore, each monomial in Pf
defined over a subset I ⊆ [n] can be replaced by a monomial of degree at most min(|I|, d+n−|I|) ≤
(n+ d)/2, in the sense that the new polynomial is still correct on every input in S. Consequently,
there exists a polynomial Qf for f with degree at most (n+ d)/2, as claimed by the lemma.

In other words, if d is small, there exist polynomials of degree much smaller than n for all
functions with domain S and codomain F. This is impossible for large sets S, via a simple counting
argument. In order to formalize this argument and obtain good parameters, we rely on a certain
lower bound for the binomial distribution. The next lemma follows from more general results
presented in Feller [Fel43]. We follow closely the exposition in Matoušek and Vondrák [MV08].
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Lemma B.4. For an even integer n ∈ N, consider independent random variables X1, . . . , Xn,

where each Xi attains values 0 and 1, each with probability 1/2. Let X
def
=
∑

i∈[n]Xi. Then, for
any integer t ∈ [0, n/8],

Pr
[
X ≥ n

2
+ t
]
≥ 1

15
· e−16t2/n.

Proof. For convenience, let n = 2m. Then,

Pr[X ≥ m+ t] = 2−2m
m∑
j=t

(
2m

m+ j

)

≥ 2−2m
2t−1∑
j=t

(
2m

m+ j

)

= 2−2m
2t−1∑
j=t

(
2m

m

)
m

m+ j
· m− 1

m+ j − 1
. . .

m− j + 1

m+ 1

≥ 1

2
√
m

2t−1∑
j=t

j∏
i=1

(
1− j

m+ i

)
(since

(
2m

m

)
≥ 22m/(2

√
m))

≥ t

2
√
m

(
1− 2t

m

)2t

≥ t

2
√
m
· e−8t2/m (since 1− x ≥ e−2x for 0 ≤ x ≤ 1/2).

The lemma now follows depending on the value of t. Observe that if t ≥ 1
4

√
m then the last

expression is lower bounded by 1
8e
−16t2/n. On the other hand, for 0 ≤ t < 1

4

√
m, we get that

Pr[X ≥ m+ t] ≥ Pr[X ≥ m+ 1
4

√
m] ≥ 1

8e
−1/2 ≥ 1

15 , which completes the proof.

Finally, we combine these lemmas in order to prove Proposition B.1 for primes q = 2 and p > 2.

Proof. Let P ∈ Fp[x1, . . . , xn] be a degree-d polynomial that ε(n)-approximates the MODn2 function
over the uniform distribution. Assume without loss of generality that n is even, since otherwise
we can obtain a polynomial Q ∈ Fp[x1, . . . , xn+1] with degree at most 2d that ε(n)-approximates
MODn+1

2 with respect to {0, 1}n+1 (i.e., apply P to the first n variables, then compose with the
appropriate function over two input variables).

It follows from Lemmas B.2 and B.3 that there exists a set S ⊆ {−1, 1}n ⊆ Fnp of size (1− ε)2n
such that, for every function f : S → Fp, there exists a polynomial Qf ∈ Fp[x1, . . . , xn] of degree at

most d′
def
= (n+ d)/2 that agrees with f over S.

Let F be the set of such functions. Clearly, |F| = |Fp||S|. On the other hand, since S ⊆ {−1, 1}n,
we can assume that each polynomial Qf is multilinear. The number of such polynomials with degree

at most d′ is upper bounded by |Fp|M , where M
def
=
∑d′

i=0

(
n
i

)
. Therefore, |Fp||S| ≤ |F| ≤ |Fp|M ,

and we get that
(n+d)/2∑
i=0

(
n

i

)
≥ (1− ε) · 2n. (6)
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We use this inequality to lower bound d in terms of n and ε. First, Equation 6 can be rewritten as

2−n ·
∑

i>(n+d)/2

(
n

i

)
≤ ε. (7)

On the other hand, it follows from Lemma B.4 that, for any d ∈ [0, n/8],

1

15
· exp

(
−16

n
·
(
d

2
+ 1

)2
)
≤ Pr

[
X >

n

2
+
d

2

]
= 2−n ·

∑
i>(n+d)/2

(
n

i

)
. (8)

Therefore, we obtain from Equations 7 and 8 that d = Ω(
√
n · log(1/ε)) for any ε(n) ∈ [2−n, 1/20],

which completes the proof.

C Improved approximation of AC0[p] circuits by polynomials

For convenience of the reader, we describe in this section how to approximate Boolean circuits
by bounded-degree polynomials in the low-error regime. We assume the following classic result,
obtained in slightly different forms by Razborov [Raz87] and Smolensky [Smo87].

Proposition C.1 ([Raz87], [Smo87]). Let p be a fixed prime. There exists a constant β = β(p) ∈ N
such that, for every d = d(n) ≥ 1 and s = s(n) ≥ 1, any AC0

d[p](s(n)) circuit admits an 1/(6s)-error
probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most (β · log max{s, 2})d.

We are now ready to describe the proof of the degree upper bound obtained by Kopparty and
Srinivasan [KS12], which allows us to obtain better bounds when the error is sufficiently small.

Proposition C.2 ([KS12]). Let p be a fixed prime. There exists a constant α = α(p) ∈ N such
that, for every δ ∈ (0, 1/2) and d(n) ≥ 2, any AC0

d[p](s(n)) circuit C admits a δ-error probabilistic
polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most (α · log s)d−1 · log(1/δ). In particular,
it follows that for any distribution D over {0, 1}n, C is δ-approximated with respect to D by a
polynomial of degree at most (α · log s)d−1 · log(1/δ).

Proof. Let C be an AC0[p] circuit of size s and depth d ≥ 2. Further, let g be the top gate of C,
and assume that this gate is fed by t ≤ s input wires y1, . . . , yt, where each yj = gj(x1, . . . , xn).
Observe that the corresponding Boolean function over inputs x1, . . . , xn at each gate gj is computed
by a circuit of size at most s and depth at most d − 1, while g = g(y1, . . . , yt) is computed

by a circuit of size one. Let ε
def
= 1/(6s). Then, Proposition C.1 guarantees the existence of

probabilistic polynomials Qj(x1, . . . , xn) which compute the corresponding functions gj with error
at most ε, where deg(Qj) ≤ (β · log s)d−1. Similarly, since g is computed by a single gate, there
exists a probabilistic polynomial Qg(y1, . . . , yt) that computes g with error at most 1/6, where
deg(Qg) ≤ β. By composing these polynomials and applying a union bound, it follows that there

exists a probabilistic polynomial P(~x)
def
= Qg(Q1(~x), . . . ,Qt(~x)) with deg(P) ≤ (γ · log s)d−1 that

computes C with error at most 1/3, where γ = γ(p) is a fixed constant. Further, by raising this
polynomial to p− 1 and applying Fermat’s little theorem, we can assume without loss of generality
that its output is always Boolean. Since d ≥ 2, the degree becomes at most (γ′ · log s)d−1, where
γ′ ≤ p · γ.
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Now let k = c · log(1/δ), for a sufficiently large constant c. Consider the probabilistic polynomial

M(~x)
def
= M(P1(~x), . . . ,Pk(~x)), where M is a degree k polynomial that computes Majorityk exactly,

and each Pi is an independent copy of P. It follows from Proposition A.1 that M is a probabilistic
polynomial of degree at most (α · log s)d−1 · log(1/δ) that computes C with error at most δ, where
α = α(γ′, c) = α(p) is an appropriate constant.
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