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Abstract

We introduce new forms of attack on expander-based cryptography, and in par-
ticular on Goldreich’s pseudorandom generator and one-way function. Our at-
tacks exploit low circuit complexity of the underlying expander’s neighbor function
and/or of the local predicate. Our two key conceptual contributions are:

1. We put forward the possibility that the choice of expander matters in expander-
based cryptography. In particular, using expanders whose neighbour func-
tion has low circuit complexity might compromise the security of Goldreich’s
PRG and OWF in certain settings.

2. We show that the security of Goldreich’s PRG and OWF over arbitrary ex-
panders is closely related to two other long-standing problems: The existence
of unbalanced lossless expanders with low-complexity neighbor function, and
limitations on circuit lower bounds (i.e., natural proofs). In particular, our re-
sults further motivate the investigation of affine/local unbalanced lossless
expanders and of average-case lower bounds against DNF-XOR circuits.

We prove two types of technical results. First, in the regime of quasipolynomial
stretch (in which the output length of the PRG and the running time of the distin-
guisher are quasipolynomial in the seed length) we unconditionally break Goldreich’s
PRG, when instantiated with a specific expander whose existence we prove, and
for a class of predicates that match the parameters of the currently-best “hard”
candidates. Secondly, conditioned on the existence of expanders whose neighbor
functions have extremely low circuit complexity, we present attacks on Goldre-
ich’s PRG in the regime of polynomial stretch. As one corollary, conditioned on the
existence of the foregoing expanders, we show that either the parameters of nat-
ural properties for several constant-depth circuit classes cannot be improved, even
mildly; or Goldreich’s PRG is insecure in the regime of a large polynomial stretch
for some expander graphs, regardless of the predicate used.
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1 Introduction

Theoretical results provide strong evidence that if secure cryptography is possible,
then many fundamental primitives such as one-way functions (OWF) and pseudoran-
dom generators (PRG) can be implemented with a dramatic level of efficiency and
parallelism. Specifically, security against efficient adversaries can be achieved by func-
tions where each output bit only depends on a constant number of input bits (see,
e.g., [AIK06], and also [App14] for a survey of recent results).

A concrete type of such construction is a conjectured form of OWF that is based
on any expander graph and on a local predicate. Specifically, about two decades ago,
Goldreich [Gol00; Gol11] suggested the following candidate owf : {0, 1}n → {0, 1}n.
Fix any bipartite graph [n] × [n] of right-degree ` ≤ O(log(n)) in which every set
S ⊆ [n] of size up to k on the right-hand side has at least (say) 1.01 · |S| neighbors, and
also fix a predicate P : {0, 1}` → {0, 1}. Then, given input x ∈ {0, 1}n, each output bit
owf(x)i is computed by applying P to the bits of x at the ` neighbors of i ∈ [n]. The
expected running-time of a naive algorithm for inverting owf is at least exp(k) (see,
e.g., [Gol11, Sec. 3.2] and [App14, Sec. 3.1]), and Goldreich conjectured that for an
appropriate predicate P, no algorithm can perform significantly better.

In an extensive subsequent line of research (see, e.g., [Ale11; MST06; ABW10; BQ12;
ABR16; BR13; Coo+14; OW14; FPV15; AL18; AR16], and also see [App16] for a related
survey), Goldreich’s construction was conjectured to yield not only a one-way func-
tion, but also a pseudorandom generator prg : {0, 1}n → {0, 1}m. In fact, in some
settings the two conjectures are essentially equivalent (see [AR16, Sec. 3]).

The question of whether Goldreich’s constructions are secure is a long-standing
open problem. Much research has focused on necessary requirements from the pred-
icate and from the parameters in order for the construction to be secure. Let us, for
simplicity of presentation, focus on the PRG. In this case, the locality ` cannot be too
small: If we want a PRG with super-linear stretch, then we must use ` ≥ 5 [MST06];1

and if we want stretch m = nk then ` must be at least (roughly) 3k (see [OW14, Thm.
II.11]). Also, as shown in [AL18], the predicate must have high resilience (i.e., all of the
predicate’s Fourier coefficients corresponding to sets of size at most Ω(`) are zero; see
Definition 4.8) and high rational degree (this is a generalization of the requirement that
the degree of the predicate as a polynomial F`

2 → F2 is Ω(`); see Definition 4.9).
The foregoing properties capture most existing attacks in the PRG setting. Indeed,

as mentioned above, all these attacks exploit vulnerabilities of the predicate and of the
parameters, but not of the underlying expander. In fact, prior to our work, the PRG was
conjectured to be secure for any underlying expander with sufficiently good expansion
properties. For reference, let us state such a strong form of conjectured security of the
OWF, from a recent work by Applebaum and Raykov [AR16].

Definition 1.1 (bipartite expander graphs) A bipartite graph G is an (n, m, `)-graph if it
has n vertices on the left, m vertices on the right, and right-degree `. An (n, m, `)-graph is

1This impossibility result holds for any construction of a pseudorandom generator in NC0.
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a (k, 1− ε)-expander if for every set S ⊆ [m] on the right-hand side of size at most k, the
number of neighbors of S in G is at least (1− ε) · ` · |S|. 2 Finally, when we say a graph G is
an (n, m, `)-expander we mean that G is an (n, m, `)-graph that is a (n0.99, 0.99)-expander.

Assumption 1.2 (the strong EOWF assumption). For a family P = {P` : {0, 1}` →
{0, 1}}`∈N of predicates, the strong EOWF(P) assumption is the following. For any (n, m, `)-
expander with ` ≤ no(1) and n ≤ m ≤ nα·`, where α > 0 is a sufficiently small universal
constant, Goldreich’s function instantiated with G and P` cannot be inverted by circuits of size
t ≤ exp(α · n.99) with success probability 1/t.

Applebaum and Raykov [AR16] suggested a suitable candidate predicate, which is
the predicate XOR-MAJ(x) =

(
⊕i=1,...,b`/2cxi

)
⊕
(
MAJ(xb`/2c+1, ..., x`)

)
; this predicate

indeed has both high resiliency and high rational degree.

1.1 A high-level digest of our contributions

Our main contribution is a new form of attack on Goldreich’s pseudorandom generator,
which exploits computational complexity properties (and, in particular, circuit complex-
ity properties) of the expander and/or of the predicate on which the generator is
based. In particular, our distinguishers are algorithms associated with natural prop-
erties, in the sense of Razborov and Rudich [RR97]. (Recall that a natural property
against a circuit class C is an efficient algorithm that distinguishes a random string,
interpreted as a truth table, from truth tables of C-circuits.)3

Conceptual implications. We use our new form of attack to break the PRG when
it is instantiated with predicates that are sufficiently “strong” to withstand known
attacks, but with expanders whose neighbor function has “low” circuit complexity. In
high-level, the main conceptual implications of these results are the following:

1. The conjecture that the PRG and OWF are secure with any expander, given an
appropriate predicate, might be too naive. In particular, the security of the con-
structions might crucially hinge on a choice of expander whose neighbor func-
tion has sufficiently high circuit complexity. Alternatively, if the latter is not true
(i.e., if the PRG and OWF can be secure given any expander), then the predicate
must have sufficiently high circuit complexity for the constructions to be secure
in some settings (i.e., when the stretch is quasipolynomial).

Note that a random graph will (with high probability) not only be an expander,
but also have a neighbor function with high circuit complexity. Therefore, our

2We stress that lossless expansion (i.e., expansion to α · ` · |S| vertices for α > 1/2) is crucial in the PRG
setting. To see this, note that one can duplicate a right-vertex in a (k, 0.99)-expander: This will produce
a graph that, on the one hand, has good (but not lossless!) expansion properties, and on the other hand
yields a corresponding PRG that is clearly insecure, regardless of the predicate.

3 Natural properties are typically used to break pseudorandom functions, but the idea of using natural
properties to break pseudorandom generators goes back to [RR97, Thm. 4.2]. Nevertheless, implementing
this idea in our setting presents specific new challenges; for further discussion see Section 2.4.
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results do not put into question the security of the PRG and OWF when instan-
tiated with a random graph.

2. There are significant interdependencies between the security of Goldreich’s PRG and
OWF, the existence of unbalanced lossless expanders with low-complexity neighbor
function, and limitations on circuit lower bounds (i.e., natural proofs). Moreover
(as further explained below), the questions motivated by our results are closely
related both to existing results and to long-standing open problems in each area.

Results for quasipolynomial stretch. In the setting of quasipolynomial stretch, the
output length m of the PRG is quasipolynomial in the seed length n (i.e., m = 2poly log(n))
and the running time of the distinguisher is polynomial in the output length (i.e., run-
ning time poly(m) = 2poly log(n)). This is not the standard setting for cryptographic
application, yet it is a natural and appealing setting to consider.

In this setting we unconditionally break Goldreich’s PRG when it is instantiated with
predicates with high resilience and rational degree, but with an expander whose neighbor
function can be computed by AC0[⊕] circuits of (small) subexponential size. In fact, our
predicates are variations on the specific XOR-MAJ predicate mentioned above. Using a
known reduction of PRGs to OWFs (by [AR16]), it follows that Assumption 1.2 does not
hold for some predicates with high resilience and rational degree. To prove this result
we actually prove the existence of expanders with neighbor function as above; the latter
proof, which uses certain unconditional PRGs that can be computed in a strongly explicit
fashion, might be of independent interest. (See Section 1.2.)

Results for polynomial stretch. In the regime of polynomial stretch (i.e., m = poly(n)),
we put forward two assumptions about plausible extensions of known expander con-
structions in which the neighbor functions have even lower circuit complexity (com-
pared to the expander mentioned above). Conditioned on any of the two assumptions,
we show that exactly one of two options holds: Either the parameters of natural prop-
erties for certain restricted constant-depth circuit classes cannot be improved, even mildly;
or Goldreich’s PRG is insecure for some expanders in the regime of a large polynomial
stretch, regardless of the predicate used. (See Section 1.3.)

Some important cryptographic applications crucially rely on the security of expander-
based PRGs with polynomial, or even linear, stretch (see, e.g., [App16, Sec. 4, “The
Stretch”] and the references therein). We stress that our results for the setting of
polynomial stretch are conditional on the existence of suitable expanders, and only
break the PRG and OWF (when instantiated with these expanders) if there are natural
properties for constant-depth circuit classes beyond what is currently known. Thus,
further investigation is needed to determine whether our results have implications on
the security of the aforementioned applications.
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1.2 Unconditional results for quasipolynomial stretch

Our main result for the setting of quasipolynomial stretch is an attack that uncondi-
tionally breaks Goldreich’s PRG when it is instantiated with a specific expander that has
optimal expansion properties, and with a class of predicates that have both high resilience
and high rational degree. In the following statement, Goldreich’s PRG stretches n bits
to m = nlog(n)k

bits, and the distinguisher is a uniform algorithm that gets an m-bit
string, runs in time poly(m) = nO(log(n)k), and distinguishes the output of the PRG
from uniform (see Definitions 3.2 and 3.3). In more detail:

Theorem 1.3 (unconditional attack on Goldreich’s PRG with quasipolynomial stretch; infor-
mal). For every d ∈ N, sufficiently large k, c ∈ N, and sufficiently small ε > 0, there exists
a deterministic polynomial-time algorithm A that satisfies the following. Let n ∈ N be suffi-
ciently large, let m = nlogk(n), and let ` = c · logk(n). Then, there exists an (n, m, `)-expander
such that for any predicate P : {0, 1}` → {0, 1} that can be computed by an AC0[⊕] circuit
of depth d and size at most 2`

ε
, when Goldreich’s PRG is instantiated with the expander G and

the predicate P, the algorithm A distinguishes the m-bit output of the PRG from a uniform
m-bit string (with gap > 1/2).

In fact, we actually prove a more general theorem, which exhibits a trade-off be-
tween the locality ` and the size of the AC0[⊕] circuit for the predicate P (for a precise
statement see Theorem 4.7). That is, we are able to break the generator with a specific
expander even with much larger locality (e.g., ` = n.01), at the expense of using a more
restricted predicate family, namely that of AC0[⊕] circuits of smaller size (e.g., poly-
nomial size). We stress that even the latter predicate family is rich enough to contain
predicates that have both high resilience and high rational degree (see below).

Recall that the property of the expander [n] × [m] that we exploit in our attack
is that its neighbor functions (i.e., the functions Γi : [m] → [n] for i ∈ [`]) have low
circuit complexity. The expander in Theorem 1.3 in particular has neighbor functions
that can be computed by AC0[⊕] circuits of small sub-exponential size. We prove
the existence of lossless expanders with such neighbor functions in Section 4.1, in a
result that might be of independent interest (see Section 2.2 for details). We comment
that our construction is non-uniform (i.e., we do not obtain a uniform algorithm that
constructs the graph).

Breaking Goldreich’s OWF. Combining Theorem 1.3 with Applebaum and Raykov’s
reduction of expander-based PRGs to expander-based OWFs [AR16, Thm. 3.1] (i.e.,
they prove that if an arbitrary instance of Goldreich’s OWF is secure, then a closely
related instance of Goldreich’s PRG is also secure), our attack also breaks Goldreich’s
OWF when instantiated with a specific expander and with a rich predicate family.
Specifically, we say that a predicate P : {0, 1}` → {0, 1} is sensitive if it is “fully
sensitive” to one of its coordinates (i.e., if for all x ∈ {0, 1}` it holds that P(x) =
xi ⊕ P′(x), for some i ∈ [`] and P′ that does not depend on xi). Then:
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Corollary 1.4 (unconditional attack on Goldreich’s OWF with quasipolynomial stretch; in-
formal). There exists a probabilistic polynomial-time algorithm A′ that satisfies the following.
Let n ∈ N be sufficiently large, let m′ = nk′=poly log(n), and let ` = O(k′). Then, there exists
an (n, m′, `)-expander such that for any sensitive predicate P : {0, 1}` → {0, 1} that can
be computed by an AC0[⊕] circuit of sufficiently small sub-exponential size, when Goldreich’s
one-way function is instantiated with the expander G and the predicate P, the algorithm A
inverts the function with success probability Ω(1/m′n).

As immediate corollaries of Theorem 1.3 and of Corollary 1.4, we deduce that
Assumption 1.2 does not hold for any sensitive predicate family that can be computed
by AC0[⊕] circuits of sufficiently small sub-exponential size; and similarly, that the
“PRG analogue” of Assumption 1.2, denoted EPRG(P) in [AR16], does not hold for
any predicate family that can be computed by AC0[⊕] circuits of sufficiently small
sub-exponential size.

The predicate family and the expander’s locality. Recall that Applebaum and Raykov
suggested the candidate predicate XOR-MAJ; we prove that when replacing majority
by approximate majority (see Definition 4.10), the resulting predicate XOR-APPROX-MAJ
still has both high resilience and high rational degree, and can also be computed by a
polynomial-sized AC0[⊕] circuit (see Section 4.3). Thus, the predicate families in The-
orem 1.3 and Corollary 1.4 contain predicates with high resilience and high rational
degree, and even predicates that are variations on the “hard” candidate XOR-MAJ. 4

Moreover, the predicate XOR-APPROX-MAJ does not even use the “full power” of
the predicate family for which Theorem 1.3 allows us to break Goldreich’s PRG (with
specific expanders) – the predicate XOR-APPROX-MAJ is computable by a circuit of
polynomial size, whereas we can break the generator when the predicate can be com-
puted by a circuit of sub-exponential size. We use this to our advantage by relying on
the more general version of Theorem 1.3 (i.e., Theorem 4.7), which exhibits a trade-off
between locality and the predicate class. Specifically, we obtain the following theorem,
which breaks the generator even when the locality ` is large (e.g., ` = nΩ(1)) and the
predicate has high resilience and rational degree:

Theorem 1.5 (breaking Goldreich’s PRG with XOR-APPROX-MAJ and high locality). There
exists s > 1 and c ∈ N such that for k(n) = log(n)s and m(n) = nk(n) and every time-
computable `(n) ∈ [c · k(n), n1/c] there exists a polynomial-time algorithm A satisfying the
following. For any sufficiently large n ∈ N, there exists an (n, m(n), `(n))-expander and a
predicate P : {0, 1}`(n) → {0, 1} with resilience Ω(`(n)) and rational degree Ω(`(n)) (i.e.,
the predicate XOR-APPROX-MAJ) such that when Goldreich’s PRG is instantiated with the
expander G and the predicate P, the algorithm A distinguishes the m-bit output of the PRG
from a uniform m-bit string (with gap > 1/2).

4Indeed, the main difference between XOR-MAJ and XOR-APPROX-MAJ seems to be in their circuit
complexity, which corresponds to our main point that circuit complexity considerations are crucial for the
security of Goldreich’s PRG and OWF.
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We stress again that in Theorem 1.5, as in Theorem 1.3, the PRG stretches n bits
to m = nlog(n)s

bits, and the distinguisher is a uniform algorithm that gets as input an
m-bit string and runs in time poly(m) = nO(log(n)s).

A comment about the setting of quasipolynomial stretch. As pointed out by a re-
viewer, in cryptographic applications the quasipolynomial setting can be thought of as
trying to attack a PRG with quasipolynomial stretch in time that is quasipolynomial in
the seed length. An alternative perspective, which we elaborate on in Section 2, is to
think of Goldreich’s PRG {0, 1}n → {0, 1}m as a pseudorandom function (PRF) with
seed length n and domain log(m) = poly log(n) (i.e., the PRF maps seed x ∈ {0, 1}n

to a function gx : {0, 1}log(m) → {0, 1}), in which case the attack is quasipolynomial in
the seed length and polynomial in the size m of the truth-table of the PRF.

1.3 Conditional results for large polynomial stretch

Recall that the conjectured “hardness” of Goldreich’s PRG (i.e., Assumption 1.2) refers
both to the regime of polynomial stretch and to the regime of quasipolynomial stretch
(as long as the locality is sufficiently large to support the corresponding stretch). Could
it be that complexity-based attacks separate these two parameter regimes? That is,
could the reason that our attacks from Section 1.2 work be that the stretch of the
generator is super-polynomial?

As mentioned in Section 1.1 (and will be explained in Section 2), the underlying
technical components in our complexity-based attacks are unbalanced lossless expanders
[n]× [m] whose neighbor functions have low circuit complexity, and natural properties
against weak circuit classes. Our main results for the polynomial-stretch regime are
of the following form: If lossless expanders [n] × [nO(1)] with constant degree and
(specific) “very simple” neighbor functions exist, then exactly one of two cases holds:

1. Either the parameters of natural properties for certain well-studied weak circuit
classes cannot be improved, even mildly; or

2. For a sufficiently large polynomial stretch, Goldreich’s PRG is insecure when
instantiated with a specific expander, regardless of the predicate used.

We now present two plausible assumptions on existence of suitable expanders,
which are essentially improvements or extensions of existing explicit constructions.
Conditioned on each assumption, we will contrast the security of Goldreich’s PRG
with the possibility of extending natural proofs for some well-studied circuit class.

1.3.1 Affine expanders and DNF-XOR circuits

As motivation for our first assumption, let us recall two well-known explicit construc-
tions of unbalanced lossless expanders, which were given by Ta-Shma, Umans, and
Zuckerman [TUZ07], and later on by Guruswami, Umans, and Vadhan [GUV09]. We
note that these two constructions are inherently different (the relevant construction
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from [TUZ07] is combinatorial, whereas the construction of [GUV09] is algebraic),
and yet in both constructions the neighbor function of the expander can be computed
by single layer of parity gates (see Section 5.1 for further details); we will call expanders
with such a neighbor function affine expanders.

In the two foregoing affine expanders, the right-degree ` is polylogarithmic, and it
is an open problem to improve the degree to be constant, which matches the degree of
a random construction. However, a random construction is not necessarily affine. Our
first assumption is that there indeed exists an affine expander with constant degree:

Assumption 1.6 (expanders with an affine neighbor function; informal, see Assumption 5.3).
There exists β > 3 such that for every constant k ∈ N and sufficiently large n ∈ N, there
exists an (n, m, `)-expander, where m = nk and ` = β · k, whose neighbor function ΓG :
[m]→ ([n])` can be computed by a single layer of parity gates.

An unconditional proof of Assumption 1.6 will contrast the security of Goldreich’s
PRG with the possibility of extending the known natural properties for DNF-XOR
circuits of exponential size.5 Specifically, known lower bounds for DNF-XOR circuits
yield natural properties useful against such circuits of size up to 2(1−o(1))·n (see Sec-
tion 5.1.2).6 Can these natural properties be extended to functions that are approxi-
mated, in the average-case sense, by DNF-XOR circuits of size 2ε·n, for some ε > 0?
This is the natural property that we contrast with the security of Goldreich’s PRG:

Theorem 1.7 (is Goldreich’s PRG always insecure with certain expanders, or are natural
properties for DNF-XOR circuits “non-extendable”?; informal statement). Suppose that As-
sumption 1.6 holds. Then, exactly one of the following two options holds:

1. For all ε > 0, there does not exist a natural property for the class of functions that can
be approximated with success 1/2 + o(1) by DNF-XOR circuits of size 2ε·n.

2. For a sufficiently large k ∈ N there exists an expander G over [n] × [nk] with right-
degree ` = β · k such that for every predicate P : {0, 1}` → {0, 1}, Goldreich’s PRG is
insecure when instantiated with G and P.

We stress that for any value of β > 3 such that Assumption 1.6 holds, Theorem 1.7
follows with that value of β. Also note that Cohen and Shinkar [CS16] specifically
conjectured that strong average-case lower bounds for DNF-XOR circuits of size 2Ω(n)

hold, and proved a similar statement for the related-yet-weaker model of parity deci-
sion trees. (Their proof for parity decision trees indeed yields a natural property; see
Proposition 5.12.)

5Recall that DNF-XOR circuits are depth-3 circuits that consist of a top OR gate, a middle layer of
AND gates, and a bottom layer of parities above the inputs.

6Some of these natural properties actually run in slightly super-polynomial time, rather than in strictly
polynomial time, but this issue is not crucial for our purpose of breaking Goldreich’s PRG.

7



1.3.2 NC0 expanders and weak AC0
4 circuits

To motivate our next assumption, recall the recent explicit construction of lossless
expanders by Viola and Wigderson [VW17] (which builds on the well-known con-
struction of Capalbo et al. [Cap+02]). In this construction the neighbor function can
be computed by an NC0 circuit, but this construction is only for balanced expanders,
rather than unbalanced ones (see Theorem 5.19). The following assumption is that
such a construction is possible also for unbalanced expanders:

Assumption 1.8 (expanders with NC0 neighbor functions; informal, see Assumption 5.20).
There exists β > 3 such that for every constant k ∈ N and sufficiently large n ∈ N, there
exists an (n, m, `)-expander, where m = nk and ` = β · k, such that the neighbor function
ΓG : [m]→ ([n])` can be computed by an NC0 circuit.

An unconditional proof of Assumption 1.8 will contrast the security of Goldreich’s
PRG with the possibility of extending the known natural properties for the class of
exponential-sized AC0 circuits of depth four with constant bottom fan-in and top fan-in.

Specifically, relying on Håstad’s switching lemma [Hås87], for any c = O(1) and
β ≥ 1 there exists a natural property against depth-four circuits with top fan-in c,
bottom fan-in log(c)/β, and size 2ε·(n/ log(c)), for a tiny universal ε = ε(c, β) > 0
(see Proposition 5.22). Now, suppose that Assumption 1.8 holds for some β > 3,
and for simplicity assume that the locality of the NC0 circuits is precisely k. Then,
the following theorem contrasts the security of Goldreich’s PRG with the possibility of
extending this natural property to work against such circuits of size 2β·(n/ log(c)) instead
of 2ε·(n/ log(c)).

Theorem 1.9 (is Goldreich’s PRG always insecure with certain expanders, or are natural
properties for very restricted AC0 circuits “non-extendable”?; informal statement). Suppose
that Assumption 1.8 holds and that for any k ∈ N, the locality of the NC0 circuit is k. Then,
exactly one of the following two options holds:

1. For any c ∈ N, there does not exist a natural property for depth-four AC0 circuits with
top fan-in c and bottom fan-in log(c)/β and size O

(
2(β/ log(c))·n

)
.

2. For a sufficiently large k ∈ N there exists an expander G over [n] × [nk] with right-
degree ` = β · k such that for every predicate P : {0, 1}` → {0, 1}, Goldreich’s PRG is
insecure when instantiated with G and P.

Recall that Assumption 1.8 is parametrized by β and by the locality of the NC0

circuit; we stress that for any values of β and t such that Assumption 1.8 holds, we get
a corresponding “win-win” theorem such as Theorem 1.9 (for further details see Sec-
tion 5.2). We also stress that both the natural properties that we can unconditionally
prove and the natural properties referred to in Theorem 1.9 are for circuits of expo-
nential size 2Θ(n/ log(c)), and the difference is in the universal constant hidden in the
Θ-notation.
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1.3.3 An important comment about the assumptions in this section

As mentioned in Section 1.1, the explicit construction of highly unbalanced lossless
expanders is a long-standing open problem, regardless of the circuit complexity of
their neighbor function (see, e.g., [Cap+02], [Vad12, Prob. 5.36 & 6.35], and [Wig18,
Chap. 8.7]). Assumptions 1.6 and 1.8, however, do not concern explicit constructions
of expanders, but only assume their existence; in particular, the circuit family for the
neighbor function of the graph may be non-uniform. (This is indeed the case for our
construction of expanders in the quasipolynomial stretch regime.)

1.4 Organization

In Section 2 we describe our proof approach, in high-level, and give overviews of some
of the proofs. Section 3 contains preliminary definitions. In Section 4 we prove our
results for the regime of quasipolynomial stretch, and in Section 5 we prove our results
for the regime of polynomial stretch.

2 Overviews of the proofs

2.1 The general form of attack

A natural property for a class F of functions is a deterministic polynomial-time algo-
rithm that rejects all truth-tables of functions from F , but accepts the truth-tables of
almost all functions.7 Indeed, a natural property for F exists only if almost all func-
tions are not in F . We will show how to use natural properties to break Goldreich’s
pseudorandom generator when instantiated with a suitable expander.

The key step in our proofs is to show, for every fixed x ∈ {0, 1}n, that prg(x) is
the truth-table of a function from some class F of “simple” functions (e.g., prg(x)
is the truth-table of a small constant-depth circuit). When we are able to show this,
it follows that a natural property for F can distinguish the outputs of the PRG from
uniformly chosen random strings: This is because the natural property rejects any
string in the output-set of the PRG (which is the truth-table of a function in F ), but
accepts a random string, with high probability. (The general idea of using natural
properties to break PRGs in this manner goes back to the original work of [RR97].)

Recall that Goldreich’s PRG (i.e., the function prg) is always a very “simple” func-
tion, since each output bit depends on a few (i.e., ` � n) input bits. However, in
order for our idea to work, we need that a different function (i.e., not the function
prg) will be simple: Specifically, for every fixed input x, we want that the function
gx : {0, 1}log(m) → {0, 1} such that gx(i) = prg(x)i will be “simple”. That is, for a fixed
“seed” x for the PRG, the function gx gets as input an index i of an output bit, and

7Throughout the paper, we identify a natural property with the “constructive” algorithm that rec-
ognizes the property (see Definition 3.5, which also relaxes the requirement from rejecting “almost all”
functions to rejecting “most” functions).
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computes the ith output bit of prg(x) as a function of i. Intuitively, given i ∈ [m], the
function gx needs to compute three different objects, successively:

• The neighbors ΓG(i) of the vertex i ∈ [m] in G.

• The projections of the (fixed) string x on locations ΓG(i).

• The output of the predicate P on x�ΓG(i).

The proofs of our main theorems consist of showing instantiations of Goldreich’s
PRG (i.e., choices for an expander and a predicate) such that gx is a function from a
class against which we can construct natural properties. Observe that the two crucial
components that determine the complexity of gx are the complexity of the neighbor
function ΓG, and the complexity of the predicate P.

The connection to expander-based pseudorandom functions. An alternative per-
spective of the construction of gx above is as giving rise to a collection of pseudorandom
functions (PRFs)

{
gx : {0, 1}log(m) → {0, 1}

}
x∈{0,1}n

that are based on (an instantiation

of) Goldreich’s PRG. Indeed, the crucial point is that the transformation above of Gol-
dreich’s PRG to a PRF is extremely simple and incurs very little complexity overhead
(on top of the complexities of ΓG and of P).

As pointed out by a reviewer, from this perspective one can view our construction
as following an approach first introduced by Applebaum and Raykov [AR16]. They
showed how to construct relatively simple PRFs (or, alternatively, very simple weak
PRFs) based on Goldreich’s PRG, where a crucial point in deducing the simplicity of
the PRFs was that the expander’s neighbor function is local. Similarly to their work, we
also transform Goldreich’s PRG to a “candidate PRF”, but since we assume additional
structure on the former (i.e., we assume that ΓG and/or P are computationally simple)
we can deduce that the latter is significantly simpler than in their work.

The crucial conceptual difference between our work and [AR16] is that they as-
sumed that Goldreich’s PRG is secure when instantiated with a random expander,
and deduced that relatively simple PRFs exist. In contrast, in this work we break the
“candidate PRFs” that our transformation yields (or rely on hypotheses that it can be
broken), and we thus deduce that the specific corresponding instantiations of Goldre-
ich’s PRG are insecure. Indeed, this crucially uses the fact that our “candidate PRFs”
are considerably simpler than in [AR16]. For further discussion see Section 2.4.

2.2 The setting of quasipolynomial stretch

The proof of Theorem 1.3 consists of showing that for a suitable expander G, and for
any predicate P computable by an AC0[⊕] circuit of sufficiently small sub-exponential
size, the function gx can be computed by an AC0[⊕] circuit of sufficiently small sub-
exponential size. Natural properties for such circuits, based on the lower bounds by
Razborov and Smolensky [Raz87; Smo87], are well-known (see, e.g., [RR97; CIKK16]).
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To describe the instantiations and the construction of an AC0[⊕] circuit for gx, let
n ∈ N, and let m = 2(log(n))k

, for a sufficiently large k. The first technical component
that we need is an expander graph G such that the function i 7→ ΓG(i) can be computed
by a sub-exponential sized AC0[⊕] circuit. We show that there exists such a graph,
with essentially optimal parameters:

Theorem 2.1 (strongly explicit lossless expander in AC0[p]; see Theorem 4.6). There exists
a universal constant dG ∈ N such that the following holds. For any k ∈ N and sufficiently
large n there exists an (n, m, `)-expander, where m = 2(log(n))k

and ` = O(log(m)/ log(n)),
and an AC0[⊕] circuit CG : {0, 1}log(m) → {0, 1}`·log(n) of depth dG and size poly(n) such
that for every i ∈ [m] it holds that CG(i) outputs the list of ` neighbors of i in G.

We stress that the depth dG of the circuit in Theorem 2.1 does not depend on the
relation between m and n, which is what will allow us to have a natural property
for the circuit CG. Specifically, recall that we have natural properties against AC0[⊕]
circuits of depth dG over `m = log(m) input bits of sub-exponential size 2Ω(`

1/2dG
m ). The

size of CG is poly(n), and thus if we take m = 2(log(n))k
, for a sufficiently large k, then

the size of CG is a sufficiently small sub-exponent in its input length log(m).
In high-level, our construction of the expander in Theorem 2.1 is as follows. Our

starting point is the well-known fact that a random graph is, with high probability, a
good lossless bipartite expander (see Theorem 3.4). The first step is to construct an
efficient test that gets as input a string G ∈ {0, 1}m′ , where m′ = m · ` · log(n), considers
G as the incidence-list of a graph, and decides whether or not G is an (n.99, .99)-
expander. We show that such a test can be implemented by a CNF of size 2n (see
Claim 4.2). Hence, a pseudorandom generator for CNFs of size 2n outputs, with high
probability, a good expander. Specifically, we will use the pseudorandom generator of
Nisan [Nis91], which has seed length poly(n). Thus, for some fixed “good” seed s, the
output NW(s) ∈ {0, 1}m′ of the generator on s is an (n.99, .99)-expander.

Our next step is to show that the expander represented by NW(s) has neighbor
functions that can be computed by an AC0[⊕] circuit. In fact, we will show that there
exists a circuit that gets as input the index i ∈ {0, 1}log(m′) of a bit in NW(s) and
outputs NW(s)i. To do so we can rely, for instance, on the recent work of Carmosino
et al. [CIKK16] , who showed that Nisan’s generator can be made “strongly explicit”:
That is, there exists an AC0[⊕] circuit of polynomial size that gets as input a seed z
and an index i of an output bit, and computes the ith output bit of the generator on
seed z. 8 By “hard-wiring” a “good” seed s into the latter circuit, we obtain an AC0[⊕]
circuit of size poly(n) that computes the output bits of the expander NW(s). Indeed,
a crucial point is that we did not algorithmically look for a good seed s, but rather
non-uniformly fixed a “good” seed and “hard-wired” it into the circuit.

Given this expander construction, gx can compute i 7→ ΓG(i) in sub-exponential
size, and we now need gx to compute the projections of x on locations ΓG(i). To do
so we simply “hard-wire” the entire string x into gx. Specifically, after computing

8A similar observation has appeared in other works, such as in [RR97, Thm. 4.2].
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the function i 7→ ΓG(i), the circuit now has the ` · log(n) bits of ΓG(i); it then uses
` depth-two formulas, each over log(n) bits and of size n, to compute the mapping
ΓG(i) 7→ x�ΓG(i) by brute-force. This increases the size of the circuit for gx by ` · n < n2

gates, which is minor compared to the size poly(n) of CG from Theorem 2.1.
Finally, the circuit gx has now computed the ` bits corresponding to x�ΓG(i), and

needs to compute the predicate P : {0, 1}` → {0, 1} on these bits. To get the circuit
to be of sufficiently small sub-exponential size, we require that the predicate can be
computed by a sufficiently small sub-exponential sized AC0[⊕] circuit. Specifically, we
want that for some dP, the predicate P can be computed by an AC0[⊕] circuit of depth
dP and size 2`

ε
, for a sufficiently small ε < 1/2(dG + dP + 2). We thus obtain a circuit

for gx of depth d = dG + dP + 2 and of size O
(
2`

ε)
< 2log(m)1/2d

, 9 which is sufficiently
small such that we have natural properties against it (see Theorem 3.6).

2.3 The setting of large polynomial stretch

Why are the results in Section 2.2 applicable only to the setting of quasipolynomial
stretch? The main bottleneck is the expander construction in Theorem 2.1, which is an
AC0[⊕] circuit. Specifically, since we only know of natural properties against AC0[⊕]
circuits of at most sub-exponential size, and since the circuit that we obtain is of size
at least n (because we hard-wire x ∈ {0, 1}n to the circuit), we were forced to take
m = npoly log(n) such that n will be a small sub-exponential function of log(m).

In this section we circumvent this obstacle by using the hypothesized existence of
expanders whose neighbor functions have “extremely simple” circuits. For simplicity,
in the current high-level overview we present the attacks that are based on the exis-
tence of an expander as in Assumption 1.6; that is, a lossless expander G = ([n], [m =
nk], E) of right-degree ` = O(k) whose neighbor function is an affine function (i.e., each
output bit is a parity of input bits). The ideas that underlie the attacks that are based
on expanders whose neighbor function is an NC0 circuit (as in Assumption 1.8) are
similar, yet require a slightly more subtle parametrization (see Section 5.2).

Consider an instantiation of Goldreich’s predicate with expander G as above and
with a predicate P : {0, 1}` → {0, 1} that can be computed by a CNF of size 2δ·`, where
δ can be an arbitrarily large constant compared to k (or even δ = 1, which allows for
any predicate). In this case, for any x ∈ {0, 1}n, the output prg(x) of the generator on
x is a truth-table of a function gx over an input i ∈ {0, 1}log(m) that can be computed
as follows. One layer of parity gates maps i ∈ [m] to ΓG(i) ∈ {0, 1}`·log(n) (this uses our
assumption about the expander). Then, ` copies of a DNF over log(n) bits and of size
n map the names of the ` vertices to x�ΓG(i) ∈ {0, 1}`, i.e., we project the bits of x that
feed the predicate P (this DNF is essentially a “hard-wiring” of x into gx). Finally, the
CNF that computes P of size 2δ·` maps x�ΓG(i) to the value P(x�ΓG(i)). After collapsing
a layer that connects the top CNF and the DNFs, we obtain an AND-OR-AND-XOR

9For this calculation we assumed that 2`
ε

dominates the size of the circuit (since the size of CG is
already sufficiently small); and we used the fact that ` = O(log(m)/ log(n)) < log(m), and that ε < 1/2d
is sufficiently small).
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circuit gx over `m = log(m) input bits of size O
(
` · log(n) + ` · n + 2`·δ

)
= O

(
2`m/k)

with top fan-in 2δ·` = 2O(δ·k).
When δ > 0 is sufficiently small, we are able to unconditionally construct a natural

property against circuits as above. However, the main point (i.e., Theorem 1.7) comes
when considering the case δ = 1; that is, any predicate P : {0, 1}` → {0, 1}. In
this case, we first use the discriminator lemma of [HMP+93] to deduce that gx can be
(1/2+ 1/2O(k))-approximated by a DNF-XOR circuit of size O

(
2`m/k). Now (still under

Assumption 1.6), exactly one of two options holds. The first option is that there exists a
natural property for functions on `m input bits that can be (1/2 + o(1))-approximated
by DNF-XOR circuits of size 2Ω(`m); in this case, by taking k sufficiently large so that
2`m/k is sufficiently small, the natural property breaks the generator. The other option
is that no such natural property exists, despite the fact that natural properties exist
both for functions computed (in the worst-case) by DNF-XOR circuits of size 2(1−o(1))·`m ,
and for functions approximated (even weakly) by parity decision trees of such size.
This completes the sketch of the proof of Theorem 1.7.

2.4 The connection to expander-based pseudorandom functions

As mentioned in Section 2.1, our construction of the function gx : {0, 1}log(m) → {0, 1}
(i.e., gx(i) = P(x�ΓG(i))) can be viewed as a construction of a collection of pseudoran-

dom functions (PRFs)
{

gx : {0, 1}log(m) → {0, 1}
}

x∈{0,1}n
based on (an instantiation of)

Goldreich’s PRG. Indeed, crucially, we show (or assume) that gx is not pseudorandom,
and thus deduce that the correpsonding instantiation of Goldreich’s PRG is insecure.

The crucial point in our transformation of Goldreich’s PRG to a PRF is that the
resulting PRF can have very low circuit complexity, depending essentially only on the
complexity of the expander’s neighbor function and of the predicate. In contrast, pre-
viously known transformations of Goldreich’s PRG to a PRF incur a significant over-
head. Specifically, the transformation of Goldreich, Goldwasser, and Micali [GGM86]
yields a circuit with super-constant depth; whereas the constructions of Applebaum
and Raykov [AR16] either yield only a weak PRF (which is not broken by natural
properties, in general) or require complicated computations, which they implement
using majority gates (i.e., the resulting function is in the class T C0, for which natural
properties are neither known nor conjectured to exist). The reason that we are able to
obtain “candidate PRFs” that are so simple is that we rely on specific expanders with
neighbor functions whose (non-uniform) complexity is small.

As pointed out by a reviewer, our techniques can also be viewed as extending the
proof approach of another result from [AR16], in which an algorithm for learning AC0

circuits from examples was used to break a weak PRF computable by AC0 circuits. (In-
deed, in [AR16] the weak PRF was conjectured to be secure, and thus they concluded
that no such learning algorithm exists.) Our attacks on the simple “candidate PRFs”
that we construct use natural properties for the corresponding circuit classes, and natu-
ral properties are generalizations of learning algorithms (i.e., an algorithm for learning
from examples is in particular a natural property).
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As pointed out by Applebaum,10 a transformation of Goldreich’s PRG to a weak
PRF from [AR16] can be used to break the PRG when it is intantiated with a random
graph and with a predicate with sufficiently low circuit complexity; this attack uses an
algorithm for learning from random examples. Specifically, assume that Goldreich’s
PRG is secure when instantiated with a random graph [n]× [m] of right-degree ` and
a predicate P : {0, 1}` → {0, 1}. Using the argument that appears in [AR16, Sec. 1.2.1]
it follows that the function gx : {0, 1}`·log(n) → {0, 1} that considers its input as a set S
of ` vertices in [n], and outputs gx(S) = P(x�S), is a weak PRF against adversaries that
make m (uniformly chosen) queries. The complexity of gx is essentially determined
by the complexity of the predicate P.11 Thus, if the latter is sufficiently small such that
there exists an algorithm for learning gx from m− 1 random examples, then gx cannot
be a weak PRF for adversaries that make m queries (since such an adversary can use
the learning algorithm to predict the mth evaluation of the function at a random point,
using the first m − 1 evaluations at random points). This contradicts the hypothesis
that Goldreich’s PRG is secure when instantiated with P and a random graph [n]× [m].

Loosely speaking, the argument above implies that Goldreich’s PRG is not secure
when the stretch is quasipolynomial (and the locality is polylogarithmic and suffi-
ciently large), the graph is random, and the predicate is computable by an AC0 cir-
cuit of sufficiently small sub-exponential size; this relies on the learning algorithm of
Linial, Mansour, and Nisan [LMN93].12 However, the latter class of predicates is much
weaker than the class of predicates to which our main unconditional result applies
(i.e., than the class of AC0[⊕] circuits of sufficiently small sub-exponential size, from
Theorem 1.3). For example, such predicates have “low” resilience o(`), because the
Fourier weight of depth-d AC0 circuits over ` bits of size 2`

ε
is .01-concentrated on

sets of size at most O(`ε·(d−1)) = o(`) (see [LMN93; Tal17]); therefore, such predicates
do not withstand the attacks from [AL18]. Finally, recall that it is currently an open
problem to understand the learnability of AC0[⊕] circuits from random examples.

3 Preliminaries

We use [n] to denote the set {1, . . . , n}. For functions f , g : {0, 1}t → {0, 1} and
γ ∈ [0, 1], we say that f γ-approximates g if Prx∼ut [ f (x) = g(x)] ≥ γ, where ut denotes
the uniform distribution over {0, 1}t.

10Personal communication.
11More specifically, the circuit gx can be implemented by 2 · ` depth-two formulas of size O(n) to

compute the mapping S 7→ x�S, and then a circuit for P to compute P(x�S).
12Specifically, let n ∈ N, and let ` = logk(n) for some k ∈ N. Assume that the predicate P : {0, 1}` →
{0, 1} is computable by an AC0 circuit of depth d ∈ N and size s = 2`

ε
, where ε ≤ 1/(d + 1). Then, gx

can be implemented by a circuit of size s′ = O(` · n + s) and depth d + 1. The algorithm of [LMN93]
learns gx with error 1/s′ from m = nO(log(s′))d

= o(n`) random examples in time poly(m), where the
last bound on m is since ε ≤ 1/(d + 1). Therefore, Goldreich’s PRG is not secure when the locality is
` = logk(n), the stretch is m = o(n`), and the `-bit predicate is an AC0 circuit of depth d and size 2`

ε
.
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3.1 Expander graphs and Goldreich’s PRG

Throughout the paper, when we refer to expander graphs, we will mean highly un-
balanced bipartite lossless expanders, as formally defined in Definition 1.1. In our
constructions, we assume an ordering of the neighbors of each right-vertex of the
graph, and allow parallel edges among vertices. We can thus define the notion of a
neighbor function of a graph:

Definition 3.1 (neighbor function of a bipartite graph). Let G be an (n, m, `)-graph. The
neighbor function ΓG : {0, 1}log(m) → {0, 1}`·log(n) of G is the function that maps any i ∈ [m]
to its ` neighbors in [n] in G.

We can now formally define Goldreich’s pseudorandom generator. The definition
refers to an arbitrary (n, m, `)-graph, but the construction is intended to be instantiated
over an (n, m, `)-expander (e.g., as in Assumption 1.2).

Definition 3.2 (Goldreich’s PRG). Let n ∈ N, let m = m(n) be a stretch parameter, and
let ` = `(n) be a locality parameter. Let P : {0, 1}` → {0, 1} be a predicate, and let G be
an (n, m, `)-graph. Then, Goldreich's PRG using expander G and predicate P is the function
prg : {0, 1}n → {0, 1}m defined as follows: For every x ∈ {0, 1}n and i ∈ [m], the ith output
bit of prg equals P(x�ΓG(i)), where ΓG(i) is the set of neighbors of i ∈ [m] in the graph G.

Our notion of attack on the PRG is the standard one in which the distinguisher
gets as input an m-bit string, which may either be an uniform output of the PRG or a
uniform string, and runs in time proportional to m (ideally, polynomial in m).

Definition 3.3 (distinguisher). Let G : {0, 1}n → {0, 1}m a function. We say that an algo-
rithm A distinguishes the output of G from a uniform string with gap ε > 0 if∣∣∣ Pr

s∈{0,1}n
[A(G(s)) = 1]− Pr

x∈{0,1}m
[A(m) = 1]

∣∣∣ ≥ ε .

We consider the running time of A as a function of its input length m.

Lastly, we will use the well-known fact that a random graph is, with high proba-
bility, an expander; indeed, this fact holds also for the definition of expansion that we
use. In more detail:

Theorem 3.4 (a random graph is a good lossless expander). Let n ≤ m ∈ N and ` ∈ N

such that c · log(m)
log(n) ≤ ` ≤ n1/c, where c is a sufficiently large constant. Let G be an (n, m, `)-

graph chosen at random by choosing the ` neighbors of each i ∈ [m] are uniformly in [n]
(allowing repetitions). Then, with probability at least 1− 1/poly(n) it holds that G is an
(n0.99, 0.99)-expander.13

The proof of Theorem 3.4 is a straightforward probabilistic argument, and in fact
a more general theorem has been proved in [AR16, Lem. 2.5]. For completeness, we
include a proof of Theorem 3.4 in Appendix A.

13The polynomial power in the success probability depends on c and can be made arbitrarily large.
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3.2 Circuit classes and natural properties

Our circuit model throughout the paper is that of Boolean circuits over the De Morgan
basis (i.e., with AND, OR, and NOT gates), and when explicitly stated we also allow
for ⊕ gates. We will frequently refer to the classes AC0 and AC0[⊕] of circuit families
of constant depth with gates of unbounded fan-in (for the standard definitions see,
e.g., [Juk12, Sections 12.3 and 12.5, respectively]). When we refer to NC0 we refer
to Boolean function with multiple output bits where each output bit depends on a
constant number of input bits.

Let us recall the definition of natural properties by Razborov and Rudich [RR97]. In
the definition below, the class F can be thought of as the class of functions computable
by a certain class of circuits (such as AC0[⊕]).

Definition 3.5 (natural properties). Let F ⊆ {{0, 1}∗ → {0, 1}} be a class of Boolean
functions. A deterministic polynomial-time algorithm is a natural property algorithm for F if
for every sufficiently large n ∈N, the algorithm satisfies the following:

1. The algorithm rejects every truth-table of f ∈ F over n input bits (when f is given to
the algorithm as a string in {0, 1}2n

).

2. The algorithm accepts more than half of the strings in {0, 1}2n
.

We will sometimes slightly abuse Definition 3.5 by referring to natural properties
that run in super-polynomial time (e.g., in quasipolynomial time), or that accept less
than half of the strings in 2n (say, a constant fraction of the strings). We will clearly
indicate the deviation from Definition 3.5 when we do so.

It is well-known that, relying on the results of Razborov [Raz87] and Smolen-
sky [Smo87], there exist natural properties for AC0[⊕] of subexponential size (see,
e.g., [RR97; CIKK16]). Since we will crucially use these natural properties in Section 4,
let us formally state the parameters of the natural properties:

Theorem 3.6 (natural properties for AC0[⊕] of subexponential size; [RR97; CIKK16]). For
any constant d ∈ N, let F ⊆ {{0, 1}∗ → {0, 1}} be the class of functions that satisfy the
following: For every ` ∈ N, all functions in F ∩ {{0, 1}` → {0, 1}} are computable by
circuits of depth d with parity gates of size at most 2η·`1/2d

, where η > 0 is a small universal
constant. Then, there exists a natural property algorithm for F .

4 Unconditional results in the setting of quasipolynomial stretch

Our goal in this section is to prove Theorem 1.3, which shows that Goldreich’s PRG can
be broken in the regime of quasipolynomial stretch with a specific expander for a large
class of predicates. As a first step, in Section 4.1 we will prove Theorem 2.1, which
asserts the existence of an expander whose “neighbor functions” can be computed by
relatively small AC0[⊕] circuits. In Section 4.2, we prove Theorem 1.3. And finally,
in Section 4.3 we prove that the class of predicates for which we break the generator
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is quite rich, and in particular contains predicates with high rational degree and high
resilience.

4.1 Expanders with AC0[⊕] neighbor functions

In this section we construct a (non-explicit) bipartite lossless expander whose “neigh-
bor function” can be computed by a sub-exponential sized AC0[⊕] circuit. Throughout
the section we consider an incidence-list representation of expanders; that is

Definition 4.1 (incidence-list representation). For n, m, ` ∈ N such that ` ≤ n, let m′ =
m · ` · dlog(n)e. We identify any string G ∈ {0, 1}m′ with a bipartite graph [n] × [m] of
right-degree ` such that for v ∈ [m] and i ∈ [`], the jth neighbor of v is encoded by the bits in
G(v−1)·`·dlog(n)e+1, ..., Gv·`·dlog(n)e.

Let us start the proof by showing that for many natural settings of the parameters
(e.g., m ≤ 2no(1)

and ` ≤ no(1)) we can test whether a string G ∈ {0, 1}m′ is an (n.99, .99)-
expander using a CNF of size at most 2n:

Claim 4.2 (testing whether a graph is an expander). Let n, m, ` ∈ N such that m ≥ n and
log(m) + 2` · dlog(n)e ≤ n.01, and let m′ = m · ` · dlog(n)e. Then, there exists a CNF of
size at most 2n that gets as input a string G ∈ {0, 1}m′ and accepts if and only if G is an
incidence-list representation of an (n, m, `)-expander.

Proof. The CNF is a conjunction of the following set of tests:

• For every k = 1, ..., n0.99,

• For every set S ⊆ [m] of size at most k,

• The number of neighbors of S is at least 0.99 · ` · |S|.

For a fixed S ⊆ [m] of size k ≤ n0.99, the decision of whether or not |Γ(S)| ≥
0.99 · ` · |S| is a function of k · ` · dlog(n)e bits, and can therefore be implemented by
a CNF of size 2k·`·dlog(n)e. There are at most k · (m

k ) sets to consider, and therefore the
final CNF is of size at most k · (m

k ) · 2k·`·dlog(n)e < 2log(k)+k·log(m)+k·`·dlog(n)e ≤ 2n.

Our next step is to use the construction of Carmosino et al. [CIKK16] to show that
Nisan’s generator can be made “strongly explicit”:

Proposition 4.3 (a strongly explicit NW-generator). There exists a constant d such that the
following holds. Let n, m′ ∈N such that n ≤ m′ ≤ 2n, let t = poly(n) for a sufficiently large
polynomial, and let ε = 2−n. Then, there exists a pseudorandom generator NW : {0, 1}t →
{0, 1}m′ with error ε for CNFs of size 2n that satisfies the following. There exists a polynomial-
sized circuit E : {0, 1}t × {0, 1}dlog(m′)e → {0, 1} of depth d with parity gates such that for
every s ∈ {0, 1}t and i ∈ [m′] it holds that E(s, i) outputs the ith bit of NW(s).
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Proof. Our generator NW : {0, 1}t → {0, 1}m′ will be the Nisan-Wigderson generator.
Specifically, for a sufficiently large k ≥ 6 and r = nk, let f : {0, 1}r → {0, 1} be the
parity function such that f is (ε/m′)-average-case hard for circuits of depth five and
of size 2O(n). 14 We will use a combinatorial design S1, ..., Sm′ ⊆ [t] with parameters as
in the following lemma, which is due to Carmosino et al. [CIKK16].

Definition 4.4 (combinatorial design) A collection of sets S1, ..., Sm′ ⊆ [t] is an (r, k)-
design if for every i ∈ [m′] it holds that |Si| = r, and for every distinct i 6= j in [m′] it holds
that |Si ∩ Sj| ≤ k.

Lemma 4.5 (strongly explicit NW-designs in AC0[p]; see [CIKK16, Thm. 3.3]) Let p be
any prime. There exists a constant dMX ≥ 1 such that for any r ∈ N and m′ < 2r there
exists an (r, dlog(m′)e)-design S1, ..., Sm′ ⊆ [t], where t = O(r2),15 such that the function
MXNW : {0, 1}t × {0, 1}dlog(m′)e → {0, 1}r defined by MXNW(s, i) = s�Si

is computable by
an AC0[p] circuit of size O(log(m′) · r3 · log(r)) and depth dMX.

By a standard argument that follows Nisan and Wigderson [NW94], the generator
G instantiated with the function f and the design in Lemma 4.5 is ε-pseudorandom
for CNFs of size 2O(n). The circuit E : {0, 1}t × {0, 1}dlog(m′)e → {0, 1} acts as follows.
Given inputs (s, i), the circuit E first feeds (s, i) to the circuit from Lemma 4.5 to
compute s�Si

, and then computes the parity of s�Si
(using a single parity gate). The

depth of E is d = dMX + 1, and its size is poly(t, log(m′)) = poly(n).

Finally, we prove Theorem 2.1 by combining Claim 4.2 and Proposition 4.3, and
“hard-wiring” a good seed s into the circuit E from Proposition 4.3. That is:

Theorem 4.6 (strongly explicit lossless expander inAC0[p]). There exist constants dG, c ∈N

such that the following holds. Let n ≤ m ∈ N such that m ≤ 2no(1)
, and let ` ∈ N such that

c · log(m)
log(n) ≤ ` ≤ n1/c. Then, there exists an (n, m, `)-expander G and an AC0[⊕] circuit

CG : {0, 1}log(m) → {0, 1}`·log(n) of depth dG and size poly(n), such that for every i ∈ [m] it
holds that CG(i) outputs the list of ` neighbors of i in G.

Proof. Let m′ = m · ` · dlog(n)e. By Theorem 3.4, a random string in {0, 1}m′ is an
(n0.99, 0.99)-expander, with high probability. By Claim 4.2, such expanders can be
recognized by CNFs of size 2n. Thus, considering the pseudorandom generator NW
from Proposition 4.3 for such CNFs, with high probability over choice of seed s ∈
{0, 1}poly(n) for NW it holds that NW(s) is an (n0.99, 0.99)-expander.

Let us now fix such a good seed s ∈ {0, 1}poly(n), and a corresponding expander
G = NW(s). When we “hard-wire” the seed s into the circuit E from Proposition 4.3,
we obtain a circuit Es : {0, 1}dlog(m′)e → {0, 1} that on input j ∈ [m′] outputs the jth

bit in the representation of G as a bit-string. Thus, our final circuit CG gets as input

14For S = 2O(n) and a sufficiently large integer k ≥ 6, the correlation of a size-S circuit of depth five
with the parity of v = nk variables is at most 2−Ω(v/(log(S))5) ≤ ε/m′ (see [Hås14]).

15The O-notation hides a universal constant.
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i ∈ {0, 1}dlog(m)e, and uses ` · dlog(n)e copies of Es to output the ` · dlog(n)e bits in
the representation of G that correspond to the neighbors of i ∈ [m] (i.e., CG(i) =
Es((i− 1) · dlog(n)e), ..., Es(i · ` · dlog(n)e − 1)). The size of CG is ` · dlog(n)e times the
size of Es, and is thus upper-bounded by poly(n); the depth dG of CG is just the depth
of Es, which is the universal constant d from Proposition 4.3.

4.2 Proof of Theorem 1.3

Relying on Theorem 4.6, we now prove Theorem 1.3. As explained in Section 2.2, the
main step is to show that, when Goldreich’s PRG is instantiated with the expander
from Theorem 4.6 and with any predicate that can be computed by an AC0[⊕] circuit
of sufficiently small sub-exponential size, the output of the generator (on any seed) is
the truth-table of an AC0[⊕] circuit of small sub-exponential size.

Theorem 4.7 (Theorem 1.3, restated). For any dP ∈N and sufficiently small ε = ε(dP) > 0
and sufficiently large k = k(dP) > 1, there exists a deterministic polynomial-time algorithm
A that satisfies the following. For any sufficiently large n ∈ N, let m = 2(log(n))k

, and let
c · (log(n)k−1) ≤ ` ≤ n1/c, where c is a sufficiently large constant. Then, there exists an
(n, m, `)-expander such that the following holds: For any predicate P : {0, 1}` → {0, 1} that
can be computed by anAC0[⊕] circuit of depth dP and size at most 2(log(m))ε

, when Goldreich’s
PRG is instantiated with the expander G and the predicate P, the algorithm A distinguishes
(with high probability) between a uniform string and the output of the generator.

Proof. Let G = ([n], [m], E) be the expander graph from Theorem 4.6, with right-
degree `. Let prg : {0, 1}n → {0, 1}m be Goldreich’s PRG , instantiated with the graph
G and with the predicate P. For any fixed x ∈ {0, 1}n, we show that prg(x) is the
truth-table of an AC0[⊕] circuit {0, 1}log(m) → {0, 1} of depth d and size 2o(log(m)1/2d).
Assuming such a circuit indeed exists for any fixed x, the natural property algorithm
from Theorem 3.6 rejects all m-bit strings in the image of prg, but accepts a random
m-bit string with probability at least 1/2.

Thus, let us fix x and construct a circuit gx : {0, 1}log(m) → {0, 1} whose truth-table
is prg(x). Given input i ∈ [m], the circuit gx:

• Uses the circuit CG : {0, 1}log(m) → {0, 1}`·log(n) from Theorem 4.6 to compute
ΓG(i) ∈ {0, 1}`·log(n).

• Let Φx : {0, 1}log(n) → {0, 1} be a depth-two formula of size n such that for any
i ∈ [n] it holds that Φx(i) is the ith bit of x. The circuit gx uses ` copies of Φx to
map ΓG(i) ∈ {0, 1}`·log(n) to x�ΓG(i) ∈ {0, 1}`.

• Finally, the circuit maps x�ΓG(i) ∈ {0, 1}` to an output bit P(x�ΓG(i)), using the
AC0[⊕] circuit of depth dP for P.

The total depth of the circuit for gx is d = dG + dP + 2, and its size is at most

poly(n) + ` · n + 2(log(m))ε
= 2o((log(m))1/2d) ,
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where we relied on the hypothesis that k is sufficiently large (to deduce that nO(1) =

2o(log(n)k/2d)) and on the hypothesis that ε is sufficiently small.

4.3 Hard predicates and the class of subexponential sized AC0[⊕] circuits

Recall that the known attacks on Goldreich’s PRG relied either on low resilience or
on low rational degree of the predicate (we will define these notions in a moment;
see [AL18] for further details). Our goal in this section is to prove that the class of
AC0[⊕] circuits of small sub-exponential size (and even of polynomial size) contains
predicates with high rational degree and high resilience. Thus, the predicates that we
present avoid known attacks but are still susceptible to our attacks.

Definition 4.8 (resilience). We say that P has resilience k if P̂(γ) = 0 for every γ ∈ {0, 1}`
of Hamming weight at most k. In other words, P is uncorrelated with parities of size at most k.

Definition 4.9 (rational degree). For a predicate P : {0, 1}` → {0, 1}, we let the rational
degree of Q, denoted by rdegF2

(Q), be the minimum e ∈ N such that there exist predicates
Q, R : {0, 1}` → {0, 1}, not both identically zero, such that the degree of Q and of R as
F2-polynomials is at most e, and degF2

(Q), degF2
(R) ≤ e and

P(z)Q(z) = R(z) for every z ∈ {0, 1}`.

A candidate predicate that avoids the previously known attacks, suggested in [AL18],
is XOR-MAJa,b(z1, ..., za+b) = (z1 ⊕ . . .⊕ za)⊕MAJ(za+1, . . . , za+b), for suitable choices
of a and b. We consider the modification XOR-APPROX-MAJ in which the majority
function is replaced by an approximate majority. Towards defining the predicate, let
us first recall the standard definition of an approximate majority predicate, and the fact
that there exist AC0 circuits computing this predicate. For a string x ∈ {0, 1}∗, let |x|1
denote its Hamming weight. Then:

Definition 4.10 (approximate majority) We say that a function h : {0, 1}b → {0, 1} is an
ε-approximate majority if h(x) = 0 for every input x such that |x|1 ≤ (1/2− ε)b, and
h(x) = 1 for every input x such that |x|1 ≥ (1/2 + ε)b.

Theorem 4.11 (approximate majority in AC0 ([Ajt90; Vio09])) For every ε > 0, there exists
a uniform family {Db}b≥1 of polynomial size depth-3 circuits that compute an ε-approximate
majority over b input bits.

We define the XOR-APPROX-MAJ predicate using the particular approximate ma-
jority function that can be computed by AC0 circuits as in Theorem 4.11.

Definition 4.12 (the XOR-APPROX-MAJ predicate) Let a, b ≥ 1 and ε > 0. Let h : {0, 1}b →
{0, 1} be the ε-approximate majority function whose existence is asserted in Theorem 4.11, and
let XOR-ε-APPROX-MAJa,b : {0, 1}a+b → {0, 1} be the predicate given by (z1 ⊕ . . .⊕ za)⊕
h(za+1, . . . , za+b).
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The result presented next asserts that the XOR-APPROX-MAJ predicate behaves
similarly to XOR-MAJ with respect to resilience and rational degree. (In particular, it
also avoids the attacks on Goldreich’s PRG from [AL18].)

Proposition 4.13 (properties of the XOR-APPROX-MAJ predicate). Let a, b ≥ 1, ε > 0, and
let XOR-ε-APPROX-MAJa,b : {0, 1}a+b → {0, 1} be the predicate from Definition 4.12. Then
P has resilience ≥ a− 1 and rational degree > (1/2− ε)b.

Proof. For the resilience lower bound, let γ ∈ {0, 1}a+b, |γ|1 ≤ a− 1, and h : {0, 1}b →
{0, 1} be the corresponding ε-approximate majority function. Clearly, there exists i ∈
{1, . . . , a} such that γi = 0. Consequently,

Ez∈{0,1}a+b [(−1)P(z)+〈z,γ〉] = Ez[(−1)(⊕
a
j=1zj)⊕h(za+1,...,za+b)⊕〈z,γ〉]

(using independence) = Ez[(−1)zi ] ·Ez[(−1)(⊕j∈[a]\{i}zj)⊕h(za+1,...,za+b)⊕〈z,γ〉]

= 0,

where we have used the fact that γi = 0 to decompose the expectation into a product
of expectations.

Turning to the rational degree lower bound, first we argue the claim for the ε-
approximate majority function h : {0, 1}b → {0, 1}. Let d = b(1/2− ε)bc, and suppose
that rdegF2

(h) ≤ d. We will rely on the following lemma:

Lemma 4.14 (see, e.g., [Car10; AL18]). A predicate h : {0, 1}b → {0, 1} has rational degree
e ≥ 0 if and only if there exists a non-zero predicate h̃ : {0, 1}b → {0, 1} with degF2

(h̃) ≤ e
such that one of the following conditions hold:

(a) For every z ∈ {0, 1}b, if h(z) = 0 then h̃(z) = 0; or

(b) For every z ∈ {0, 1}b, if h(z) = 1 then h̃(z) = 0.

Assume that Case (a) from Lemma 4.14 holds (the proof of the other case is very
similar), and let h̃ be the non-zero predicate from the lemma. Let B(0b, d) ⊆ {0, 1}b

be the set of strings of Hamming distance at most d from 0b, and note that by the
definition of h it holds that B(0b, d) ⊆ h−1(0). It follows that h̃ vanishes on B(0b, d)
(i.e., for every z ∈ B(0b, d) it holds that h̃(z) = 0). However, this contradicts the
following lemma:

Lemma 4.15 (see [KS12]). Let h̃(x1, . . . , xb) ∈ F2[x1, . . . , xb] be a non-zero polynomial of
degree at most d, and let Sh̃ = {x ∈ {0, 1}b | h̃(x) 6= 0}. Then, for every y ∈ {0, 1}b it holds
that Sh̃ ∩ B(y, d) 6= ∅.

Finally, note that this rational degree lower bound also holds for the predicate P,
since it is easy to see using Lemma 4.14 that the rational degree of a function cannot
increase by taking a restriction.
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5 Conditional results in the setting of polynomial stretch

In Section 5.1 we present our results that are conditioned on the existence of expanders
with a neighbor function that can be computed by a layer of parity gates, and in
Section 5.2 we present our results that are conditioned on the existence of expanders
with a neighbor function that can be computed in NC0.

5.1 Expanders with affine neighbor functions

In this section we present results that are conditioned on the existence of expanders
in which the neighbor functions are affine functions (i.e., can be computed by a layer
of parity gates). In Section 5.1.1 we formally present the assumption that suitable
expanders exist. In Section 5.1.2 we prove the existence of natural properties that are
useful against DNF-XOR circuits and related functions. In Section 5.1.3 we show that
if the aforementioned expanders exist, then an improvement in the parameters of the
foregoing natural properties would allow to break the generator with these expanders
and any predicate, for the setting of a large polynomial stretch.

5.1.1 The affine expander assumption

Towards presenting the assumption regarding the existence of expanders with affine
neighbor functions, let us first formally define affine functions:

Definition 5.1 (multi-output affine functions). We say that a function f : {0, 1}r → {0, 1}r′

is a�ne if for each output bit yi of f (x) there exists a set Si ⊆ [r] and bi ∈ {0, 1} such that
yi = bi + ∑j∈Si

xj (mod 2).

To motivate our assumption, let us recall known explicit constructions of unbalanced
lossless expanders in which the neighbor function is affine. The first construction is
that of Guruswami, Umans, and Vadhan [GUV09]. When their construction is instan-
tiated over a field of characteristic two, with a specific a choice of parameters, it yields
an expander that is affine (see, e.g., [Che05, Cor. 2.23]). In particular, it yields an affine
expander with the following parameters:

Theorem 5.2 ([GUV09, Thm. 1.3]). Let n ∈ N, let m = n2, and let ` = poly log(n).
Then, there exists an (n, m, `)-expander such that for each i ∈ [`], the neighbor function
Γi : [m]→ [n] is affine.

A different construction of an expander with affine neighbor functions arises from
the work of Ta-Shma, Umans, and Zuckerman [TUZ07, Thm 1.7]. Instantiating their
construction with Trevisan’s extractor [Tre01], it yields an (n, m, `)-graph for an ar-
bitrarily large polynomial m = poly(n) and again with ` = poly log(n), that is a
(n1/(log n).01

, 0.99)-expander (rather than an (n0.99, 0.99)-expander). Interestingly, the
two constructions are of very different nature (i.e., the construction from [TUZ07] is
combinatorial whereas the construction from [GUV09] is algebraic).
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The degree of the expander in both constructions above is polylogarithmic, whereas
the degree of a random construction is constant ` = O(k) (see Theorem 3.4). Indeed,
it is an open problem to improve the degree in these constructions to match the one
of a random construction. The following assumption asserts that expanders as above
exist, but with small right-degree ` = O(k):

Assumption 5.3 (affine expander assumption). There exists a constant β > 3 such that
for every constant k ∈ N and sufficiently large n ∈ N there exists an (n, m, `)-expander,
where m = nk and ` = β · k, that satisfies the following: The function ΓG : {0, 1}log(m) →
{0, 1}`·log(n) that gets as input i ∈ [m] and outputs the ` neighbors of i in G is affine.

Under Assumption 5.3, there exists an expander G such that when Goldreich’s
PRG is instantiated with G and with any predicate P, the output of the generator on
any seed is the truth-table of a depth-four circuit with constant top fan-in and a bottom
layer of parity gates. In the following claim, we consider the complexity of the `-bit
predicate P as a CNF of size 2δ·`, where δ ∈ (0, 1] may be small but may also equal 1
(in which case there is no restriction on the complexity P).

Claim 5.4. Suppose that Assumption 5.3 holds. Then, for every k ∈ N and sufficiently large
n ∈ N there exists an (n, m, `)-expander G, where m = nk and ` = β · k, that satisfies the
following. For every δ ∈ (0, 1] and every predicate P : {0, 1}` → {0, 1} that can be computed
by a CNF of size 2δ·`, when Goldreich’s PRG is instantiated with G and P, the output of the
generator on any fixed x ∈ {0, 1}n is the truth-table of a function gx : {0, 1}log(m) → {0, 1}
such that:

1. The function gx can be computed by an AND-DNF-XOR circuit of top fan-in 2δ·β·k and
size at most O

(
2(1/k)·log(m)

)
containing at most 2 · β · log m parity gates.

2. The function gx can be (1/2 + 1/2δ·β·k)-approximated by a DNF-XOR circuit of size at
most O

(
2(1/k)·log(m)

)
containing at most 2 · β · log m parity gates.

Proof. For k ∈ N and sufficiently large n ∈ N, let G = ([n], [m = nk], E) be the
expander from Assumption 5.3, let P : {0, 1}` → {0, 1} be any predicate that can be
computed by a CNF of size 2δ·`, and let prg : {0, 1}n → {0, 1}m be Goldreich’s PRG,
instantiated with the graph G and with the predicate P.

For any fixed x ∈ {0, 1}n, we construct a circuit gx : {0, 1}log(m) → {0, 1} whose
truth-table is prg(x). Given input i ∈ [m], the circuit gx:

• Uses a single layer of at most 2 · ` · log n parity gates to compute the string
ΓG(i) ∈ {0, 1}`·log(n) and its negation.

• Let Φx : {0, 1}log(n) → {0, 1} be a DNF of size at most n such that for any i ∈ [n]
it holds that Φx(i) is the ith bit of x; we view this DNF as a De Morgan formula
over input literals z1, . . . , zlog(n),¬z1, . . . ,¬zlog(n). The circuit gx uses ` copies of
Φx to map ΓG(i) ∈ {0, 1}`·log(n) to x�ΓG(i) ∈ {0, 1}`, and similarly uses ` copies of
a DNF of size at most n for ¬Φx to compute the negations of x�ΓG(i) ∈ {0, 1}`.
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• Finally, the circuit gx computes the value of the predicate P on the input string
x�ΓG(i) by using a CNF of size 2δ·` for P over the corresponding ` = β · k input
variables.

After collapsing two layers (of the top CNF with the DNFs below it), we obtain an
exact AND-OR-AND-XOR circuit of size O(2(1/k)·log(m)) that computes gx : {0, 1}log(m) →
{0, 1}, where negation gates appear next to input variables only. Moreover, the num-
ber of parity gates is at most 2 · ` · log n = 2 · ` · log(m)/k = 2 · β · log(m), and the top
fan-in of the circuit is 2δ·` = 2δ·β·k.

The claimed DNF-XOR circuit that (1/2 + 1/2O(k))-approximates gx follows from
the Discriminator Lemma of [HMP+93] using that the top gate of gx computes a sym-
metric gate over at most 2` = 2β·k input wires.

5.1.2 Natural properties against DNF-XOR circuits

Our goal in this section is to show natural properties that are useful against DNF-XOR
circuits of exponential size, against conjunctions of a constant number of DNF-XOR cir-
cuits of exponential size, and against functions that can be approximated by exponential-
sized parity decision trees (which are related to DNF-XOR circuits, but weaker).

DNF-XOR circuits of exponential size. The first natural property that we show is
useful against DNF-XOR circuits over `m bits of exponential size 2(1/2−o(1))·`m :

Proposition 5.5 (natural property against exponential size DNF-XOR circuits). There exists
a natural property against the class of functions f : {0, 1}`m → {0, 1} that can be computed
by DNF-XOR circuits of size 2(1/2−o(1))·`m .

Proof. We rely on the following result from [Aka+14], which shows that a DNF-XOR
circuit of bounded size has a Fourier coefficient of relatively large magnitude.

Proposition 5.6 ([Aka+14]) Let g : {0, 1}`m → {0, 1} be computed by a DNF-XOR circuit
of top fan-in s. Then there exists S ⊆ [`m] such that |ĝ(S)| ≥ 1/(2s + 1).

In particular, if s = o
(

2`/2− 1
2 ·log(`m)

)
, then some Fourier coefficient of g is of magni-

tude ω
(√

`m · 2−`m/2). On the other hand, if h : {0, 1}`m → {0, 1} is a random Boolean
function, it follows from a standard concentration bound that for any fixed S ⊆ [`m],
with probability at least 1− 2 · exp(−10 · `m) it holds that |ĥ(S)| ≤ 10 ·

√
`m · 2−`m/2.

By taking a union bound over all such S ⊆ [`m], we get:

Proposition 5.7 (see, e.g. [OS08]) With probability 1− 2−`m over choice of a random Boolean
function h : {0, 1}`m → {0, 1}, for every S ⊆ [`m] it holds that |ĥ(S)| ≤ O(

√
`m · 2−`m/2).

The natural property claimed in the statement of the lemma can therefore be de-
fined as follows: Given the truth table of a Boolean function f , exactly compute each
Fourier coefficient of f , and accept the input function if and only if every coefficient
has magnitude bounded by O(

√
`m · 2−`m/2). This computation can be done in time

2O(`m), which is polynomial in the size of the truth table.
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Extending Proposition 5.5, we can get a property that is useful against larger cir-
cuits of size 2(1−o(1))·`m , at the cost of having a slightly super-polynomial running time.
This natural property is based on a result of Cohen and Shinkar [CS16]:

Proposition 5.8 (natural property against strongly exponential size DNF-XOR circuits).
There exists a natural property computed in time T(2`m) = 2O(`m·log(`m)) against the class
of functions f : {0, 1}`m → {0, 1} that can be computed by DNF-XOR circuits of strongly
exponential size 2(1−o(1))·`m .

Proof. An affine disperser for dimension k is a function h : {0, 1}`m → {0, 1} with
the following property: For every affine subspace U ⊆ {0, 1}`m of dimension k, the
restriction of h to U is non-constant. A standard argument shows that a random
function is, with probability more than 1/2, an affine disperser for dimension k =
log(`m) + log log(`m) + C, where C is a large enough constant.

On the other hand, Cohen and Shinkar [CS16] established the following result. For
a function g, let DNF-XOR(g) be the number of gates in the smallest DNF-XOR circuit
for g. Then, if g is an affine disperser for dimension k, max(DNF-XOR(g),DNF-XOR(1−
g)) = Ω(2`m−k). An immediate consequence is that for k? = log(`m) + log log(`m) +C,
by checking if an input truth-table or its negation is a k? affine disperser it is possible
to distinguish a random function from a function of DNF-XOR circuit complexity at
most 2`m/(`m)2.

Conjunctions of DNF-XOR circuits of exponential size. We now turn to show a
natural property that is useful against conjunctions of c = O(1) DNF-XOR circuits over
`m input bits of size 2(ε/2)·`m , for any ε < 1/c. Specifically:

Proposition 5.9 (a natural property against conjunctions of c DNF-XOR’s of size 2(1/2c−Ω(1))·`m ).
For any c ∈ N and ε < 1/c, there exists a natural property against the class of functions
f : {0, 1}`m → {0, 1} that can be computed by a conjunction of c DNF-XOR circuits of size
2(ε/2)·`m .

Proof. We prove Proposition 5.9 using Proposition 5.5. To do so, note that any con-
junction of c DNF-XOR circuits of size s can be computed by a single DNF-XOR circuit
of size sc (using the distributivity of the top AND gate with the OR gates below it). In
particular, if s = 2(ε/2)·`m , where ε < 1/c, then the conjunction can by computed by a
single DNF-XOR circuit of size sc = 2(ε·c/2)·`m . Since ε · c/2 < 1/2, the natural property
from Proposition 5.5 works against such a function.

The natural property from Proposition 5.9 can be extended to work against con-
junctions of c DNF-XOR circuits of size 2ε·`m (rather than 2(ε/2)·`m ), for any ε < 1/c, at
the cost of a slightly super-polynomial running time. Specifically:

Proposition 5.10 (an almost-natural property against conjunctions of c DNF-XOR’s of size
2(1/c−Ω(1))·`m ). For any c ≥ 2 and ε < 1/c, there exists a natural property that runs in time
T(2`m) = 2O(`m·log(`m)) for the class of functions {0, 1}`m → {0, 1} that can be computed by a
conjunction of c DNF-XOR circuits of size at most 2ε·`m .
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Proof. To present this property we first need the following structural lemma for con-
junctions of DNF-XOR circuits. (The proof of the lemma is reminiscent of the proof
of [CS16, Second Item of Thm. 1.1].)

Lemma 5.11 (a structural property of conjunctions of DNF-XOR circuits). Let gx : {0, 1}`m →
{0, 1} be computed by a conjunction of c ≥ 1 DNF-XOR circuits, where each DNF-XOR cir-
cuit is of size at most s(`m) = 2ε·`m . 16 Then, for every k ∈ N, at least one of the following
holds:

1. The function gx is constant on a subspace of dimension c · k.

2. The acceptance probability of gx is at most 2`m·(ε−1/c)+k.

Proof. Let gx(z) = ∧i∈[c]hi(z), where each hi is a DNF-XOR circuit of size at most
s(`m). For each i ∈ [c], we view hi as the union of at most s(`m) affine subspaces,
and denote by dim(hi) the maximal dimension of an affine subspace in hi; that is, if
hi(n) = ∪j∈[s(n)]Hj, where each Hj ⊆ {0, 1}n is an affine subspace, then dim(hi) =
maxj∈[s(n)] dim(Hj). We consider two separate cases:

Case 1: mini∈[c] {dim(hi)} > `m − `m/c + k. In this case it holds that gx is constant
on a subspace of dimension c · k. Specifically, for each i ∈ [c] let H(i) be an affine
subspace in hi such that dim(H(i)) > `m − `m/c + k, and let H =

⋂
i∈[c] H(i). Then, the

co-dimension of H is less than c · (`m/c− k) = `m − c · k, and for every z ∈ H it holds
that gx(z) = 1.

Case 2: mini∈[c] {dim(hi)} ≤ `m − `m/c + k. In this case it holds that gx has accep-
tance probability at most. To see this, let i ∈ [c] be such that dim(hi) ≤ `m − `m/c + k,
and note that the acceptance probability of gx is upper-bounded by the acceptance
probability of hi. However, since hi is the union of at most s(`m) subspaces of dimen-
sion `m − `m/c + k, the number of inputs accepted by hi is at most

s(`m) · 2`m−`m/c+k = 2`m·(1−1/c+ε)+k . �

Now, let k = log(`m). When given the truth-table of a function f : {0, 1}n → {0, 1},
the algorithm iterates over all affine subspaces in {0, 1}`m of dimension c · k, and rejects
if f is the constant one function on any such subspace. Also, the algorithm rejects if
the acceptance probability of f is less than 1/3.

To see that the algorithm rejects any conjunction of c DNF-XOR circuits of size at
most 2ε·`m , note that by Lemma 5.11, any such function is either constant on a sub-
space of dimension c · k, or has acceptance probability at most 2`m·(ε−1/c)+k = 2−Ω(`m);
in both cases, the algorithm rejects. To see that the algorithm accepts a random func-
tion, note a random function is very likely (with probability 1− exp(−`m)) to have

16Here we consider the size of a DNF-XOR circuit to be its top fan-in (the number of affine subspaces
such that the DNF-XOR circuit is a union of the subspaces).
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acceptance probability more than 1/3. Also, for any fixed subspace of dimension c · k,
the probability that a random function is the constant one function on the subspace
is 2−2c·k ≤ 2−`

2
m . Since there are at most 2(k+1)·`m = 2O(`m·log(`m)) affine subspaces of

dimension k, by a union-bound, with probability more than 1/2, a random function is
not constant on any subspace of such dimension k.

Finally, the algorithm is deterministic, and its runtime is polynomial in the number
of affine subspaces of dimension k = log(`m), and is thus at most 2O(`m·log(`m)).

Functions that are approximated by parity decision trees Finally, consider natural
properties that are useful against functions that can be approximated, in the average-
case sense, by simple functions such as DNF-XOR circuits. Specifically, we consider
approximation by parity decision trees (PDTs), a model that is known to be related to
but strictly weaker than DNF-XOR circuits. Recall that a parity decision tree is simply
a decision tree where the nodes can query the value of any parity function of the
input variables. We measure the size of such a decision tree by its number of nodes.
(See [CS16] for a comparison of PDTs and DNF-XOR circuits.) Then:

Proposition 5.12 (average-case natural property against PDTs). There exists a function
γ(`m) → 0 and a natural property computed in time T(2`m) = 2O(`m·log(`m)) against the
class of functions f : {0, 1}`m → {0, 1} that can be (1/2 + γ(`m))-approximated by a parity
decision tree of size 2(1−o(1))·`m .

Proof. A (k, ε)-affine extractor is a function h : {0, 1}`m → {0, 1} with the following
property: For every affine subspace U ⊆ {0, 1}`m of dimension k, the restriction of h to
U has bias at most ε. A standard argument shows that a random function is a (k, ε)-
affine extractor with probability at least 1/2, where k = log(`m/ε2) + log log(`m/ε2) +
C, and C is a large enough constant.

Let γ(`m) = (`m)−1/4, and let A`m be the class of `m-bit Boolean functions that
compute a (k, γ)-affine extractor, where k = 2 · log(`m). First, A`m is a dense property
for every large enough `m, by the result mentioned above. Secondly, arguing as in
the proof of Proposition5.8, A`m can be decided in time 2O(`m·log(`m)). Finally, we claim
that A`m does not accept functions that can be approximated by PDTs. We use the
following result from [CS16].

Theorem 5.13 ([CS16]) Let f : {0, 1}`m → {0, 1} be a (k, ε)-affine extractor. For any
function g : {0, 1}`m → {0, 1} of parity decision tree complexity ≤ ε · 2`m−k, we have
Prx[ f (x) = g(x)] < 1/2 + 4ε.

It follows from Theorem 5.13 and from our choice of the parameters k and γ that
any Boolean function that can be (1/2+ γ(`m)-approximated by a parity decision tree
g of size ≤ 2`m /`10

m cannot be in A`m . This completes the proof.
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5.1.3 Natural properties that would allow to break the generator with any predi-
cate, under Assumption 5.3

In this section we consider two “mild strengthenings” of natural properties that were
presented in Section 5.1.2. We then show that if Assumption 5.3 holds and any of the
two “mildly stronger” natural properties exist, then Goldreich’s PRG is insecure for
the setting of large polynomial stretch with any predicate P.

First setting: Worst-case natural property. Recall that in Proposition 5.10 we showed
an almost-natural property against conjunctions of c = O(1) DNF-XOR circuits, each
of which is of size at most 2ε·`m , where ε < 1/c. We first consider the setting in which
there exists a natural property against conjunctions of c = O(1) DNF-XOR circuits, each
of which is of size at most 2ε·`m , where ε > Ω(1/ log(c))). (Indeed, in the foregoing
sentence as well as in the following statements we denote the number of inputs to the
circuit by `m, where the notation alludes to the fact that we will use these circuits to
compute the function over `m = log(m) bits whose m-bit truth table is the output of
Goldreich’s PRG.)

Assumption 5.14 (mildly strengthening the natural property in Proposition 5.9) The
stronger natural property for AND-DNF-XOR assumption with parameter β > 3 is the fol-
lowing: For some k ∈ N there exists a natural property against the class of Boolean functions
over `m input bits that are computed by AND-DNF-XOR circuits of top fan-in 2β·k and size at
most O

(
2(1/k)·`m

)
containing at most 2 · β · `m parity gates.

Theorem 5.15 (breaking Goldreich’s PRG with certain expanders for any predicate, under
affine expanders and a stronger natural property for AND-DNF-XOR). Suppose that Assump-
tion 5.3 holds with some β > 3, and that Assumption 5.14 holds for the same parameter β.
Then, there exists a polynomial-time algorithm A that satisfies the following: For every n ∈N

there exists an (n, m, `)-expander G, where m = nk and ` = β · k, such that for every pred-
icate P : {0, 1}` → {0, 1}, the algorithm A distinguishes the outputs of Goldreich’s PRG
instantiated with G and P from random strings (with constant gap Ω(1)).

Proof. Let k be as in the hypothesis, let n be sufficiently large, let G be the expander
from Assumption 5.3 with right-degree ` = β · k, and let P : {0, 1}` → {0, 1} be an
arbitrary predicate.

We instantiate Goldreich’s PRG with the expander G and predicate P. By Claim
5.4, instantiated with the parameter value δ = 1 (since P can be trivially computed by
a CNF of size 2`), every output string gx of the generator can be computed by an AND-
DNF-XOR circuit of top fan-in 2β·k and size at most O

(
2(1/k)·log(m)

)
containing at most

2 · β · log m parity gates. Thus, the natural property from our hypothesis distinguishes
the output of the generator from a random string with probability at least 1/2.

Second setting: Average-case natural property. Recall that in Proposition 5.12 we
showed a natural property (based on [CS16]) that is useful against functions that can
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be approximated by parity decision trees. We now consider the existence of natural
properties with similar parameters, but that are useful against the class of functions
approximated by DNF-XOR circuits, rather than by PDTs.17

Assumption 5.16 (another strengthening of the natural property in Proposition 5.9)
The average-case natural property for DNF-XOR assumption with parameter β > 3 is the
following: For for some function γ(`m)→ 0 and a fixed ε > 0, there exists a natural property
computable in quasipolynomial time against the class of Boolean functions on `m input bits
that can be (1/2 + γ(`m))-approximated by DNF-XOR circuits of size 2ε·`m containing at
most 2 · β · `m parity gates at the bottom layer.

Theorem 5.17 (breaking Goldreich’s PRG for any predicate, under affine expanders and an
average-case natural property for DNF-XOR). Suppose that Assumption 5.3 holds with some
β > 3, and that Assumption 5.16 holds for the same parameter β. Then, for every k > 1/ε
there exists a quasipolynomial-time algorithm A that satisfies the following. For a sufficiently
large n ∈ N there exists an (n, m, `)-expander G, where m = nk and ` = β · k, such that for
every predicate P : {0, 1}` → {0, 1}, the algorithm A distinguishes the outputs of Goldreich’s
PRG instantiated with G and P from random strings (with constant gap Ω(1)).

Proof. Let k > 1/ε, let n be sufficiently large, let G be the expander from Assump-
tion 5.3 with right-degree ` = β · k, and let P : {0, 1}` → {0, 1} be an arbitrary predi-
cate.

We instantiate Goldreich’s PRG with the expander G and predicate P. By Claim
5.4, every output string gx of the generator can be (1/2 + Ωk(1))-approximated by a
DNF-XOR circuit over `m = log(m) input variables and of size O(2(1/k)·`m) ≤ 2ε·`m . In
addition, the number of parity gates in gx is at most 2 · β · `m, and we can assume that
γ(`m) is sufficiently small (since n is sufficiently large). Thus, the natural property
from our hypothesis distinguishes the output of the generator from a random string
with probability at least 1/2.

5.2 Expanders with local neighbor functions

In this section we present results that are conditioned on the existence of expanders
whose the neighbor functions are computable in NC0. In Section 5.2.1 we formally
present the assumption that such expanders exist, and in Section 5.2.2 we show that,
conditioned on this assumption, a mild improvement in the parameters of known nat-
ural properties allows to break the generator with these expanders and any predicate
for the setting of a large polynomial stretch.

5.2.1 The local expander assumption

To motivate our assumption, we recall the recent construction of expanders with local
neighbor functions, by Viola and Wigderson [VW17] (building on the work of Capalbo

17To our knowledge, the same natural property behind Proposition 5.12 might also be useful against
functions that are approximated by DNF-XOR circuits; we refer to [CS16] for related open problems.
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et al. [Cap+02], which used the Zig-Zag product).

Definition 5.18 (multi-output local functions). We say that a function f : {0, 1}r → {0, 1}r′

is t-local if each output bit of f depends on at most t input bits.

Theorem 5.19 ([VW17, Thm. 4]) There exist `, t ≥ 1 such that for every n ≥ 1 there
exists an (n, n, `)-expander satisfying the following: For each i ∈ [`], the neighbor function
Γi : [n]→ [n] is t-local.

The construction in Theorem 5.19 works for balanced expanders (i.e., expanders
over [n]× [n]), whereas we are interested in unbalanced expanders with m = poly(n)
vertices on the right side. The following assumption asserts that there exists a con-
struction of unbalanced expanders with local neighbor functions as in Theorem 5.19:

Assumption 5.20 (local expander assumption). There is a function t : N → N and a
constant β > 3 such that for every k ∈N the following holds. For every n ∈N there exists an
(n, m, `)-expander, where m = nk and ` = β · k, such that the function ΓG : {0, 1}log(m) →
{0, 1}`·log(n) that gets as input i ∈ [m] and outputs the ` neighbors of i in G is t(k)-local.

Note that the locality t(k) in Assumption 5.20 is constant, depending only on the
polynomial power k ∈N. As pointed out by an anonymous reviewer, such expanders
can be constructed only when t is at least linear in k (i.e., t = Ω(k)).18 However,
the assumption yields interesting consequences also for larger functions t(k); specif-
ically, the improvement to known natural properties that we need in order to break
Goldreich’s PRG will depend on t (see Theorem 5.24).

5.2.2 Natural properties that would suffice to break the generator with any predi-
cate, under Assumption 5.20

Under Assumption 5.20, for any k ∈N there exists an expander G over [n]× [nk] such
that when Goldreich’s PRG is instantiated with G and with any predicate P, the output
of the generator on any seed is the truth-table of a depth-four circuit with constant top
fan-in 2Θ(k) and constant bottom fan-in t(k). As in Claim 5.4, in the following claim we
consider the complexity of P : {0, 1}` → {0, 1} as a CNF of size 2δ·`, where δ ∈ (0, 1]
(and δ = 1 represents the case of an arbitrary predicate).

Claim 5.21. Supposed that Assumption 5.20 holds with parameters t : N → N and β > 3.
Then, for every k ∈N, and every n ∈N there exists an (n, m, `)-expander, where m = nk and
` = β · k, that satisfies the following: For every δ ∈ (0, 1] and every predicate P : {0, 1}` →
{0, 1} that can be computed by a depth-two circuit of size 2δ·` the following holds, when
Goldreich’s PRG is instantiated with expander G and predicate P, the output of the generator

18To see this, consider the bipartite graph [log(m)]× [` · log(n)] underlying the local mapping ΓG. The
average degree of left vertices in this graph is ∆ =

t·`·log(n)
k·log(n) = t · β, and hence there exists a left vertex

i ∈ [log(m)] of degree at most ∆. Take an input x ∈ {0, 1}log(m) and let x′ be the input obtained by
flipping the ith bit in x. Then, the strings ΓG(x) and ΓG(x′) disagree on at most ∆ locations, which means
that the set {x, x′} expands in G to at most `+ ∆ = (1 + t · β/`) · ` different vertices.
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on any fixed x is the truth-table of an AC0 circuit gx : {0, 1}log(m) → {0, 1} of depth four,
with top fan-in 2δ·` = 2β·δ·k, bottom fan-in t = t(k), and size O

(
2(1/k)·log(m)

)
.

Proof. For k ∈ N and n ∈ N, let G be the (n, m, `)-expander from Assumption 5.20,
let P : {0, 1}` → {0, 1} be any predicate that can be computed by a DNF of size 2δ·`,
and let prg : {0, 1}n → {0, 1}m be Goldreich’s PRG, instantiated with the graph G and
with the predicate P. (We assumed that P can be computed by a DNF of size 2δ·` only
for simplicity; the proof of the case where P can be computed by a CNF of such size
is very similar.)

For any fixed x ∈ {0, 1}n, we construct a circuit gx : {0, 1}log(m) → {0, 1} whose
truth-table is prg(x). Given input i ∈ [m], the circuit gx:

• Uses ` · log(n) DNFs over t bits (each of size≤ 2t) to compute ΓG(i) ∈ {0, 1}`·log(n).
Additionally, gx uses the same number of DNFs to compute the negation of each
output bit.

• Let Φx : {0, 1}log(n) → {0, 1} be a CNF of size at most n such that for any i ∈ [n]
it holds that Φx(i) is the ith bit of x; we view this CNF as a De Morgan formula
over input literals z1, . . . , zlog(n),¬z1, . . . ,¬zlog(n). The circuit gx uses ` copies of
Φx to map ΓG(i) ∈ {0, 1}`·log(n) to x�ΓG(i) ∈ {0, 1}`, and similarly uses ` copies of
a CNF of size at most n for ¬Φx to compute the negations of x�ΓG(i) ∈ {0, 1}`.

• Finally, the circuit gx maps x�ΓG(i) ∈ {0, 1}` to an output bit P(x�ΓG(i)), using a
DNF of size 2δ·`. This DNF is viewed as a de Morgan formula over input literals
y1, . . . , y`,¬y1, . . . ,¬y`.

The total depth of the circuit for gx is four (after collapsing two layers), its bottom
fan-in is t, and its top fan-in (which is the size of the DNF that computes P) is c ≤
2δ·` = 2δ·β·k. Finally, the size of the circuit for gx is less than

2 · ` · log(n) · 2t + 2 · ` · n + 2` = O(2(1/k)·log(m)),

for a constant k and as a function of n.

Claim 5.21 implies that to break Goldreich’s PRG (with the expander given by
Assumption 5.20 and with an `-bit predicate computable by a depth-two circuit of size
2δ·`) it suffices to have a natural property against depth-four circuits over `m input bits
whose top fan-in is c = 2β·δ·k, bottom fan-in is t(log(c)/β) and size is O

(
2(β/ log(c))·`m

)
.

Known results yield a natural property for depth four circuits over `m bits with
constant top fan-in c and constant bottom fan-in t whose size is at most 2ε·`m , where
ε = ε(c, t) ≈ 1/t

log(c) (rather than β
log(c) ). Specifically:

Proposition 5.22 (natural property for depth-four circuits with constant top fan-in and
constant bottom fan-in) There exists a polynomial-time algorithm that is given as input the
truth-table of a Boolean function h : {0, 1}`m → {0, 1} and satisfies the following:
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1. If h can be computed by a depth four circuits of top fan-in c, bottom fan-in t, and size at
most 2ε(t,c)·`m , where ε(t, c) = 1

3·52·224·t·log(c) , then the algorithm rejects.

2. The algorithm accepts a constant fraction of all functions.

The proof of Proposition 5.22 relies on Håstad’s switching lemma [Hås87] as well
as on the sensitivity bound of Amano [Ama11]; we defer the details to Appendix B.

The implication of the foregoing discussion is that a natural property that is mildly
stronger than the known one in Proposition 5.22 would break Goldreich’s PRG with
the expander from Assumption 5.20 and any possible predicate. That is:

Assumption 5.23 (mildly strengthening the natural property in Proposition 5.22) The
stronger natural property for depth-four circuits assumption with parameters t : N→N and

β > 3 is the following: For a sufficiently large constant c > 2β, there exists a natural property
against the class of Boolean functions on `m input bits that are computed by depth four circuits
of top fan-in c, bottom fan-in t(log(c)/β), and size O

(
2(β/ log(c))·`m

)
, where the O-notation

hides an arbitrarily large constant.

Theorem 5.24 (breaking Goldreich’s PRG for any predicate, under local expanders and a
stronger natural property for depth-four circuits). Suppose that Assumption 5.20 holds with
parameters t : N → N and β > 3, and that Assumption 5.23 holds for the same t and β.
Then, for a sufficiently large constant k ∈ N, there exists a polynomial-time algorithm A that
satisfies the following. For every n ∈ N there exists an (n, m, `)-expander G, where m = nk

and ` = β · k, such that for every predicate P : {0, 1}` → {0, 1}, the algorithm A distinguishes
the outputs of Goldreich’s PRG instantiated with G and P from random strings (with constant
gap Ω(1)).

Proof. Let k ∈ N be sufficiently large such that c = 2β·k is sufficiently large to satisfy
the hypothesis regarding the natural property, let n ∈N be sufficiently large, let G be
the expander from Assumption 5.20 with right-degree ` = β · k, and let P : {0, 1}` →
{0, 1} be an arbitrary predicate.

We instantiate Goldreich’s PRG with the expander G and predicate P. By Claim
5.21, every output string gx of the generator can be computed by a depth four circuit
over `m = log(m) input variables with top fan-in c = 2β·k, bottom fan-in t(k) =

t(log(c)/β), and size O
(

2(1/k)·`m)
)

= O
(

2(β/ log(c))·`m

)
. Thus, the natural property

from our hypothesis distinguishes the output of the generator from a random string
with probability at least 1/2.

We remind the reader that the parameter t(·) in Assumption 5.3 and in Theo-
rem 5.17 quantifies the locality of the NC0 circuits in the local expander. (As explained
after Assumption 5.3, an interesting small value to consider is t(k) = Θ(k).)
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Appendix A Proof of Theorem 3.4: Unbalanced Expanders

Let us recall the statement of Theorem 3.4 and detail the proof.

Theorem A.1 (a random graph is a good lossless expander). Let n ≤ m ∈ N and d ∈ N

such that c · log(m)
log(n) ≤ ` ≤ n1/c, where c is a sufficiently large constant. Let G = ([n], [m], E)

be a random bipartite graph of right-degree `; that is, the ` neighbors of each i ∈ [m] are chosen
uniformly in [n] (allowing repetitions). Then, with probability at least 1− 1/poly(n) it holds
that G is an (n0.99, 0.99)-expander.19

Proof. We say that a set S ⊆ [m] expands if |Γ(S)| ≥ 0.99 · ` · |S|. For any fixed k ≤ n0.99,
we show that with probability 1− 1/poly(n) it holds that all sets of size k expand (and
the theorem follows by union-bounding over all values of k).

To do so, fix k ≤ n0.99, and fix a set S ⊆ [m] of size |S| = k. For any fixed set T ⊆ [n]

of size less than 0.99 · ` · k, the probability that Γ(S) ⊆ T is
(
|T|
n

)`·k
. Union-bounding

19The polynomial power depends on c and can be arbitrarily large.
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over all T ⊆ [n] of such size, the probability that S does not expand is at most(
n

0.99 · ` · k

)
·
(
|T|
n

)`·k
<
( e · n

0.99 · ` · k

)0.99·`·k
·
(
|T|
n

)`·k
<

(
O(|T|)

n

)0.01·`·k
.

Union-bounding over all sets S ⊆ [m] of size |S| = k, the probability that there
exists a non-expanding set of size k is at most(

m
k

)
·
(

O(|T|)
n

)0.01·`·k
<
( e ·m

k

)k
·
(

O(`) · k
n

)0.01·`·k

= 2O(`·log(`)·k) ·
(m

k

)k
·
(

k
n

)0.01·`·k

< 2O(`·log(`)·k) · nk`/c−0.01·`·k · k0.01·`·k , (A.1)

where the last inequality relied on the fact that m < n`/c (since ` ≥ c · (log(m)/ log(n))).
The expression in Eq. (A.1) is exponential in

O(k · `) ·
(

log(`) + (1/c− 0.01) · log(n) + 0.01 · log(k)
)

≤ O(k · `) ·
(

2/c− 10−4
)
· log(n) ,

where the last inequality relied on the fact that k ≤ n.99 and on the fact that c ≤
` ≤ n1/c. Assuming that c is sufficiently large such that 2/c − 0.012 < −10−5, the
probability that there exists a set of size k that does not expand is at most n−10−5·c. As
mentioned above, the theorem follows by union-bounding over k = 1, ..., n0.99.

We note that the right-degree bound provided by Theorem A.1 does not contra-
dict the impossibility results discussed for instance in [GUV09]. This is because the
expanding sets in Theorem A.1 are of size at most n1−Ω(1) instead of Ω(n).

Appendix B A natural property for depth-four circuits

Our goal in this appendix is to construct the following natural property:

Proposition B.1 (natural property for depth-four circuits with constant top fan-in and
constant bottom fan-in) There exists a polynomial-time algorithm that is given as input the
truth-table of a Boolean function h : {0, 1}`m → {0, 1} and satisfies the following:

1. If h can be computed by a depth four circuits of top fan-in c, bottom fan-in t, and size at
most 2ε(t,c)·`m , where ε(t, c) = 1

3·52·224·t·log(c) , then the algorithm rejects.

2. The algorithm accepts a constant fraction of all functions.
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In high-level, to prove Proposition B.1 we first show that any depth-four circuit as
in the first item simplifies to a depth-two circuit of small width (say, width 10) under
a random restriction that keeps significantly more variables alive in expectation (say,
1000); the proof of this result is a standard application of Håstad’s switching lemma.
Consequently, using the bound of Amano [Ama11], we deduce that under a random
restriction such a circuit has average sensitivity that is much smaller than the expected
average sensitivity of a random function. Our natural property simply enumerates
over all restrictions and computes the average sensitivity of the restricted function.

Let us now formally prove the result. For the first part, recall Håstad’s switching
lemma. For p ∈ [0, 1] and `m ∈ N, we denote by Rp the distribution over restric-
tions in {0, 1, ?}`m that is obtained by independently setting each coordinate to ? with
probability p, and to a uniformly chosen bit otherwise. Recall that for a function
f : {0, 1}`m → {0, 1} and a restriction ρ ∈ {0, 1, ?}`m we define f �ρ as the function that

takes input z ∈ ρ−1(?) and outputs f (x) where xi =

{
zi i ∈ ρ−1(?)

ρi o.w.
. Then,

Theorem B.2 (Håstad’s switching lemma [Hås87]). Let g : {0, 1}`m → {0, 1} be a function
computed by a depth-2 circuit of bottom fan-in w, and let ρ ∼ Rp. Then, for any s ≥ 1, the
probability that g�ρ cannot be computed by a decision tree of depth s is at most (5pw)s.

Lemma B.3. Let f : {0, 1}`m → {0, 1} be computed by a circuit of depth four and size at
most S = 2ε·`m that has top fan-in 2 ≤ c ≤ O(1) and bottom fan-in t = O(1) such that
ε ≤ 1

3·52·224·t·log(c) . Then, for p = 1/ε
52·222·t ·

1
`m

, with probability at least 1− 4/c over choice of
restriction ρ ∼ Rp it holds that:

1. The restricted function f �ρ can be computed by a depth-two circuit with bottom fan-in
log(c)/10.

2. The restriction ρ keeps at least log(c) variables alive.

Proof. We prove the first item using Theorem B.2. Specifically, we first apply a restric-
tion with p = 1/20t. For each gate of distance two from the inputs we use Theorem B.2
with values s = log(S) and w = t, and deduce that with probability 1− 1/S2 the gate
can be computed by a decision tree of depth log(S). After union-bounding over at
most S such gates, we deduce that with probability 1− 1/S = 1− o(1) each of these
gates can be computed by a decision tree of depth s. We transform each decision tree
whose parent gate is an AND gate (resp., OR gate) to a CNF (resp., DNF) of size S = 2s

and bottom fan-in s, and then combine these gates with the gates in the middle layer
above them. Note that the number of gates in the middle layer is still c, and that in
the bottom layer we now have S2 gates (each of the S gates that were in the original
bottom layer contributed at most S terms/clauses), each of fan-in log(S).

Next, we apply another restriction with p = 1/(5 · 220 · log(S)). Again, for each
gate of distance two from the inputs we use Theorem B.2 with values w = log(S) and
s = log(c)/10, and deduce that with probability 1− 1/c2 the gate can be computed by
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a decision tree of depth log(c)/10. After union-bounding over the c (or less) gates in
the middle layer, with probability at least 1− 1/c, after the restriction the circuit is of
depth two with at most c1+1/10 gates in the bottom layer, each of fan-in log(c)/10.

To prove the second item, note that by the hypothesis that ε is sufficiently small,
the expected number of living variables under ρ ∼ Rp is at least 2 log(c). (Recall
that the expected fraction of living variables after applying two independent restric-
tions from Rp1 and from Rp2 is p1 · p2.) By a Chernoff bound (see, e.g., [Gol08,
Apdx. D.1.2.3]), the probability that less than log(c) variables remain alive is at most
2 exp

(
−(1/3p) · (p2/4) · `m

)
= 2/c.

For the second part of the proof we formally define the average sensitivity of a
function, and deduce (as a corollary of Lemma B.3 and of [Ama11]) that the restricted
circuit has relatively small average sensitivity. As pointed out by an anonymous re-
viewer, this result can be viewed as a refinement of Boppana’s [Bop97] bound on the
average sensitivity of AC0.

Definition B.4 (average sensitivity). We say that two strings x, y ∈ {0, 1}r are neighbors if
x and y disagree on a single bit. The average sensitivity of a function f : {0, 1}r → {0, 1}
is defined as the average, over x ∈ {0, 1}r, of the number of neighbors y of x such that
f (x) 6= f (y).

Corollary B.5. Let f : {0, 1}`m → {0, 1} be computed by a circuit of depth four and size at
most S = 2ε·`m that has top fan-in c = O(1) and bottom fan-in t = O(1), where ε(t, c) =

1
3·52·224·t·log(c) and c is sufficiently large. Then, for p = 1/ε

52·222·t ·
1
`m

it holds that:

1. The expected value over ρ ∼ Rp of the average sensitivity of f �ρ is less than 1
10 · log(c).

2. With probability Ω(1) over choice of random function g, the expected value over ρ ∼ Rp

of the average sensitivity of g�ρ is at least 1
5 · log(c).

Proof. To prove the first item we use Lemma B.3 as well as the fact (which was proved
by Amano [Ama11]) that depth-two circuits with bottom fan-in log(c)/10 have average
sensitivity at most log(c)/10. Thus, the expected average sensitivity of f �ρ is at most
(4/c + 1/10) · log(c) < 3

20 · log(c), assuming c is sufficiently large.
For the second item, let us denote by sens(g�ρ) the average sensitivity of g�ρ. Then,

we have that:

Fact B.5.1. It holds that Eg,ρ∼Rp [sens(g�ρ)] ≥ (1− 4/c)2 · log(c)/4.

Proof. Condition on any restriction ρ that keeps at least log(c) variables alive. Note
that it suffices to show that the expected average sensitivity of g is at least log(c)/2
and that with probability at least 1− 4/c, the actual average sensitivity of g is at least
log(c)/4. (The statement then follows since the choices of ρ and of g are independent.)
To show this, suppose g is a random function over n′ = log c input variables, and
let E = n′2n′/2 be the number of edges in the n′-dimensional hypercube. Let Xe for
e ∈ [E] be the 0/1-random variable that is 1 if and only g flips its value along edge
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e. Then, for X = ∑ Xe, we get E[X] = E/2. Note that the average sensitivity of
the random function g is precisely 2X/2n′ . Therefore, it is enough for us to upper
bound Pr[|X − E/2| ≥ E/4], since if this event does not happen then the average
sensitivity of g is at least (1/2n′−1)(E/2− E/4) ≥ n′/4 = log(c)/4. For that, it suffices
to use Chebyshev’s inequality together with the pairwise independence of {Xe}e∈[E]:
µX = E/2, σ2

X = E/4, and consequently the aforementioned probability is at most
4/E = 8/(log(c) · c) ≤ 4/c, where we have used c ≥ 4. �

Relying on Fact B.5.1, the probability over g that Eρ[sens(g�ρ)] < log(c)/5 is at

most 1−(1−4/c)2/4
4/5 , which is a constant smaller than one for a sufficiently large c.

Finally, to prove Proposition B.1, consider the algorithm that, when given a truth-
table h ∈ {0, 1}2`m , enumerates over all restrictions ρ ∈ {0, 1, ?}`m , computes the aver-
age sensitivity of h�ρ, and accepts if and only if Eρ[sens(h�ρ)] > log(c)/10 (note that
the algorithm weighs the restrictions according to their probabilities in Rp, which can
be done in time poly(2`m)). Indeed, this algorithm rejects every h in the relevant circuit
class, but accepts an Ω(1)-fraction of all functions.
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