Consistency of circuit lower bounds with bounded theories

Igor Carboni Oliveira

Department of Computer Science, University of Warwick.

Talk based on joint work with Jan Bydžovský (Vienna) and Jan Krajíček (Prague).

[BIRS Workshop "Proof Complexity" – January/2020]

This work was supported in part by a Royal Society University Research Fellowship.

Status of circuit lower bounds

▶ Interested in **unrestricted** (non-uniform) Boolean circuits.

▶ Proving a lower bound such as NP \nsubseteq SIZE[n^2] seems out of reach.

Frontiers

 $ZPP^{NP} \nsubseteq SIZE[n^k]$ [Kobler-Watanabe'90s]

 $\mathsf{MA}/1 \not\subseteq \mathsf{SIZE}[n^k]$ [Santhanam'00s]

Frontiers

 $ZPP^{NP} \nsubseteq SIZE[n^k]$ [Kobler-Watanabe'90s]

 $MA/1 \nsubseteq SIZE[n^k]$ [Santhanam'00s]

► Frontier 1: Lower bounds for deterministic class P^{NP}?

Frontiers

 $ZPP^{NP} \nsubseteq SIZE[n^k]$ [Kobler-Watanabe'90s]

 $MA/1 \nsubseteq SIZE[n^k]$ [Santhanam'00s]

► Frontier 1: Lower bounds for deterministic class P^{NP}?

While we have lower bounds for larger classes, there is an important issue:

► Frontier 2: Known results only hold on infinitely many input lengths.

a.e. versus i.o. results in algorithms and complexity

▶ **Mystery:** Existence of mathematical objects of certain sizes making computations easier only around corresponding input lengths.

a.e. versus i.o. results in algorithms and complexity

▶ **Mystery:** Existence of mathematical objects of certain sizes making computations easier only around corresponding input lengths.

Issue **not** restricted to complexity lower bounds:

Sub-exponential time generation of canonical prime numbers [Oliveira-Santhamam'17].

The logical approach

We discussed two frontiers in complexity theory:

- 1. Understand relation between P^{NP} and say $SIZE[n^2]$.
- 2. Establish almost-everywhere circuit lower bounds.

➤ This work investigates these challenges from the **perspective of mathematical logic**.

Investigating complexity through logic

▶ Theories in the standard framework of first-order logic.

▶ Investigation of complexity results that can be established under certain axioms.

Example: Does theory T prove that SAT can be solved in polynomial time?

Complexity Theory that considers efficiency and difficulty of proving correctness.

Bounded Arithmetics

- Fragments of Peano Arithmetic (PA).
- \blacktriangleright Intended model is $\mathbb{N},$ but numbers can encode binary strings and other objects.

Bounded Arithmetics

- Fragments of Peano Arithmetic (PA).
- ightharpoonup Intended model is \mathbb{N} , but numbers can encode binary strings and other objects.

Example: Theory $I\Delta_0$ [Parikh'71].

$$I\Delta_0$$
 employs the language $\mathcal{L}_{PA} = \{0, 1, +, \cdot, <\}.$

14 axioms governing these symbols, such as:

- 1. $\forall x \ x + 0 = x$
- $2. \ \forall x \forall y \ x + y = y + x$
- $3. \ \forall x \ x = 0 \ \lor \ 0 < x$

. . .

Bounded formulas and bounded induction

Induction Axioms. $I\Delta_0$ also contains the induction principle

$$\psi(0) \land \forall x (\psi(x) \to \psi(x+1)) \to \forall x \psi(x)$$

for each **bounded formula** $\psi(x)$ (additional free variables are allowed in ψ).

Bounded formulas and bounded induction

Induction Axioms. $I\Delta_0$ also contains the induction principle

$$\psi(0) \land \forall x (\psi(x) \to \psi(x+1)) \to \forall x \psi(x)$$

for each **bounded formula** $\psi(x)$ (additional free variables are allowed in ψ).

A **bounded formula** only contains quantifiers of the form $\forall x \leq t$ and $\exists x \leq t$, where t is a term not containing x.

8

Bounded formulas and bounded induction

Induction Axioms. $I\Delta_0$ also contains the induction principle

$$\psi(0) \land \forall x (\psi(x) \to \psi(x+1)) \to \forall x \psi(x)$$

for each **bounded formula** $\psi(x)$ (additional free variables are allowed in ψ).

A **bounded formula** only contains quantifiers of the form $\forall x \leq t$ and $\exists x \leq t$, where t is a term not containing x.

► Roughly, this shifts the perspective from computability to complexity theory.

▶ [Cook'75] and [Buss'86] introduced theories more closely related to levels of PH:

Ex.: T_2^1 uses induction scheme for bounded formulas corresponding to NP-predicates.

▶ [Cook'75] and [Buss'86] introduced theories more closely related to levels of PH:

Ex.: T_2^1 uses induction scheme for bounded formulas corresponding to NP-predicates.

▶ We will use language \mathcal{L}_{PV} with function symbols for all p-time algorithms.

▶ [Cook'75] and [Buss'86] introduced theories more closely related to levels of PH:

Ex.: T_2^1 uses induction scheme for bounded formulas corresponding to NP-predicates.

▶ We will use language \mathcal{L}_{PV} with function symbols for all p-time algorithms.

This does not mean that the corresponding theories prove **correctness** of algorithms: $T_2^1 \vdash \forall x \; f_{AKS}(x) = 1 \leftrightarrow$ "x is prime"?

▶ [Cook'75] and [Buss'86] introduced theories more closely related to levels of PH:

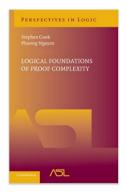
Ex.: T_2^1 uses induction scheme for bounded formulas corresponding to NP-predicates.

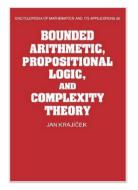
▶ We will use language \mathcal{L}_{PV} with function symbols for all p-time algorithms.

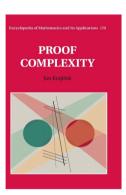
This does not mean that the corresponding theories prove **correctness** of algorithms: $T_2^1 \vdash \forall x \; f_{AKS}(x) = 1 \leftrightarrow$ "x is prime"?

$$\mathsf{PV} \approx \mathsf{T}_2^0 \quad \subseteq \quad S_2^1 \quad \subseteq \quad T_2^1 \quad \subseteq \quad S_2^2 \quad \subseteq \quad T_2^2 \quad \subseteq \quad \ldots \subseteq \quad \bigcup_i T_2^i \approx I\Delta_0 + \Omega_1$$

Resources







Formalizations in Bounded Arithmetic

Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich'15].

Parity $\notin AC^0$, k-Clique $\notin mSIZE[n^{\sqrt{k}/1000}]$ in APC¹ $\subseteq T_2^2$ [Muller-Pich'19].

Formalizations in Bounded Arithmetic

▶ Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich'15].

Parity $\notin AC^0$, k-Clique $\notin mSIZE[n^{\sqrt{k}/1000}]$ in $APC^1 \subseteq T_2^2$ [Muller-Pich'19].

Arguments often require ingenious modifications of original proofs: not clear how to manipulate probability spaces, real-valued functions, etc.

Formalizations in Bounded Arithmetic

Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich'15].

Parity $\notin AC^0$, k-Clique $\notin mSIZE[n^{\sqrt{k}/1000}]$ in APC¹ $\subseteq T_2^2$ [Muller-Pich'19].

Arguments often require ingenious modifications of original proofs: not clear how to manipulate probability spaces, real-valued functions, etc.

Rest of the talk: Independence of complexity results from bounded arithmetic.

Unprovability and circuit complexity

▶ Using \mathcal{L}_{PV} , we can refer to circuit complexity:

$$\exists y \; (\mathsf{Ckt}(y) \land \mathsf{Vars}(y) = n \land \mathsf{Size}(y) \leq 5n \land \forall x \; (|x| = n \to (\mathsf{Eval}(y, x) = 1 \leftrightarrow \mathsf{Parity}(x) = 1)))$$

n is the "feasibility" parameter (formally, the length of another variable N).

Unprovability and circuit complexity

▶ Using \mathcal{L}_{PV} , we can refer to circuit complexity:

$$\exists y \; (\mathsf{Ckt}(y) \land \mathsf{Vars}(y) = n \land \mathsf{Size}(y) \leq 5n \land \forall x \; (|x| = n \to (\mathsf{Eval}(y, x) = 1 \leftrightarrow \mathsf{Parity}(x) = 1)))$$

n is the "feasibility" parameter (formally, the length of another variable N).

lacksquare Sentences can express circuit size bounds of the form n^k for a given \mathcal{L}_{PV} -formula $\varphi(x)$.

Unprovability and circuit complexity

▶ Using \mathcal{L}_{PV} , we can refer to circuit complexity:

$$\exists y \; (\mathsf{Ckt}(y) \land \mathsf{Vars}(y) = n \land \mathsf{Size}(y) \leq 5n \land \forall x \; (|x| = n \to (\mathsf{Eval}(y, x) = 1 \leftrightarrow \mathsf{Parity}(x) = 1)))$$

n is the "feasibility" parameter (formally, the length of another variable N).

▶ Sentences can express circuit size bounds of the form n^k for a given \mathcal{L}_{PV} -formula $\varphi(x)$.

Two directions: unprovability of LOWER bounds and unprovability of UPPER bounds.

▶ Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.

▶ Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.

Example: Is it the case that $T_2^2 \nvdash k$ -Clique $\notin SIZE[n^{\sqrt{k}/100}]$?

▶ Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.

Example: Is it the case that $T_2^2 \nvdash k$ -Clique $\notin SIZE[n^{\sqrt{k}/100}]$?

▶ Extremely interesting, but not much is known in terms of **unconditional** unprovability results for strong theories such as PV.

▶ We currently cannot rule out that SAT \in SIZE[10n]. Can we at least show that easiness of SAT doesn't follow from certain axioms?

At least as interesting as previous direction:

▶ We currently cannot rule out that SAT \in SIZE[10n]. Can we at least show that easiness of SAT doesn't follow from certain axioms?

At least as interesting as previous direction:

1. **Necessary** before proving in the standard sense that SAT \notin SIZE[10n]. Rules out algorithmic approaches in a principled way.

▶ We currently cannot rule out that SAT \in SIZE[10n]. Can we at least show that easiness of SAT doesn't follow from certain axioms?

At least as interesting as previous direction:

- 1. **Necessary** before proving in the standard sense that SAT \notin SIZE[10n]. Rules out algorithmic approaches in a principled way.
- 2. Formal evidence that SAT is computationally hard:
 - By Godel's completeness theorem, there is a model M of T where SAT is hard.
 - -M satisfies many known results in algorithms and complexity theory.

▶ We currently cannot rule out that SAT \in SIZE[10n]. Can we at least show that easiness of SAT doesn't follow from certain axioms?

At least as interesting as previous direction:

- 1. **Necessary** before proving in the standard sense that SAT \notin SIZE[10n]. Rules out algorithmic approaches in a principled way.
- 2. Formal evidence that SAT is computationally hard:
 - By Godel's completeness theorem, there is a model M of T where SAT is hard.
 - -M satisfies many known results in algorithms and complexity theory.
- 3. **Consistency of lower bounds:** Adding to *T* axiom stating that SAT is hard will never lead to a contradiction. We can develop a theory where circuit lower bounds exist.

Some works on unprovability of circuit upper bounds

► Cook-Krajicek, 2007: "Consequences of the provability of NP ⊆ P/poly".

Initiated a systematic investigation. Conditional unprovability results.

Some works on unprovability of circuit upper bounds

► Cook-Krajicek, 2007: "Consequences of the provability of NP ⊆ P/poly".

Initiated a systematic investigation. Conditional unprovability results.

► Krajicek-Oliveira, 2017: "Unprovability of circuit upper bounds in Cook's theory PV".

Established unconditionally that PV does not prove that $P \subseteq SIZE[n^k]$.

Some works on unprovability of circuit upper bounds

► Cook-Krajicek, 2007: "Consequences of the provability of NP ⊆ P/poly".

Initiated a systematic investigation. Conditional unprovability results.

▶ Krajicek-Oliveira, 2017: "Unprovability of circuit upper bounds in Cook's theory PV".

Established unconditionally that PV does not prove that $P \subseteq SIZE[n^k]$.

▶ Bydzovsky-Muller, 2018: "Polynomial time ultrapowers and the consistency of circuit lower bounds.".

Model-theoretic proof of a slightly stronger statement.

Weaknesses of previous results

1. We would like to show unprovability results for theories believed to be stronger than PV.

Weaknesses of previous results

1. We would like to show unprovability results for theories believed to be stronger than PV.

2. Infinitely often versus almost everywhere results:

PV might still show that every $L \in P$ is infinitely often in SIZE[n^k].

Weaknesses of previous results

1. We would like to show unprovability results for theories believed to be stronger than PV.

2. Infinitely often versus almost everywhere results:

PV might still show that every $L \in P$ is infinitely often in SIZE[n^k].

▶ Recall issue mentioned earlier in the talk:

We lack techniques to show hardness with respect to every large enough input length.

This work

 $ightharpoonup T_2^1$ and weaker theories cannot establish circuit upper bounds of the form n^k for classes contained in P^{NP} .

▶ Unprovability of infinitely often upper bounds, i.e., models where hardness holds almost everywhere.

All results are unconditional.

Our main result

Theorem 1 (Informal): For each $k \ge 1$,

$$T_2^1 \qquad dash \qquad \mathsf{P}^\mathsf{NP} \subseteq \mathsf{i.o.SIZE}[n^k]$$
 $S_2^1 \qquad dash \qquad \mathsf{NP} \subseteq \mathsf{i.o.SIZE}[n^k]$ $\mathsf{PV} \qquad dash \qquad \mathsf{P} \subseteq \mathsf{i.o.SIZE}[n^k]$

Our main result

Theorem 1 (Informal): For each $k \ge 1$,

$$T_2^1 \quad \nvdash \quad \mathsf{P}^\mathsf{NP} \subseteq \mathsf{i.o.SIZE}[n^k]$$
 $S_2^1 \quad \nvdash \quad \mathsf{NP} \subseteq \mathsf{i.o.SIZE}[n^k]$ $\mathsf{PV} \quad \nvdash \quad \mathsf{P} \subseteq \mathsf{i.o.SIZE}[n^k]$

Extensions. True $1 \stackrel{\text{def}}{=} \forall \Sigma_1^b(\mathcal{L}_{PV})$ -sentences true in $\mathbb N$ can be included in first item.

Example: $\forall x (\exists y (1 < y < x \land y | x) \leftrightarrow f_{AKS}(x) = 0)$

 $T_2^1 \cup \mathsf{True}_1$ proves that $\mathsf{Primes} \in \mathsf{SIZE}[n^c]$ for some $c \in \mathbb{N}$, but not that $\mathsf{P^{NP}} \subseteq \mathsf{i.o.SIZE}[n^k]$.

A more precise statement

- ▶ \mathcal{L}_{PV} -formulas $\varphi(x)$ interpreted over $\mathbb N$ can define languages in P, NP, etc.
- ▶ The sentence $\mathsf{UB}_k^{\mathsf{i.o.}}(\varphi)$ expresses that the corresponding n-bit boolean functions are computed infinitely often by circuits of size n^k :

$$\forall 1^{(\ell)} \exists 1^{(n)} (n \ge \ell) \exists C_n (|C_n| \le n^k) \, \forall x (|x| = n), \ \varphi(x) \equiv (C_n(x) = 1)$$

Theorem

For any of the following pairs of an \mathcal{L}_{PV} -theory T and a uniform complexity class C:

- (a) $T = T_2^1$ and $C = P^{NP}$,
- (b) $T = S_2^1$ and C = NP,
- (c) T = PV and C = P,

there is an \mathcal{L}_{PV} -formula $\varphi(x)$ defining a language $L \in \mathcal{C}$ such that T does not prove the sentence $\mathsf{UB}_k^{\mathsf{i.o.}}(\varphi)$.

High-level ideas

► Two approaches (forget the "i.o." condition for now):

$$T_2^1 \quad \nvdash \quad \mathsf{P}^\mathsf{NP} \subseteq \mathsf{i.o.SIZE}[n^k] \\ S_2^1 \quad \nvdash \quad \mathsf{NP} \subseteq \mathsf{i.o.SIZE}[n^k]$$

Main ingredient is the use of "logical" Karp-Lipton theorems.

$$PV \not\vdash P \subseteq i.o.SIZE[n^k]$$

Extract from (non-uniform) circuit upper bound proofs a "uniform construction".

Bounded theories and a.e. vs i.o. circuit bounds

Parikh's Theorem. Let $A(\vec{x}, y)$ be a bounded formula.

If
$$I\Delta_0 \vdash \forall \vec{x} \exists y \ A(\vec{x}, y)$$
 then $I\Delta_0 \vdash \forall \vec{x} \exists y \leq t(\vec{x}) \ A(\vec{x}, y)$.

Bounded theories and a.e. vs i.o. circuit bounds

Parikh's Theorem. Let $A(\vec{x}, y)$ be a bounded formula.

If
$$I\Delta_0 \vdash \forall \vec{x} \exists y \ A(\vec{x}, y)$$
 then $I\Delta_0 \vdash \forall \vec{x} \exists y \leq t(\vec{x}) \ A(\vec{x}, y)$.

▶ We use similar results to "tame" i.o. upper bounds in bounded arithmetic.

Example: If $T_2^1 \vdash \mathsf{SAT} \in \mathsf{i.o.SIZE}[n^k]$ then $T_2^1 \vdash \mathsf{SAT} \in \mathsf{SIZE}[n^{k'}]$.

Bounded theories and a.e. vs i.o. circuit bounds

Parikh's Theorem. Let $A(\vec{x}, y)$ be a bounded formula.

If
$$I\Delta_0 \vdash \forall \vec{x} \exists y \ A(\vec{x}, y)$$
 then $I\Delta_0 \vdash \forall \vec{x} \exists y \leq t(\vec{x}) \ A(\vec{x}, y)$.

▶ We use similar results to "tame" i.o. upper bounds in bounded arithmetic.

Example: If $T_2^1 \vdash \mathsf{SAT} \in \mathsf{i.o.SIZE}[n^k]$ then $T_2^1 \vdash \mathsf{SAT} \in \mathsf{SIZE}[n^{k'}]$.

▶ Not every language is paddable, and more delicate arguments are needed.

Concluding Remarks: Logic and P vs NP

► A major question is to establish the unprovability of P = NP:

For a function symbol $f \in \mathcal{L}_{PV}$, consider the universal sentence

$$\varphi_{\mathsf{P=NP}}(f) \stackrel{\text{def}}{=} \forall x \, \forall y \, \psi_{\mathsf{SAT}}(x,y) \to \psi_{\mathsf{SAT}}(x,f(x))$$

Concluding Remarks: Logic and P vs NP

▶ A major question is to establish the unprovability of P = NP:

For a function symbol $f \in \mathcal{L}_{PV}$, consider the universal sentence

$$\varphi_{\mathsf{P=NP}}(f) \stackrel{\mathrm{def}}{=} \forall x \, \forall y \, \psi_{\mathsf{SAT}}(x,y) \to \psi_{\mathsf{SAT}}(x,f(x))$$

Conjecture. For no function symbol f in \mathcal{L}_{PV} theory PV proves the sentence $\varphi_{\mathsf{P}=\mathsf{NP}}(f)$.

Concluding Remarks: Logic and P vs NP

► A major question is to establish the unprovability of P = NP:

For a function symbol $f \in \mathcal{L}_{PV}$, consider the universal sentence

$$\varphi_{\mathsf{P=NP}}(f) \stackrel{\mathrm{def}}{=} \forall x \, \forall y \, \psi_{\mathsf{SAT}}(x,y) \to \psi_{\mathsf{SAT}}(x,f(x))$$

Conjecture. For no function symbol f in \mathcal{L}_{PV} theory PV proves the sentence $\varphi_{\mathsf{P}=\mathsf{NP}}(f)$.

- ▶ Reduces to the study of unprovability of circuit **lower** bounds (Theorem 2 in our work).
- ▶ Motivates both research directions (unprovability of upper and lower bounds).

Thank you

Approach 1: "Logical" Karp-Lipton theorems

▶ A few unconditional circuit lower bounds in complexity theory use KL theorems. For instance, $ZPP^{NP} \nsubseteq SIZE[n^k]$ can be derived from:

[Kobler-Watanabe'98] If NP \subseteq SIZE[poly] then PH \subseteq ZPP^{NP}.

Approach 1: "Logical" Karp-Lipton theorems

▶ A few unconditional circuit lower bounds in complexity theory use KL theorems. For instance, $ZPP^{NP} \nsubseteq SIZE[n^k]$ can be derived from:

[Kobler-Watanabe'98] If NP \subseteq SIZE[poly] then PH \subseteq ZPP^{NP}.

Stronger collapses provide better lower bounds. It is not known how to collapse to P^{NP}.

Better KL theorems in fact necessary in this case [Chen-McKay-Murray-Williams'19].

Approach 1: "Logical" Karp-Lipton theorems

▶ A few unconditional circuit lower bounds in complexity theory use KL theorems. For instance, $ZPP^{NP} \nsubseteq SIZE[n^k]$ can be derived from:

[Kobler-Watanabe'98] If $NP \subseteq SIZE[poly]$ then $PH \subseteq ZPP^{NP}$.

Stronger collapses provide better lower bounds. It is not known how to collapse to P^{NP}.

Better KL theorems in fact necessary in this case [Chen-McKay-Murray-Williams'19].

[Cook-Krajicek'07] If NP \subseteq SIZE[poly] and this is provable in a theory $T \in \{PV, S_2^1, T_2^1\}$, then PH collapses to a complexity class $\mathcal{C}_T \subseteq P^{NP}$.

If $PV \vdash P \subseteq SIZE[n^k]$, try to extract from PV-proof a "uniform" circuit family for each $L \in P$.

This would contradict known separation $P \nsubseteq P$ -unifom-SIZE[n^k] [Santhanam-Williams'13].

If $PV \vdash P \subseteq SIZE[n^k]$, try to extract from PV-proof a "uniform" circuit family for each $L \in P$.

This would contradict known separation $P \nsubseteq P$ -unifom-SIZE[n^k] [Santhanam-Williams'13].

▶ This doesn't quite work, but is the main intuition behind [Krajicek-Oliveira'17].

If $PV \vdash P \subseteq SIZE[n^k]$, try to extract from PV-proof a "uniform" circuit family for each $L \in P$.

This would contradict known separation $P \nsubseteq P$ -unifom-SIZE[n^k] [Santhanam-Williams'13].

▶ This doesn't quite work, but is the main intuition behind [Krajicek-Oliveira'17].

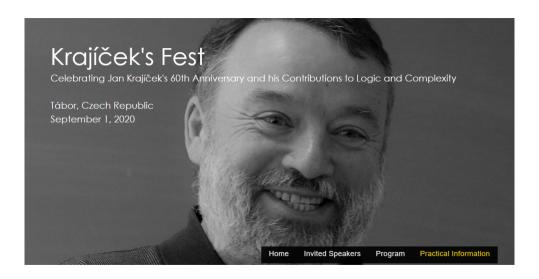
▶ Theorem 1 (c) strengthens Krajicek-Oliveira to rule out $PV \vdash P \subseteq i.o.SIZE[n^k]$.

If $PV \vdash P \subseteq SIZE[n^k]$, try to extract from PV-proof a "uniform" circuit family for each $L \in P$.

This would contradict known separation $P \nsubseteq P$ -unifom-SIZE $[n^k]$ [Santhanam-Williams'13].

- ▶ This doesn't quite work, but is the main intuition behind [Krajicek-Oliveira'17].
- ▶ Theorem 1 (c) strengthens Krajicek-Oliveira to rule out $PV \vdash P \subseteq i.o.SIZE[n^k]$.

Complications appear because Santhanam-Williams doesn't provide a.e. lower bounds.



Complexity Theory with a Human Face

1-4 September 2020, Tábor, Czech Republic

