Majority is incompressible by $\mathrm{AC}^{0}[p]$ circuits

Igor Carboni Oliveira

Columbia University

Joint work with Rahul Santhanam (Univ. Edinburgh)

Part 1
 Background, Examples, and Motivation

Basic Definitions

AC_{d}^{0} circuits: polynomial size circuits of depth $\leq d$ containing unbounded fan-in AND, OR, NOT gates.
size = number of wires.

Basic Definitions

AC_{d}^{0} circuits: polynomial size circuits of depth $\leq d$ containing unbounded fan-in AND, OR, NOT gates.
size = number of wires.
$\mathrm{AC}_{d}^{0}[p]$ circuits: allow $\bmod _{p}$ gates in the previous model (p prime). We have $\bmod _{p}\left(z_{1}, \ldots, z_{m}\right)=1$ if and only if $p \mid \sum_{j} z_{j}$.

Basic Definitions

AC_{d}^{0} circuits: polynomial size circuits of depth $\leq d$ containing unbounded fan-in AND, OR, NOT gates.
size = number of wires.
$\mathrm{AC}_{d}^{0}[p]$ circuits: allow $\bmod _{p}$ gates in the previous model (p prime). We have $\bmod _{p}\left(z_{1}, \ldots, z_{m}\right)=1$ if and only if $p \mid \sum_{j} z_{j}$.

Majority $=\left\{\text { Majority }_{n}\right\}_{n \in \mathbb{N}}$, where Majority $_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$.
$\operatorname{Majority}_{n}\left(x_{1}, \ldots, x_{n}\right)=1$ if and only if $\sum_{i} x_{i} \geq n / 2$.

Basic Results

```
Razborov/Smolensky (1987).
If Majority is computed by AC
```


Basic Results

```
Razborov/Smolensky (1987).
If Majority is computed by \(\mathrm{AC}_{d}^{0}[p]\) circuits then \(d=\Omega(\log n / \log \log n)\).
```

This lower bound is optimal.

No explicit lower bounds for poly size circuits beyond depth $\log n / \log \log n$.

Basic Results

Razborov/Smolensky (1987).

If Majority is computed by $\mathrm{AC}_{d}^{0}[p]$ circuits then $d=\Omega(\log n / \log \log n)$.
This lower bound is optimal.

No explicit lower bounds for poly size circuits beyond depth $\log n / \log \log n$.

Technique does not generalize to modulo m gates, where $m=p \cdot q$.
As far as we know, it is possible that $\mathrm{NP} \subseteq \mathrm{AC}_{3}^{0}[6]$ (linear size).

This Talk

Understand structure of polynomial-size circuits with mod p gates computing Majority.

This Talk

Understand structure of polynomial-size circuits with mod p gates computing Majority.

Follows from the investigation of more general framework: "Interactive Compression Games".

Hybridizes computational complexity and communication complexity.

Example: Boolean circuits for symmetric functions

Idea. Boolean circuits can process $\log n$ bits very efficiently. Every $f:\{0,1\}^{\log n} \rightarrow\{0,1\}$ computed by CNF/DNF of size n.

Circuit for Majority $n(x)$. Computes $O(\log n)$-bit string counting \#1's in x.

Example: Boolean circuits for symmetric functions

Idea. Boolean circuits can process $\log n$ bits very efficiently. Every $f:\{0,1\}^{\log n} \rightarrow\{0,1\}$ computed by CNF/DNF of size n.

Circuit for Majority ${ }_{n}(x)$. Computes $O(\log n)$-bit string counting \#1's in x.

Partition input bits into $(\log n)$-bit blocks, produce $(\log \log n)$-bit strings from each block.

Example: Boolean circuits for symmetric functions

Idea. Boolean circuits can process $\log n$ bits very efficiently. Every $f:\{0,1\}^{\log n} \rightarrow\{0,1\}$ computed by CNF/DNF of size n.

Circuit for Majority ${ }_{n}(x)$. Computes $O(\log n)$-bit string counting \#1's in x.

Partition input bits into $(\log n)$-bit blocks, produce $(\log \log n)$-bit strings from each block.

In each layer, reduces number of strings by a factor of roughly $\log n$.

Example: Boolean circuits for symmetric functions

Lemma. For every $d \geq 1$, we obtain an AC_{d}^{0} circuit with $n /(\log n)^{(d-1)-o(1)}$ output wires encoding \#1's in x.
n input bits processed in $O\left(\log _{\log n} n\right)=O(\log n / \log \log n)$ stages.

Example: Boolean circuits for symmetric functions

Lemma. For every $d \geq 1$, we obtain an AC_{d}^{0} circuit with $n /(\log n)^{(d-1)-o(1)}$ output wires encoding \#1's in x.
n input bits processed in $O\left(\log _{\log n} n\right)=O(\log n / \log \log n)$ stages.

We will revisit this construction later in the talk.

Interactive Compression Games (Chattopadhyay and Santhanam, 2012)

Fix a circuit class \mathcal{C} and a Boolean function f.
We define a communication game between Alice and Bob.
Alice knows the input $x \in\{0,1\}^{n}$, but her computations are limited to \mathcal{C}.
Bob is computationally unbounded, but has no access to x.

Interactive Compression Games (Chattopadhyay and Santhanam, 2012)

Fix a circuit class \mathcal{C} and a Boolean function f.
We define a communication game between Alice and Bob.
Alice knows the input $x \in\{0,1\}^{n}$, but her computations are limited to \mathcal{C}.
Bob is computationally unbounded, but has no access to x.

Goal:
Players must interact in order to compute $f(x)$. Minimize total number of bits sent by Alice.

Interactive Compression Games (Chattopadhyay and Santhanam, 2012)

Fix a circuit class \mathcal{C} and a Boolean function f.
We define a communication game between Alice and Bob.
Alice knows the input $x \in\{0,1\}^{n}$, but her computations are limited to \mathcal{C}.
Bob is computationally unbounded, but has no access to x.
Goal:
Players must interact in order to compute $f(x)$. Minimize total number of bits sent by Alice.
$f \notin \mathcal{C} \quad \Longleftrightarrow \mathcal{C}$-compression game for f is nontrivial.

Interactive Compression Games

Formally:

A \mathcal{C}-bounded protocol $\Pi_{n}=\left\langle C^{(1)}, \ldots, C^{(r)}, f^{(1)}, \ldots, f^{(r-1)}, E_{n}\right\rangle$ with $r=r(n)$ rounds consists of a sequence of \mathcal{C}-circuits for Alice, a strategy for Bob, given by functions $f^{(1)}, \ldots, f^{(r-1)}$, and a set of accepting transcripts E_{n}.

Interactive Compression Games

Formally:

A \mathcal{C}-bounded protocol $\Pi_{n}=\left\langle C^{(1)}, \ldots, C^{(r)}, f^{(1)}, \ldots, f^{(r-1)}, E_{n}\right\rangle$ with
$r=r(n)$ rounds consists of a sequence of \mathcal{C}-circuits for Alice, a strategy for Bob, given by functions $f^{(1)}, \ldots, f^{(r-1)}$, and a set of accepting transcripts E_{n}.

Every protocol Π_{n} has its signature $\left(\Pi_{n}\right)=\left(n, s_{1}, t_{1}, s_{2}, \ldots, t_{r-1}, s_{r}\right)$, which is the sequence corresponding to the input size $n=|x|$ and the length of the messages exchanged by Alice and Bob during the protocol.

Interactive Compression Games

Formally:

A \mathcal{C}-bounded protocol $\Pi_{n}=\left\langle C^{(1)}, \ldots, C^{(r)}, f^{(1)}, \ldots, f^{(r-1)}, E_{n}\right\rangle$ with
$r=r(n)$ rounds consists of a sequence of \mathcal{C}-circuits for Alice, a strategy for Bob, given by functions $f^{(1)}, \ldots, f^{(r-1)}$, and a set of accepting transcripts E_{n}.

Every protocol Π_{n} has its signature $\left(\Pi_{n}\right)=\left(n, s_{1}, t_{1}, s_{2}, \ldots, t_{r-1}, s_{r}\right)$, which is the sequence corresponding to the input size $n=|x|$ and the length of the messages exchanged by Alice and Bob during the protocol.
Π_{n} solves the compression game of a function $h_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ if

$$
h(x)=1 \quad \Longleftrightarrow \quad \operatorname{transcript}_{ח_{n}}(x) \in E_{n} .
$$

Interactive Compression Games

Formally:

A \mathcal{C}-bounded protocol $\Pi_{n}=\left\langle C^{(1)}, \ldots, C^{(r)}, f^{(1)}, \ldots, f^{(r-1)}, E_{n}\right\rangle$ with
$r=r(n)$ rounds consists of a sequence of \mathcal{C}-circuits for Alice, a strategy for Bob, given by functions $f^{(1)}, \ldots, f^{(r-1)}$, and a set of accepting transcripts E_{n}.

Every protocol Π_{n} has its signature $\left(\Pi_{n}\right)=\left(n, s_{1}, t_{1}, s_{2}, \ldots, t_{r-1}, s_{r}\right)$, which is the sequence corresponding to the input size $n=|x|$ and the length of the messages exchanged by Alice and Bob during the protocol.
Π_{n} solves the compression game of a function $h_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ if

$$
h(x)=1 \quad \Longleftrightarrow \quad \operatorname{transcript}_{ח_{n}}(x) \in E_{n} .
$$

Finally, we let $\operatorname{cost}\left(\Pi_{n}\right)=s_{1}+\ldots+s_{r}$.

Previous work

Harnik and Naor, 2006. "instance compression" (1-round compression), cryptographic application.

Previous work

Harnik and Naor, 2006. "instance compression" (1-round compression), cryptographic application.

Dubrov and Ishai, 2006. Lower bound for $\mathcal{C}=\mathrm{AC}^{0}, f=$ Parity, (1-round compression). Connection with non-Boolean PRGs.

Previous work

Harnik and Naor, 2006. "instance compression" (1-round compression), cryptographic application.

Dubrov and Ishai, 2006. Lower bound for $\mathcal{C}=\mathrm{AC}^{0}, f=$ Parity, (1-round compression). Connection with non-Boolean PRGs.

Bodlaender et al., 2008. Investigates problems without polynomial kernels.

Previous work

Harnik and Naor, 2006. "instance compression" (1-round compression), cryptographic application.

Dubrov and Ishai, 2006. Lower bound for $\mathcal{C}=\mathrm{AC}^{0}, f=$ Parity, (1-round compression). Connection with non-Boolean PRGs.

Bodlaender et al., 2008. Investigates problems without polynomial kernels.

Fortnow and Santhanam, 2008. conditional lower bound for instance compression.

Previous work

Dell and van Melkebeek, 2010. $\mathcal{C}=$ polynomial time, $f=d$-CNF SAT (conditional lower bound).

Previous work

Dell and van Melkebeek, 2010. $\mathcal{C}=$ polynomial time, $f=d$-CNF SAT (conditional lower bound).

Faust et al., 2010. Application in leakage resilient cryptography.

Previous work

Dell and van Melkebeek, 2010. $\mathcal{C}=$ polynomial time, $f=d$-CNF SAT (conditional lower bound).

Faust et al., 2010. Application in leakage resilient cryptography.
Drucker, 2012. limitations of instance compression in the classical and quantum setting (conditional).

Previous work

Dell and van Melkebeek, 2010. $\mathcal{C}=$ polynomial time, $f=d$-CNF SAT (conditional lower bound).

Faust et al., 2010. Application in leakage resilient cryptography.
Drucker, 2012. limitations of instance compression in the classical and quantum setting (conditional).

Chattopadhyay and Santhanam, 2012. Optimal lower bound for $\mathcal{C}=\mathrm{AC}^{0}, f=$ Parity. Partial results for $\mathrm{AC}^{0}[p]$-compression.

Applications and Motivation

Results have found applications in cryptography, parameterized complexity theory, PCPs, circuit lower bounds.

Our main motivation:

Understand information bottlenecks in circuit lower bounds.
Understand structure of optimal circuits/algorithms.

Interactive Compression versus Computation

InnerProduct $(x, y) \stackrel{\text { def }}{=} \sum_{i} x_{i} \cdot y_{i}(\bmod 2)$.
Threshold gate: $\sum_{j} w_{i} z_{i} \geq ? ~ t, \quad w_{j}, t \in \mathbb{R}$.
Proposition [HMPSP'93]. InnerProduct $\notin \operatorname{poly}(n)$-TH $\circ \operatorname{poly}(n)$-TH.

Interactive Compression versus Computation

InnerProduct $(x, y) \stackrel{\text { def }}{=} \sum_{i} x_{i} \cdot y_{i}(\bmod 2)$.
Threshold gate: $\sum_{j} w_{i} z_{i} \geq ? ~ t, \quad w_{j}, t \in \mathbb{R}$.
Proposition [HMPSP'93]. InnerProduct $\notin \operatorname{poly}(n)$-TH \circ poly (n)-TH.
On the other hand,
Proposition. There exists a (poly (n)-TH \circ poly $(n)-\mathrm{TH})$-compression game for InnerProduct with $O(\log n)$ rounds and communication cost $O(\log n)$.

Interactive Compression versus Computation

Protocol.

Alice's circuits are of the form $C(x, y, v)$.
(first layer) C computes $z_{i} \stackrel{\text { def }}{=} x_{i} \wedge y_{i}$, for every $i \in[n]$.
(second layer) C outputs $\operatorname{sign}\left(\sum_{i \in[n]} z_{i}-\sum_{i \in[n]} v_{i}\right)$.
Idea. Bob does all the work, and simulates a binary search in order to compute $\sum_{i} x_{i} \cdot y_{i}$.

Interactive Compression versus Computation

Protocol.

Alice's circuits are of the form $C(x, y, v)$.
(first layer) C computes $z_{i} \stackrel{\text { def }}{=} x_{i} \wedge y_{i}$, for every $i \in[n]$.
(second layer) C outputs $\operatorname{sign}\left(\sum_{i \in[n]} z_{i}-\sum_{i \in[n]} v_{i}\right)$.
Idea. Bob does all the work, and simulates a binary search in order to compute $\sum_{i} x_{i} \cdot y_{i}$.

Bob sends $v=0^{n / 2} 1^{n / 2}$:
bit computed by Alice reveals if $\sum_{i \in[n]} x_{i} \cdot y_{i}$ is at least $n / 2$.

Interactive Compression versus Computation

Protocol.

Alice's circuits are of the form $C(x, y, v)$.
(first layer) C computes $z_{i} \stackrel{\text { def }}{=} x_{i} \wedge y_{i}$, for every $i \in[n]$.
(second layer) C outputs $\operatorname{sign}\left(\sum_{i \in[n]} z_{i}-\sum_{i \in[n]} v_{i}\right)$.
Idea. Bob does all the work, and simulates a binary search in order to compute $\sum_{i} x_{i} \cdot y_{i}$.

Bob sends $v=0^{n / 2} 1^{n / 2}$:
bit computed by Alice reveals if $\sum_{i \in[n]} x_{i} \cdot y_{i}$ is at least $n / 2$.
Bob sends string corresponding to the next step of the binary search, and so on.

Part 2: Main Results

Main Result

Razborov/Smolensky, 1987.

"Any $\mathrm{AC}_{d}^{0}[p]$-compression game for Majority requires nontrivial communication."

Main Result

Razborov/Smolensky, 1987.
"Any $\mathrm{AC}_{d}^{0}[p]$-compression game for Majority requires nontrivial communication."

Chattophadyay and Santhanam, 2012.
Any single-round $\mathrm{AC}_{d}^{0}[p]$-compression game for Majority requires communication $\sqrt{n} /(\log n)^{O(d)}$.

Main Result

[Theorem 1]. There exists a fixed constant $c \in \mathbb{N}$ such that, for each $d \in \mathbb{N}$, and every $n \in \mathbb{N}$ sufficiently large, the following holds.

1) Any $\mathrm{AC}_{d}^{0}[p]$-compression game for Majority ${ }_{n}$ (any number of rounds) has communication cost $\geq n /(\log n)^{2 d+c}$.

Main Result

[Theorem 1]. There exists a fixed constant $c \in \mathbb{N}$ such that, for each $d \in \mathbb{N}$, and every $n \in \mathbb{N}$ sufficiently large, the following holds.

1) Any $\mathrm{AC}_{d}^{0}[p]$-compression game for Majority ${ }_{n}$ (any number of rounds) has communication cost $\geq n /(\log n)^{2 d+c}$.
2) There exists a single-round $\mathrm{AC}_{d}^{0}[p]$-compression game for Majority ${ }_{n}$ with communication cost $\leq n /(\log n)^{d-c}$.

Lower bound against circuits with oracle gates

Theorem 1 implies that structure of Boolean circuit for Majority is essentially optimal.

Lower bound against circuits with oracle gates

Theorem 1 implies that structure of Boolean circuit for Majority is essentially optimal.

Circuits with oracle gates: several applications in theoretical computer science.

Lower bound against circuits with oracle gates

Theorem 1 implies that structure of Boolean circuit for Majority is essentially optimal.

Circuits with oracle gates: several applications in theoretical computer science.

Example:

[IW'97] $\exists f \in \mathrm{EXP}$ that requires circuits of size $2^{\Omega(n)}$ then $\mathrm{P}=\mathrm{BPP}$.
[KvM'99] $\exists f \in \mathrm{NE} \cap$ coNE that requires circuits with SAT-oracles of size $2^{\Omega(n)}$ then $A M=N P$.

Lower bound against circuits with oracle gates

Lemma. Let C be a Boolean circuit over n variables from $\mathcal{C}_{d}($ poly $(n))$ augmented with oracle gates $f_{i}:\{0,1\}^{s_{i}} \rightarrow\{0,1\}^{t_{i}}$, where $i \in[r]$, for some $r=r(n)$.

Let $s=s_{1}+\ldots+s_{r}$ be the total fan-in of these oracle gates, and $h:\{0,1\}^{n} \rightarrow\{0,1\}$ be the Boolean function computed by C.

Then h admits a $\mathcal{C}_{d}($ poly $(n))$-compression game with communication cost $c(n) \leq s$ consisting of at most $r+1$ rounds.

Lower bound against circuits with oracle gates

Lemma. Let C be a Boolean circuit over n variables from $\mathcal{C}_{d}($ poly $(n))$ augmented with oracle gates $f_{i}:\{0,1\}^{s_{i}} \rightarrow\{0,1\}^{t_{i}}$, where $i \in[r]$, for some $r=r(n)$.

Let $s=s_{1}+\ldots+s_{r}$ be the total fan-in of these oracle gates, and $h:\{0,1\}^{n} \rightarrow\{0,1\}$ be the Boolean function computed by C.

Then h admits a $\mathcal{C}_{d}(\operatorname{poly}(n))$-compression game with communication cost $c(n) \leq s$ consisting of at most $r+1$ rounds.

Main lower bound holds for protocols with unlimited number of rounds:
Corollary. If Majority is computed by an $\mathrm{AC}_{d}^{0}[p]$ circuit with arbitrary oracle gates, then the total fan-in of the oracle gates is $\geq n /(\log n)^{2 d+O(1)}$.

Sketch of the lower bound (Theorem 1)

Let $\mathcal{C}=\mathrm{AC}_{d}^{0}[p]$, and consider a fixed prime $q \neq p$.

New circuit lower bound for MOD_{q} :
Improved polynomial approximation \Longleftrightarrow Degree lower bound in low error regime

Compressing symmetric functions using Majority

Lemma.

Let $h:\{0,1\}^{n} \rightarrow\{0,1\}$ be an arbitrary symmetric function, \mathcal{C} be a circuit class, and $d \geq 1$.

Assume that the $\mathcal{C}_{d}(\operatorname{poly}(n))$-compression game for Majority ${ }_{n}$ can be solved with cost $c(n)$ in $r(n)$ rounds.

Then the $\mathcal{C}_{d+O(1)}(\operatorname{poly}(n))$-compression game for h can be solved with cost $c_{h}(n)=O(c(2 n) \cdot \log n)$ in $r_{h}(n)=O(r(2 n) \cdot \log n)$ rounds.

Compressing symmetric functions using Majority

Lemma.

Let $h:\{0,1\}^{n} \rightarrow\{0,1\}$ be an arbitrary symmetric function, \mathcal{C} be a circuit class, and $d \geq 1$.

Assume that the $\mathcal{C}_{d}\left(\right.$ poly (n))-compression game for Majority ${ }_{n}$ can be solved with cost $c(n)$ in $r(n)$ rounds.

Then the $\mathcal{C}_{d+O(1)}($ poly $(n))$-compression game for h can be solved with cost $c_{h}(n)=O(c(2 n) \cdot \log n)$ in $r_{h}(n)=O(r(2 n) \cdot \log n)$ rounds.

Proof sketch.

1) Compression for Majority implies compression for Th_{k}.
2) Alice and Bob perform a binary search.

From interactive compression to very large circuits

Proposition.

If there exists a $\mathcal{C}_{d}($ poly $(n))$-compression game for f_{n} with cost $c(n)$, then there exist circuits C_{1}, \ldots, C_{T} from $\mathcal{C}_{d+O(1)}(\operatorname{poly}(n))$, where

$$
T \leq 2^{c(n)},
$$

such that $\forall x \in\{0,1\}^{n}$,

$$
f_{n}(x)=\bigvee_{i \in[T]} c_{i}(x) .
$$

From interactive compression to very large circuits

Proposition.

If there exists a $\mathcal{C}_{d}($ poly $(n))$-compression game for f_{n} with cost $c(n)$, then there exist circuits C_{1}, \ldots, C_{T} from $\mathcal{C}_{d+O(1)}($ poly $(n))$, where

$$
T \leq 2^{c(n)},
$$

such that $\forall x \in\{0,1\}^{n}$,

$$
f_{n}(x)=\bigvee_{i \in[T]} c_{i}(x) .
$$

Proof sketch. Each circuit C_{i} checks whether the interaction induced by x leads to the i-th accepting transcript.

From interactive compression to very large circuits

Proposition.

If there exists a $\mathcal{C}_{d}($ poly $(n))$-compression game for f_{n} with cost $c(n)$, then there exist circuits C_{1}, \ldots, C_{T} from $\mathcal{C}_{d+O(1)}($ poly $(n))$, where

$$
T \leq 2^{c(n)},
$$

such that $\forall x \in\{0,1\}^{n}$,

$$
f_{n}(x)=\bigvee_{i \in[T]} c_{i}(x) .
$$

Proof sketch. Each circuit C_{i} checks whether the interaction induced by x leads to the i-th accepting transcript.

Depth blow-up is minimal: "Parallel simulation of all rounds".

The difficulty of analyzing very large circuits

Goal.

Lower bound against circuits of depth $d+O(1)$ and size $\geq 2^{c(n)}$. Want to set $c(n) \approx n / \operatorname{poly}(\log n)$.

The difficulty of analyzing very large circuits

Goal.

Lower bound against circuits of depth $d+O(1)$ and size $\geq 2^{c(n)}$. Want to set $c(n) \approx n / \operatorname{poly}(\log n)$.

Problem.
No explicit lower bounds for depth- d circuits of size $2^{\omega\left(n^{1 /(d-1)}\right)}$.

The difficulty of analyzing very large circuits

Goal.

Lower bound against circuits of depth $d+O(1)$ and size $\geq 2^{c(n)}$. Want to set $c(n) \approx n /$ poly $(\log n)$.

Problem.

No explicit lower bounds for depth- d circuits of size $2^{\omega\left(n^{1 /(d-1)}\right)}$. (Actually, MOD_{q} admits depth- d circuits of size $\lll 2^{n / \text { poly }(\log n)}$).

The difficulty of analyzing very large circuits

Goal.

Lower bound against circuits of depth $d+O(1)$ and size $\geq 2^{c(n)}$. Want to set $c(n) \approx n /$ poly $(\log n)$.

Problem.

No explicit lower bounds for depth- d circuits of size $2^{\omega\left(n^{1 /(d-1)}\right)}$. (Actually, MOD_{q} admits depth- d circuits of size $\lll 2^{n / \text { poly }(\log n)}$).

Idea.

$$
f_{n}(x)=\bigvee_{i \in[T]} c_{i}(x)
$$

Initial function is a disjoint union of (poly-size) circuits C_{i}.
If $f(x)=1$ then exactly one circuit evaluates to 1 .

From interactive compression to very large circuits

Proposition (updated)

If there exists a $\mathcal{C}_{d}($ poly $(n))$-compression game for f_{n} with cost $c(n)$, then there exist circuits C_{1}, \ldots, C_{T} from $\mathcal{C}_{d+O(1)}($ poly $(n))$, where

$$
T \leq 2^{c(n)},
$$

such that $\forall x \in\{0,1\}^{n}$,

$$
f_{n}(x)=\bigvee_{i \in[T]} c_{i}(x) \quad \text { ("uniqueness property") }
$$

New circuit lower bound for MOD_{q}

Proposition.

For every $d \geq 1$, if we have

$$
\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\bigvee}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

where each C_{i} is an $\mathrm{AC}_{d}^{0}[p]$ circuit, then

$$
T \geq 2^{n /(\log n)^{2 d+O(1)}}
$$

New circuit lower bound for MOD_{q}

Proposition.

For every $d \geq 1$, if we have

$$
\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\bigvee}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right),
$$

where each C_{i} is an $\mathrm{AC}_{d}^{0}[p]$ circuit, then

$$
T \geq 2^{n /(\log n)^{2 d+O(1)}} .
$$

Proof sketch.
Polynomial approximation method in the very low error regime.

New circuit lower bound for MOD_{q}

Proposition.

For every $d \geq 1$, if we have

$$
\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\bigvee}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right),
$$

where each C_{i} is an $\mathrm{AC}_{d}^{0}[p]$ circuit, then

$$
T \geq 2^{n /(\log n)^{2 d+O(1)}} .
$$

Proof sketch.
Polynomial approximation method in the very low error regime.
(Razborov/Smolensky's lower bound: optimized when $\varepsilon=\Omega(1)$.)

Improved approximation by \mathbb{F}_{p} polynomials

Polynomial approximation method + Uniqueness:

Claim. If each C_{i} can be δ-approximated by an \mathbb{F}_{p} polynomial P_{i}, then

$$
\left.Q(x) \stackrel{\text { def }}{=} \sum_{i \in[T]} P_{i}(x) \quad \text { (Recall: } f=\dot{\bigvee}_{i \in[T]} C_{i}\right)
$$

is an $\varepsilon=T \cdot \delta$ approximator for f.

Improved approximation by \mathbb{F}_{p} polynomials

Polynomial approximation method + Uniqueness:

Claim. If each C_{i} can be δ-approximated by an \mathbb{F}_{p} polynomial P_{i}, then

$$
\left.Q(x) \stackrel{\text { def }}{=} \sum_{i \in[T]} P_{i}(x) \quad \text { (Recall: } f=\dot{\bigvee}_{i \in[T]} C_{i}\right)
$$

is an $\varepsilon=T \cdot \delta$ approximator for f.

Reason.

In general, several P_{i} 's correct on x can cause " \backslash " to be wrong $\left(\mathbb{F}_{p}\right)$. Uniqueness \Longrightarrow can take union bound over bad inputs only.

Improved approximation by \mathbb{F}_{p} polynomials

Polynomial approximation method + Uniqueness:

Claim. If each C_{i} can be δ-approximated by an \mathbb{F}_{p} polynomial P_{i}, then

$$
\left.Q(x) \stackrel{\text { def }}{=} \sum_{i \in[T]} P_{i}(x) \quad \text { (Recall: } f=\dot{\bigvee}_{i \in[T]} C_{i}\right)
$$

is an $\varepsilon=T \cdot \delta$ approximator for f.

Reason.

In general, several P_{i} 's correct on x can cause " V " to be wrong $\left(\mathbb{F}_{p}\right)$. Uniqueness \Longrightarrow can take union bound over bad inputs only.

Important. Degree of Q at most degree of P_{i} 's.

Improved approximation by \mathbb{F}_{p} polynomials

Polynomial approximation method + Uniqueness:
Claim. If each C_{i} can be δ-approximated by an \mathbb{F}_{p} polynomial P_{i}, then

$$
\left.Q(x) \stackrel{\text { def }}{=} \sum_{i \in[T]} P_{i}(x) \quad \text { (Recall: } f=\dot{V}_{i \in[T]} C_{i}\right)
$$

is an $\varepsilon=T \cdot \delta$ approximator for f.

Reason.

In general, several P_{i} 's correct on x can cause " \backslash " to be wrong $\left(\mathbb{F}_{p}\right)$. Uniqueness \Longrightarrow can take union bound over bad inputs only.

Important. Degree of Q at most degree of P_{i} 's.
Problem: how to control error and degree simultaneously?

The low error regime in the approximation method

Razborov/Smolensky, 1987 (polynomial approximation) For every $\delta(n)>0$, any $\mathrm{AC}_{d}^{0}[p]$ admits a δ-error probabilistic polynomial $\mathbf{P}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree $(O(\log n+\log (1 / \delta)))^{d}$.

The low error regime in the approximation method

Razborov/Smolensky, 1987 (polynomial approximation) For every $\delta(n)>0$, any $\mathrm{AC}_{d}^{0}[p]$ admits a δ-error probabilistic polynomial $\mathbf{P}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree $(O(\log n+\log (1 / \delta)))^{d}$.

Kopparty and Srinivasan, 2012 (extension)
$(O(\log n))^{d} \cdot \log (1 / \delta)$ instead of $(O(\log n+\log (1 / \delta)))^{d}$.

The low error regime in the approximation method

Razborov/Smolensky, 1987 (polynomial approximation) For every $\delta(n)>0$, any $\mathrm{AC}_{d}^{0}[p]$ admits a δ-error probabilistic polynomial $\mathbf{P}\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ of degree $(O(\log n+\log (1 / \delta)))^{d}$.

Kopparty and Srinivasan, 2012 (extension)
$(O(\log n))^{d} \cdot \log (1 / \delta)$ instead of $(O(\log n+\log (1 / \delta)))^{d}$.
Razborov/Smolensky + folklore, 1987 (lower bound for all ε) For every $\varepsilon(n) \in\left[2^{-.001 n}, 1 / 100 q\right]$, any $Q\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ that ε-approximates MOD_{q} (uniform distribution) has degree

$$
\Omega(\sqrt{n \cdot \log (1 / \varepsilon)})
$$

Finishing the proof

Suppose $\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\bigvee}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right)$.

Finishing the proof

Suppose $\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\bigvee}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right)$.
We $\delta \stackrel{\text { def }}{=} \varepsilon / T$ approximate each C_{i}, getting a $T \cdot \delta=\varepsilon$ approximator:

$$
\begin{aligned}
\text { degree } & \leq(\log n)^{d} \cdot \log (1 / \delta) \\
& =(\log n)^{d}(\log T+\log (1 / \varepsilon))
\end{aligned}
$$

Finishing the proof

Suppose $\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\mathrm{V}}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right)$.
We $\delta \stackrel{\text { def }}{=} \varepsilon / T$ approximate each C_{i}, getting a $T \cdot \delta=\varepsilon$ approximator:

$$
\begin{aligned}
\text { degree } & \leq(\log n)^{d} \cdot \log (1 / \delta) \\
& =(\log n)^{d}(\log T+\log (1 / \varepsilon)) .
\end{aligned}
$$

Using the degree lower bound, for any $\varepsilon \in\left[2^{-.001 n}, 1 / 100 q\right]$,

$$
\sqrt{n \cdot \log (1 / \varepsilon)} \leq \text { degree. }
$$

Finishing the proof

Suppose $\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\mathrm{V}}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right)$.
We $\delta \stackrel{\text { def }}{=} \varepsilon / T$ approximate each C_{i}, getting a $T \cdot \delta=\varepsilon$ approximator:

$$
\begin{aligned}
\text { degree } & \leq(\log n)^{d} \cdot \log (1 / \delta) \\
& =(\log n)^{d}(\log T+\log (1 / \varepsilon)) .
\end{aligned}
$$

Using the degree lower bound, for any $\varepsilon \in\left[2^{-.001 n}, 1 / 100 q\right]$,

$$
\sqrt{n \cdot \log (1 / \varepsilon)} \leq \text { degree. }
$$

Therefore,

$$
\log T \geq \frac{\sqrt{n \cdot \log (1 / \varepsilon)}-(\log n)^{d} \cdot \log (1 / \varepsilon)}{(\log n)^{d}}
$$

Finishing the proof

Suppose $\operatorname{MOD}_{q}\left(x_{1}, \ldots, x_{n}\right)=\dot{\bigvee}_{i \in[T]} C_{i}\left(x_{1}, \ldots, x_{n}\right)$.
We $\delta \stackrel{\text { def }}{=} \varepsilon / T$ approximate each C_{i}, getting a $T \cdot \delta=\varepsilon$ approximator:

$$
\begin{aligned}
\text { degree } & \leq(\log n)^{d} \cdot \log (1 / \delta) \\
& =(\log n)^{d}(\log T+\log (1 / \varepsilon))
\end{aligned}
$$

Using the degree lower bound, for any $\varepsilon \in\left[2^{-.001 n}, 1 / 100 q\right]$,

$$
\sqrt{n \cdot \log (1 / \varepsilon)} \leq \text { degree }
$$

Therefore,

$$
\log T \geq \frac{\sqrt{n \cdot \log (1 / \varepsilon)}-(\log n)^{d} \cdot \log (1 / \varepsilon)}{(\log n)^{d}}
$$

which is maximized when $\varepsilon=\exp \left(-n /\left(4(\log n)^{2 d}\right)\right)$.

Observation

To obtain $\mathrm{AC}_{d}^{0}[p]$ circuit size lower bounds for MOD_{q} :
Polynomial approximation method with ε as large as possible.

Observation

To obtain $\mathrm{AC}_{d}^{0}[p]$ circuit size lower bounds for MOD_{q} :
Polynomial approximation method with ε as large as possible.

To understand structure of optimal polynomial size circuits up to depth $\approx \log n / \log \log n:$

Polynomial approximation method in the very low error regime.

Round complexity in \mathcal{C}-compression games

$\mathrm{AC}^{0}[p]$ lower bound: holds for any number of rounds.
$\mathrm{AC}^{0}[p]$ upper bound: single-round compression.
Power of interaction in compression games?

Round complexity in \mathcal{C}-compression games

$\mathrm{AC}^{0}[p]$ lower bound: holds for any number of rounds.
$\mathrm{AC}^{0}[p]$ upper bound: single-round compression.
Power of interaction in compression games?

Chattopadhyay and Santhanam, 2012:

For every fixed r, there is a Boolean function on n variables that admits AC^{0}-bounded protocols with r rounds and cost $O\left(n^{1 / r}\right)$, but for which any correct AC^{0}-bounded $(r-1)$-round protocol has cost $\Omega\left(n^{2 / r-o(1)}\right)$.

Round complexity in \mathcal{C}-compression games

$\mathrm{AC}^{0}[p]$ lower bound: holds for any number of rounds.
$\mathrm{AC}^{0}[p]$ upper bound: single-round compression.
Power of interaction in compression games?

Chattopadhyay and Santhanam, 2012:

For every fixed r, there is a Boolean function on n variables that admits AC ${ }^{0}$-bounded protocols with r rounds and cost $O\left(n^{1 / r}\right)$, but for which any correct AC^{0}-bounded $(r-1)$-round protocol has cost $\Omega\left(n^{2 / r-o(1)}\right)$.
$\Longrightarrow \quad$ Quadratic gap, dependence on r not very satisfactory.

The power of interaction in $A C^{0}$-compression games

[Theorem 2].
Let $r \geq 2$ and $\varepsilon>0$ be fixed parameters. There is an explicit family of functions $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ with the following properties:

- There exists an $\mathrm{AC}_{2}^{0}(n)$-bounded protocol Π_{n} for f_{n} with r rounds and cost $c(n) \leq n^{\varepsilon}$, for every $n \geq n_{f}$, where n_{f} is a fixed constant that depends on f.

The power of interaction in AC°-compression games

[Theorem 2].
Let $r \geq 2$ and $\varepsilon>0$ be fixed parameters. There is an explicit family of functions $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ with the following properties:

- There exists an $\mathrm{AC}_{2}^{0}(n)$-bounded protocol Π_{n} for f_{n} with r rounds and cost $c(n) \leq n^{\varepsilon}$, for every $n \geq n_{f}$, where n_{f} is a fixed constant that depends on f.
- Any $\mathrm{AC}^{0}($ poly $(n))$-bounded protocol Π for f with $r-1$ rounds has cost $c(n) \geq n^{1-\varepsilon}$, for every $n \geq n_{\Pi}$, where n_{Π} is a fixed constant that depends on Π.

Hard function for round-limited protocols

Function $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$, where $n \stackrel{\text { def }}{=} m+\ell \cdot r \cdot m$.
"Pointer Jumping Problem". Uses a function $h=\left\{h_{t}\right\}_{t \in \mathbb{N}}$ that is hard for AC^{0}.

Hard function for round-limited protocols

Function $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$, where $n \stackrel{\text { def }}{=} m+\ell \cdot r \cdot m$.
"Pointer Jumping Problem". Uses a function $h=\left\{h_{t}\right\}_{t \in \mathbb{N}}$ that is hard for AC^{0}.

Intuition:

Upper bound: $r+1$ rounds with communication $(1+r) \cdot m$. Lower bound: r rounds require communication at least $\ell \cdot m^{1-o(1)}$.

Appropriate setting of parameters induces gap: n^{ε} versus $n^{1-\varepsilon}$.

Hard function for round-limited protocols

Function $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$, where $n \stackrel{\text { def }}{=} m+\ell \cdot r \cdot m$.
"Pointer Jumping Problem". Uses a function $h=\left\{h_{t}\right\}_{t \in \mathbb{N}}$ that is hard for AC^{0}.

Intuition:

Upper bound: $r+1$ rounds with communication $(1+r) \cdot m$.
Lower bound: r rounds require communication at least $\ell \cdot m^{1-o(1)}$.
Appropriate setting of parameters induces gap: n^{ε} versus $n^{1-\varepsilon}$.
Proof relies on a round elimination argument via random restrictions, together with an appropriate induction hypothesis.

Part 3: Open Problems

Open Problem 1: Round separation for $A C^{0}[p]$-compression games?

As far as we know, single-round $\mathrm{AC}^{0}[p]$ protocols are as powerful as k-round protocols.
(Our technique for $\mathrm{AC}^{0}[p]$ is insensitive to the \# of rounds.)

Problem. Prove a "round separation theorem" for $\mathrm{AC}^{0}[p]$-compression games.

Open Problem 2: Lower bounds for randomized $\mathrm{AC}^{0}[\mathrm{p}]$-compression games?

The randomized $A C^{0}[p]$-compression complexity of Majority remains open.

Reason: proof explores very low error regime in the polynomial approximation method (initial error probability is not tolerated).

Open Problem 2: Lower bounds for randomized $\mathrm{AC}^{0}[\mathrm{p}]$-compression games?

The randomized $\mathrm{AC}^{0}[p]$-compression complexity of Majority remains open.

Reason: proof explores very low error regime in the polynomial approximation method (initial error probability is not tolerated).

Problem. Settle the randomized $\mathrm{AC}^{0}[p]$-compression complexity of Majority.

Open Problem 2: Lower bounds for randomized $\mathrm{AC}^{0}[\mathrm{p}]$-compression games?

The randomized $\mathrm{AC}^{0}[p]$-compression complexity of Majority remains open.

Reason: proof explores very low error regime in the polynomial approximation method (initial error probability is not tolerated).

Problem. Settle the randomized $\mathrm{AC}^{0}[p]-$ compression complexity of Majority.

Remark. Communication cost is $n /(\log n)^{\Theta(d)}$ for randomized AC_{d}^{0}-compression games (Chattopadhyay and Santhanam, 2012).

Open Problem 3: Power of modulo m gates in interactive compression?

Unconditional lower bounds:

Circuit class	Hard function	Incompressibility (depth d)
AC^{0}	Parity	$\mathrm{CC}\left(\right.$ Parity $\left.{ }_{n}\right) \geq n / \log ^{\mathrm{O(d)}} n$
$\mathrm{AC}^{0}[p]$	Majority	$\mathrm{CC}\left(\right.$ Majority $\left._{n}\right) \geq n / \log ^{\mathrm{O(d)}} n$
$\mathrm{AC}^{0}[m]$	NEXP, Majority (?)	CC $\left(\right.$ Majority $\left._{n}\right)=?$

Open Problem 3: Power of modulo m gates in interactive compression?

Unconditional lower bounds:

Circuit class	Hard function	Incompressibility (depth d)
AC^{0}	Parity	$\mathrm{CC}\left(\right.$ Parity $\left._{n}\right) \geq n / \log ^{O(d)} n$
$\mathrm{AC}^{0}[p]$	Majority	$\mathrm{CC}\left(\right.$ Majority $\left._{n}\right) \geq n / \log ^{O(d)} n$
$\mathrm{AC}^{0}[m]$	NEXP, Majority (?)	CC $\left(\right.$ Majority $\left._{n}\right)=?$

Question. Are there randomized $\mathrm{AC}^{0}[m]$-compression games for Majority with communication cost $n^{1-\varepsilon}$?

This result would shed more light on the hardness of proving lower bounds against circuits with modulo m gates.

Thank you!

