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Part 1
Background, Examples, and Motivation
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Basic Definitions

AC0
d circuits: polynomial size circuits of depth ≤ d containing

unbounded fan-in AND, OR, NOT gates.

size = number of wires.

AC0
d [p] circuits: allow modp gates in the previous model (p prime).

We have modp(z1, . . . , zm) = 1 if and only if p | ∑j zj .

Majority = {Majorityn}n∈N, where Majorityn : {0,1}n → {0,1}.

Majorityn(x1, . . . , xn) = 1 if and only if
∑

i xi ≥ n/2.
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Basic Results

Razborov/Smolensky (1987).
If Majority is computed by AC0

d [p] circuits then d = Ω(log n/ log log n).

This lower bound is optimal.

No explicit lower bounds for poly size circuits beyond depth
log n/ log log n.

Technique does not generalize to modulo m gates, where m = p · q.

As far as we know, it is possible that NP ⊆ AC0
3[6] (linear size).
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This Talk

Understand structure of polynomial-size circuits with mod p gates
computing Majority.

Follows from the investigation of more general framework:
“Interactive Compression Games”.

Hybridizes computational complexity and communication complexity.
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Example: Boolean circuits for symmetric functions

Idea. Boolean circuits can process log n bits very efficiently.
Every f : {0,1}log n → {0,1} computed by CNF/DNF of size n.

Circuit for Majorityn(x). Computes O(log n)-bit string counting #1’s in x .

Partition input bits into (log n)-bit blocks, produce (log log n)-bit strings
from each block.

In each layer, reduces number of strings by a factor of roughly log n.
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Example: Boolean circuits for symmetric functions

Lemma. For every d ≥ 1, we obtain an AC0
d circuit with

n/(log n)(d−1)−o(1) output wires encoding #1’s in x .

n input bits processed in O(loglog n n) = O(log n/ log log n) stages.

We will revisit this construction later in the talk.
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Interactive Compression Games
(Chattopadhyay and Santhanam, 2012)

Fix a circuit class C and a Boolean function f .
We define a communication game between Alice and Bob.

Alice knows the input x ∈ {0,1}n, but her computations are limited to C.

Bob is computationally unbounded, but has no access to x .

Goal:

Players must interact in order to compute f (x).
Minimize total number of bits sent by Alice.

f /∈ C ⇐⇒ C-compression game for f is nontrivial.
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Interactive Compression Games

Formally:
A C-bounded protocol Πn = 〈C(1), . . . ,C(r), f (1), . . . , f (r−1),En〉 with
r = r(n) rounds consists of a sequence of C-circuits for Alice, a
strategy for Bob, given by functions f (1), . . . , f (r−1), and a set of
accepting transcripts En.

Every protocol Πn has its signature(Πn) = (n, s1, t1, s2, . . . , tr−1, sr ),
which is the sequence corresponding to the input size n = |x | and the
length of the messages exchanged by Alice and Bob during the
protocol.

Πn solves the compression game of a function hn : {0,1}n → {0,1} if

h(x) = 1 ⇐⇒ transcriptΠn
(x) ∈ En.

Finally, we let cost(Πn) = s1 + . . .+ sr .
9
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Previous work

Harnik and Naor, 2006. “instance compression” (1-round
compression), cryptographic application.

Dubrov and Ishai, 2006. Lower bound for C = AC0, f = Parity,
(1-round compression). Connection with non-Boolean PRGs.

Bodlaender et al., 2008. Investigates problems without polynomial
kernels.

Fortnow and Santhanam, 2008. conditional lower bound for instance
compression.
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Previous work

Dell and van Melkebeek, 2010. C = polynomial time, f = d-CNF SAT
(conditional lower bound).

Faust et al., 2010. Application in leakage resilient cryptography.

Drucker, 2012. limitations of instance compression in the classical and
quantum setting (conditional).

Chattopadhyay and Santhanam, 2012. Optimal lower bound for
C = AC0, f = Parity. Partial results for AC0[p]-compression.
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Applications and Motivation

Results have found applications in cryptography, parameterized
complexity theory, PCPs, circuit lower bounds.

Our main motivation:

Understand information bottlenecks in circuit lower bounds.

Understand structure of optimal circuits/algorithms.
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Interactive Compression versus Computation

InnerProductn(x , y)
def
=
∑

i xi · yi (mod 2).

Threshold gate:
∑

j wizi ≥? t , wj , t ∈ R.

Proposition [HMPSP’93]. InnerProduct /∈ poly(n)-TH ◦ poly(n)-TH.

On the other hand,

Proposition. There exists a (poly(n)-TH ◦ poly(n)-TH)-compression
game for InnerProduct with O(log n) rounds and communication cost
O(log n).
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Interactive Compression versus Computation

Protocol.
Alice’s circuits are of the form C(x , y , v).

(first layer) C computes zi
def
= xi ∧ yi , for every i ∈ [n].

(second layer) C outputs sign(
∑

i∈[n] zi −
∑

i∈[n] vi).

Idea. Bob does all the work, and simulates a binary search in order to
compute

∑
i xi · yi .

Bob sends v = 0n/21n/2:
bit computed by Alice reveals if

∑
i∈[n] xi · yi is at least n/2.

Bob sends string corresponding to the next step of the binary search,
and so on.
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Part 2: Main Results
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Main Result

Razborov/Smolensky, 1987.
“Any AC0

d [p]-compression game for Majority requires nontrivial
communication.”

Chattophadyay and Santhanam, 2012.
Any single-round AC0

d [p]-compression game for Majority requires
communication

√
n/(log n)O(d).
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Main Result

[Theorem 1]. There exists a fixed constant c ∈ N such that, for each
d ∈ N, and every n ∈ N sufficiently large, the following holds.

1) Any AC0
d [p]-compression game for Majorityn (any number of rounds)

has communication cost ≥ n/(log n)2d+c .

2) There exists a single-round AC0
d [p]-compression game for Majorityn

with communication cost ≤ n/(log n)d−c .
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Lower bound against circuits with oracle gates

Theorem 1 implies that structure of Boolean circuit for Majority is
essentially optimal.

Circuits with oracle gates: several applications in theoretical
computer science.

Example:

[IW’97] ∃f ∈ EXP that requires circuits of size 2Ω(n) then P = BPP.

[KvM’99] ∃f ∈ NE ∩ coNE that requires circuits with SAT-oracles of
size 2Ω(n) then AM = NP.
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Lower bound against circuits with oracle gates

Lemma. Let C be a Boolean circuit over n variables from Cd (poly(n))
augmented with oracle gates fi : {0,1}si → {0,1}ti , where i ∈ [r ], for
some r = r(n).

Let s = s1 + . . .+ sr be the total fan-in of these oracle gates, and
h : {0,1}n → {0,1} be the Boolean function computed by C.

Then h admits a Cd (poly(n))-compression game with communication
cost c(n) ≤ s consisting of at most r + 1 rounds.

Main lower bound holds for protocols with unlimited number of rounds:

Corollary. If Majority is computed by an AC0
d [p] circuit with arbitrary

oracle gates, then the total fan-in of the oracle gates is
≥ n/(log n)2d+O(1).
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Sketch of the lower bound (Theorem 1)

Let C = AC0
d [p], and consider a fixed prime q 6= p.

MODq ≤compression Majority

Interactive Compression ≤ Exponentially large circuit

New circuit lower bound for MODq :

Improved polynomial approximation ⇐⇒ Degree lower bound in low error regime

20



Compressing symmetric functions using Majority

Lemma.
Let h : {0,1}n → {0,1} be an arbitrary symmetric function, C be a
circuit class, and d ≥ 1.

Assume that the Cd (poly(n))-compression game for Majorityn can be
solved with cost c(n) in r(n) rounds.

Then the Cd+O(1)(poly(n))-compression game for h can be solved with
cost ch(n) = O(c(2n) · log n) in rh(n) = O(r(2n) · log n) rounds.

Proof sketch.
1) Compression for Majority implies compression for Thk .
2) Alice and Bob perform a binary search.
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From interactive compression to very large circuits

Proposition.

If there exists a Cd (poly(n))-compression game for fn with cost c(n),
then there exist circuits C1, . . . ,CT from Cd+O(1)(poly(n)), where

T ≤ 2c(n),

such that ∀x ∈ {0,1}n,

fn(x) =
∨

i∈[T ]

Ci(x).

Proof sketch. Each circuit Ci checks whether the interaction induced
by x leads to the i-th accepting transcript.

Depth blow-up is minimal: “Parallel simulation of all rounds”.
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The difficulty of analyzing very large circuits

Goal.
Lower bound against circuits of depth d + O(1) and size ≥ 2c(n).
Want to set c(n) ≈ n/poly(log n).

Problem.
No explicit lower bounds for depth-d circuits of size 2ω(n1/(d−1)).
(Actually, MODq admits depth-d circuits of size ≪ 2n/poly(log n)).

Idea.

fn(x) =
∨̇

i∈[T ]

Ci(x).

Initial function is a disjoint union of (poly-size) circuits Ci .

If f (x) = 1 then exactly one circuit evaluates to 1.
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From interactive compression to very large circuits

Proposition (updated)

If there exists a Cd (poly(n))-compression game for fn with cost c(n),
then there exist circuits C1, . . . ,CT from Cd+O(1)(poly(n)), where

T ≤ 2c(n),

such that ∀x ∈ {0,1}n,

fn(x) =
∨̇

i∈[T ]

Ci(x) (“uniqueness property”)
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New circuit lower bound for MODq

Proposition.
For every d ≥ 1, if we have

MODq(x1, . . . , xn) =
∨̇

i∈[T ]
Ci(x1, . . . , xn),

where each Ci is an AC0
d [p] circuit, then

T ≥ 2n/(log n)2d+O(1)
.

Proof sketch.
Polynomial approximation method in the very low error regime.

(Razborov/Smolensky’s lower bound: optimized when ε = Ω(1).)

25



New circuit lower bound for MODq

Proposition.
For every d ≥ 1, if we have

MODq(x1, . . . , xn) =
∨̇

i∈[T ]
Ci(x1, . . . , xn),

where each Ci is an AC0
d [p] circuit, then

T ≥ 2n/(log n)2d+O(1)
.

Proof sketch.
Polynomial approximation method in the very low error regime.

(Razborov/Smolensky’s lower bound: optimized when ε = Ω(1).)

25



New circuit lower bound for MODq

Proposition.
For every d ≥ 1, if we have

MODq(x1, . . . , xn) =
∨̇

i∈[T ]
Ci(x1, . . . , xn),

where each Ci is an AC0
d [p] circuit, then

T ≥ 2n/(log n)2d+O(1)
.

Proof sketch.
Polynomial approximation method in the very low error regime.

(Razborov/Smolensky’s lower bound: optimized when ε = Ω(1).)

25



Improved approximation by Fp polynomials

Polynomial approximation method + Uniqueness:

Claim. If each Ci can be δ-approximated by an Fp polynomial Pi , then

Q(x)
def
=
∑
i∈[T ]

Pi(x) (Recall: f =
∨̇

i∈[T ]
Ci)

is an ε = T · δ approximator for f .

Reason.
In general, several Pi ’s correct on x can cause “

∨
” to be wrong (Fp).

Uniqueness =⇒ can take union bound over bad inputs only.

Important. Degree of Q at most degree of Pi ’s.

Problem: how to control error and degree simultaneously?
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The low error regime in the approximation method

Razborov/Smolensky, 1987 (polynomial approximation)
For every δ(n) > 0, any AC0

d [p] admits a δ-error probabilistic
polynomial P(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree
(O(log n + log(1/δ)))d .

Kopparty and Srinivasan, 2012 (extension)

(O(log n))d · log(1/δ) instead of (O(log n + log(1/δ)))d .

Razborov/Smolensky + folklore, 1987 (lower bound for all ε)
For every ε(n) ∈ [2−.001n , 1/100q], any Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn]
that ε-approximates MODq (uniform distribution) has degree

Ω
(√

n · log(1/ε)
)
.
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Finishing the proof

Suppose MODq(x1, . . . , xn) =
∨̇

i∈[T ]Ci(x1, . . . , xn).

We δ def
= ε/T approximate each Ci , getting a T · δ = ε approximator:

degree ≤ (log n)d · log(1/δ)

= (log n)d (log T + log(1/ε)).

Using the degree lower bound, for any ε ∈ [2−.001n , 1/100q],√
n · log(1/ε) ≤ degree.

Therefore,

log T ≥
√

n · log(1/ε)− (log n)d · log(1/ε)

(log n)d ,

which is maximized when ε = exp
(
− n/(4(log n)2d )

)
.
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Observation

To obtain AC0
d [p] circuit size lower bounds for MODq:

Polynomial approximation method with ε as large as possible.

To understand structure of optimal polynomial size circuits up to depth
≈ log n/ log log n:

Polynomial approximation method in the very low error regime.
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Round complexity in C-compression games

AC0[p] lower bound: holds for any number of rounds.

AC0[p] upper bound: single-round compression.

Power of interaction in compression games?

Chattopadhyay and Santhanam, 2012:
For every fixed r , there is a Boolean function on n variables that admits
AC0-bounded protocols with r rounds and cost O(n1/r ), but for which
any correct AC0-bounded (r − 1)-round protocol has cost Ω(n2/r−o(1)).

=⇒ Quadratic gap, dependence on r not very satisfactory.
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The power of interaction in AC0-compression games

[Theorem 2].

Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of
functions f = {fn}n∈N with the following properties:

There exists an AC0
2(n)-bounded protocol Πn for fn with r rounds

and cost c(n) ≤ nε, for every n ≥ nf , where nf is a fixed constant
that depends on f .

Any AC0(poly(n))-bounded protocol Π for f with r − 1 rounds has
cost c(n) ≥ n1−ε, for every n ≥ nΠ, where nΠ is a fixed constant
that depends on Π.
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Hard function for round-limited protocols

Function fn : {0,1}n → {0,1}, where n def
= m + ` · r ·m.

“Pointer Jumping Problem”. Uses a function h = {ht}t∈N that is hard
for AC0.

Intuition:

Upper bound: r + 1 rounds with communication (1 + r) ·m.
Lower bound: r rounds require communication at least ` ·m1−o(1).

Appropriate setting of parameters induces gap: nε versus n1−ε.

Proof relies on a round elimination argument via random restrictions,
together with an appropriate induction hypothesis.
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Part 3: Open Problems

33



Open Problem 1: Round separation for AC0[p]-compression games?

As far as we know, single-round AC0[p] protocols are as powerful as
k -round protocols.

(Our technique for AC0[p] is insensitive to the # of rounds.)

Problem. Prove a “round separation theorem” for AC0[p]-compression
games.
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Open Problem 2: Lower bounds for randomized AC0[p]-compression games?

The randomized AC0[p]-compression complexity of Majority remains
open.

Reason: proof explores very low error regime in the polynomial
approximation method (initial error probability is not tolerated).

Problem. Settle the randomized AC0[p]-compression complexity of
Majority.

Remark. Communication cost is n/(log n)Θ(d) for randomized
AC0

d -compression games (Chattopadhyay and Santhanam, 2012).
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Open Problem 3: Power of modulo m gates in interactive compression?

Unconditional lower bounds:

Circuit class Hard function Incompressibility (depth d)
AC0 Parity CC(Parityn) ≥ n/ logO(d) n

AC0[p] Majority CC(Majorityn) ≥ n/ logO(d) n
AC0[m] NEXP, Majority (?) CC(Majorityn) = ?

Question. Are there randomized AC0[m]-compression games for
Majority with communication cost n1−ε?

This result would shed more light on the hardness of proving
lower bounds against circuits with modulo m gates.

36



Open Problem 3: Power of modulo m gates in interactive compression?

Unconditional lower bounds:

Circuit class Hard function Incompressibility (depth d)
AC0 Parity CC(Parityn) ≥ n/ logO(d) n

AC0[p] Majority CC(Majorityn) ≥ n/ logO(d) n
AC0[m] NEXP, Majority (?) CC(Majorityn) = ?

Question. Are there randomized AC0[m]-compression games for
Majority with communication cost n1−ε?

This result would shed more light on the hardness of proving
lower bounds against circuits with modulo m gates.

36



Thank you!
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