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Abstract. We provide an algorithm that takes as an input a given parametric
family of homogeneous polynomials, which is invariant under the action of the

general linear group, and an integer d. It outputs the ideal of that family inter-

sected with the space of homogeneous polynomials of degree d. Our motivation
comes from Problem 13 in [26], which asks to find equations for the variety of

quartic symmetroids. The algorithm heavily uses a database of specific Young

tableaux and highest weight polynomials. We provide the database and the
implementation of the database construction algorithm. Moreover, we provide

a julia implementation to run the algorithm using the database, so that more

varieties of homogeneous polynomials can easily be treated in the future.
In addition, we conduct a numerical experiment seeking to determine the

degree of the variety of quartic symmetroids.

1. Introduction

Many mathematical models are defined by nonlinear maps f : V → W between
vector spaces. The space V is called parameter space and W is called the state space
of the model. For instance, such models are common in statistics and physics. The
setting allows to generate possible outcomes of the model, by evaluating f . This is
called the forward problem. On the other hand, the inverse problem is to decide if
a point w ∈W belongs to the image of f , and if so, to determine its preimage.

In this article we focus on the case when f is a polynomial map. Under this
assumption the forward problem consists in evaluating a system of polynomials,
and the inverse problem is to solve a system of polynomial equations.

Our main aim is to describe the closure of the image of f , when V,W are complex
vector spaces. The goal is to describe the polynomial equations that vanish on the
image of f . Having such equations at hand decouples the inverse problem: for
the decision problem, whether or not w is in the image of f , one can evaluate the
polynomials at w instead of solving a system of equations. The former is much
simpler than the latter.

The classical method to find equations relies on the computation of a lexico-
graphic Gröbner basis [12, 21] to perform elimination of variables. It is a symbolic
method, that in practice may be used only on small examples. Thus, the motivation
for us is to describe an alternative algorithm that can go beyond these small cases.
In general, this task is too ambitious. But, if we assume that the problem has some
underlying symmetries, we can use the power of representation theory to reduce
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complexity. In this paper, we make the following assumption for f : we require it
to be mapping into a vector space of polynomials and we assume that the image
of f is GL-invariant.

Assumption 1.1. We assume that W = Sc(Cn) is the space of homogeneous poly-
nomials of degree c in n variables. Furthermore, we assume that the image of f is
invariant under GL(Cn), which acts by variable substitution.

Our motivation comes from Problem 13 in [26], which asks to find equations
for the variety of quartic symmetroids. This is a subvariety of the vector space of
homogeneous polynomials in n = 4 variables of degree c = 4. It is GL(4)-invariant.
We address this problem in Section 5.

We note that the GL action both gives us many advantages and is very nat-
ural. Our ambient space Sc(Cn) of polynomials may be regarded as a space of
varieties. Following Felix Klein Erlangen program geometric quantities should be
group-invariant. Thus, very often when studying sets of polynomials, we would like
those sets not to depend on the choice of the basis. This is precisely the GL invari-
ance. Further, the space of polynomials vanishing is often huge, but the GL action
reduces the complexity and allows us to describe it using just a few generators.

2. Contributions

We present an algorithm to study the image of f under Assumption 1.1. This
algorithm produces the following: let

X := im(f)

be the closure of the image of f and let I be the ideal of polynomials that vanish
on X. Given f and any d we return the minimal set of polynomials that under
the GL action span Id. This algorithm is exact, ie. does not rely on any approx-
imations. However, instead of a purely symbolic algorithm that works with the
parametrized variety X directly, a much more efficient implementation just sam-
ples from X (without approximations) and uses only the sampled points as input,
which reduces the finding problem to a linear algebra problem. The details are
given in Section 4. This means that due to unlucky sampling in principle the al-
gorithm could output equations that are not actually equations. In practice the
probability of this is extermely low and can be further reduced to an inverse ex-
ponentially small probability by running the algorithm several times. One of the
algorithm’s central ingredients is a database which contains basis of highest weight
spaces for different plethysms.

The variety of quartic symmetroids consists of polynomials that are determi-
nants of symmetric four by four matrices with entries that are linear forms in four
variables. To distinguish it from the general X we will use another symbol for it:

Q := {det(x0A0 + x1A1 + x2A2 + x3A3) | Ai ∈ C4×4 and ATi = Ai, 0 ≤ i ≤ 3}.
It is a GL(C4) invariant subvariety of S4(C4) of codimension 10. We apply our
algorithm to this variety, and gives us the following result.

Theorem 2.1. There are no equations for Q in degrees up to (including) 8.

Our second contribution is a numerical experiment seeking to determine the
degree of the variety of quartic symmetroids. Based on the results from Section 5
we make the following conjecture.
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Conjecture 2.2. The degree δ of Q is 850000 ≤ δ ≤ 851000.

We combine numerical and symbolic methods in our algorithms. Both the numer-
ical and the symbolic algorithm appeared (explicitly or implicitly by using highest
weight polynomials as images of symmetrizations over the wreath product) in par-
ticular examples before [6, 7, 8, 18, 2, 10, 11, 9, 14, 19, 1, 23, 22, 20, 3, 24, 13].
However, to our knowledge, this is the first general implementation and the first
one with which it is possible to check for equations of degree 8 on S4(C4). This
is made possible by the use of an idea that we call equivariant hash functions, see
Section 4. We provide the source code of our implementation and an easy to use
user interface for future researchers to build upon.

We remark that new algorithms for evaluating highest weight polynomials have
been developed very recently in [4]. No open source implementation of these algo-
rithms is available, but in a special case (see [14]) the running time improvements
seem to be of practical importance.

3. Representation theory

Representation theory can be very beneficial for large computations. In one line,
it allows to replace a possibly high dimensional irreducible representation, by a one
dimensional subspace—the span of the highest weight vector. We briefly recall the
relevant concepts for our setting. For more details the reader is referred to [17, 21].

Every irreducible, polynomial representation V = Vλ of GL(Cn) is associated
to a Young diagram λ with at most n rows. Fixing the torus T ⊂ GL(Cn) of
diagonal matrices the representation V of T is decomposable V = ⊕χ∈ZnVχ, where
tv = χ(t)v for v ∈ Vχ and Zn is the lattice of characters of the torus T . The
lexicographically largest χ, say χ0 = (l1, . . . , ln) is called the highest weight of V .
The Young diagram λ has li boxes in the i-th row. We have dimVχ0 = 1. The
unique up to scaling element of Vχ0 is called the highest weight vector.

Example 3.1. Let V = SdCn be the d-th symmetric power of Cn. It is an irreducible
representation. The characters of the torus χ appearing in the representation cor-
respond to n-tuples of nonnegative integers summing up to d. The highest weight
is (d, 0, . . . , 0) ∈ Zn. The highest weight vector is e1 · · · e1. The associated Young
diagram is a row with d boxes.

More generally, for any representation V of GL(Cn) a vector v ∈ V is called
a highest weight vector if it is an image of a highest weight vector in some irre-
ducible representation Vχ under a GL(V )-equivariant map. If V =

⊕
λ V
⊕aλ
λ is the

decomposition of V then aλ equals the dimension of the vector space of highest
weight vectors in V of weight λ. Further, any highest weight vector of weight λ
uniquely determines a subrepresentation Vλ ⊂ V . In other words, representation
theory allows to replace a possibly large representation V by much smaller spaces
of highest weight vectors.

The main observation is that if X ⊂ Sc(Cn) is GL(Cn) invariant then Id is
a representation of GL(Cn), which is a subrepresentation of Sd(Sc((Cn)∗)). The
representation Sd(Sc(Cn)∗) is known as a plethysm. In general the formulas for
its decomposition into irreducible representation are not known, and determining
a combinatorial description for the multiplicities of irreducibles is Problem 9 in
Stanley’s list of open problems in algebraic combinatorics [25]. However, they
are known up to d ≤ 5 and for fixed d and c there are algorithms to find such
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decompositions. For general d and c = 3 even the task of deciding positivity of aλ
is NP-hard, see [16].

If Sd(Sc((Cn)∗)) =
⊕

λ`db(S
λ)⊕aλ is the decomposition, then we seek to find

such subrepresentations (Sλ)⊕bλ ⊂ (Sλ)⊕aλ that Id =
⊕

λ`db(S
λ)⊕bλ . This is

equivalent to finding a bλ-dimensional linear subspace in the space of highest weight
vectors in (Sλ)⊕aλ . We provide a database of polynomials in

Sd(Sc) := Sd(Sc((Cn)∗))

that for each λ provides a basis of the highest weight space of (Sλ)⊕aλ . Finally,
we apply exact linear algebra methods to find which combinations of those vectors
vanish on X. This is done by finding exact random points of X giving linear
conditions on highest weight spaces.

To generate a basis of the highest weight vectors in Sd(Sc) one may first generate
a basis of highest weight vectors of weight λ in (Sc)⊗d. This is obtained by applying
the Pieri rule. As writing this basis in terms of tensors is quite memory and
time consuming, it is much better to simply remember it in terms of semistandard
Young tableaux. The symmetrizing operator (Sc)⊗d → Sd(Sc) maps this basis to a
generating set. Out of that set one chooses a basis, using linear algebra. There are
many choices to pick a basis out of a generating set. We choose a random initial
element in the generating set and add it to our basis. Then we choose another
random element in the generating set, and check if it is linearly independent to the
current basis. If it is we add this new element to the basis. We repeat this process
until the number of basis elements equals the multiplicity of Sλ in Sd(Sc). To check
linear independence it is enough to be able to evaluate a polynomial corresponding
to a given Young tableaux at many points. We apply a method that allows fast
evaluation, without the necessity to expand the whole highest weight vector.

4. Algorithm

We describe here how to convert a Young tableau into a highest weight polyno-
mial over the monomial basis. Evaluation at a point in X is then straightforward.
In this way, if we can sample efficiently from X, we can evaluate the basis of aλ
many highest weight polynomials at aλ sampled points, obtain a square matrix A
of evaluations, and use linear algebra to compute bλ = dim kerA.

We are given two natural numbers d, c ∈ N. Moreover, we are given a so-called
isobaric Young tableau. This is an top-left justified arrangement of dc many boxes
with entries from {1, . . . , d} such that every entry appears exactly c times, see this
example with d = 4, c = 3:

1 1 1 2 3 4
2 2 3 4
3 4

In fact, we may assume that the tableau is semistandard, which means that the
entries are increasing within each column from top to bottom and they are nonde-
creasing within each row from left to right. The example above is semistandard. It
is an open question whether or not it is possible to use semistandardness to get a
computational advantage.
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We color the boxes in the same color iff the have the same number, and then we
remove the numbers:

Let µi denote the number of boxes in column i. Let Sk denote the symmetric
group on k letters. A column permutation assignment is defined as an assignment
of numbers to the boxes such that in each column i each number from {1, . . . , µi}
appears exactly once. For example, this is a column permutation assignment:

1 2 2 1 1 1
2 1 1 2
3 3

Each column in a column permutation assignment specifies a permutation, so we
can define the sign of a column permutation assignment to be the product of the
signs of the permutations that correspond to the columns. The example above has
sign 1 · (−1) · (−1) · 1 · 1 · 1 = 1.

To each column permutation assignment T we assign the word w(T ) that is
obtained by reading from T first all entries from one color, then from the next, and
so on. The order of colors and the order in which we read entries from the same
color does not matter, because we define to words of length cd to be equivalent
if they arise from each other by permuting symbols within the block {1, . . . , c}
or within {c + 1, . . . , 2c}, and so on, or if they arise by permuting the d many
blocks (in other words, they are equivalent iff they lie in the same orbit under
the action of the wreath product Sc o Sd). The equivalence class of words w(T )
in the example above is {{1, 2, 2}, {1, 1, 2}, {1, 1, 3}, {1, 2, 3}}. To every column
permutation assignment T , let κ(T ) denote the equivalence class of w(T ). Consider
the vector space spanned by all possible κ(T ), where we interpret distinct κ(T ) to
be linearly independent unit vectors.

Up to a simple rescaling of the basis, the highest weight polynomial in monomial
presentation is then ∑

column permutation assignment T

sgn(T )κ(T ).

A bottleneck in the computation of this polynomial is the number of column per-
mutation assignments. For example, if d = 8, c = 4, then for the Young diagram
with row lengths λ = (8, 8, 8, 8) we have 110 075 314 176 many column permutation
assignments. Therefore it is imperative to perform as few operations as possible for
each summand. Here are a few points which accelerate the computation:

(1) We use a Gray code to iterate through the sum so that the sign alternates
for every summand. Therefore we never have to compute the sign of a
permutation. The Gray code is a product of hardcoded Gray codes for
small symmetric groups.

(2) We do not compute κ(T ), because it would require sorting. Instead we use
an equivariant hash function: We can efficiently compute the hash function
value for a column permutation assignment and the equivariance of the hash
function guarantees that words that equivalent under the wreath product
action are mapped to the same hash value. Since we know all possible
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images of the hash function in advance, we can choose the parameters to
make it collision-free in a precomputation step.

(3) To crucially speed up to computation the hash function value is not com-
puted for each summand, but the hash function value is just adjusted at
each step. This is possible, because the hash function is chosen as follows.
Let Ti,j be the jth entry in the ith colored block of T . Then, the hash
function h is

h(T ) :=

d∑
i=1

( c∑
j=1

ι(Ti,j)
)k

mod p

for a suitable k ∈ N and prime p, where ι(i) is the i-th entry in a fixed array
of random numbers from {0, . . . , p−1}. Raising to the k-th power is done by
repeated squaring. The Gray code ensures that only two blocks are changed
and only one entry in each block, which makes updating the hash value very
efficient. To give a rough idea of the performance, after the precomputation
of the hash function the summation over the 110 075 314 176 entries for
λ = (8, 8, 8, 8) takes only a few hours on a laptop.

Those ideas are incorporated into our implementation.

5. Numerical methods

The algorithm that we have described in the last section is symbolic. It is based
on exact computations, thus yielding exact results. As we have demonstrated, it
can go beyond the cases that the classical method relying on Gröbner basis [12, 21]
can cope with.

Nevertheless, there are still limits to our algorithm with the current technology
that numerical methods can surpass. For instance, our main theorem (Theorem 2.1)
shows that no equations of degree at most 8 vanish no the variety of quartic sym-
metroids Q. But we could not find the minimal degree d, for which there are
equations; i.e., such that Id 6= ∅. Numerical methods, although not exact, can
help to make an educated guess for those numbers. In this last section we want to
explain this.

We first explain an approach on how to compute the degree of X. Applying this
to the special case of quartic symmetroids leads to Conjecture 2.2. Thereafter, we
will discuss that one can in principle extract the minimal d, such that Id 6= ∅, from
this computation. This poses new numerical challenges, however.

5.A. Experiment: the degree of the variety of quartic symmetroids. We
make a numerical computation to determine the degree of Q. The approach de-
scribed in this section can easily be generalized to the general situation involving X,
but for simplicity we will stick to the special situation with Q.

We use affine coordinates by setting A0 = 14 equal to the 4× 4 identity matrix.
Then, we have the following situation:

f : V →W,

a = (A1, A2, A3) 7→ coefficients of det(x014 + x1A1 + x2A2 + x3A3)

and dimV = 31 and dimW = 35. To determine the dimension of Q we compute
the rank of the Jacobian matrix of f at a random point. We get dimQ = 25.
This implies that the dimension of the fibers of f for a general point h ∈ Q is
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dim f−1(h) = 6. The degree of Q is thus the number of isolated complex solutions
of the following system of 31 polynomial equations in the 31 variables a:

(5.1) B · f(a) = β and C · a = γ,

where B ∈ C25×35, β ∈ C25, C ∈ C6×31 and γ ∈ C6 are chosen randomly. Due
to the fact that we can easily generate one solution to this system, we can ex-
ploit monodromy by varying B and β in loops and numerically tracking the so-
lutions along those loops. This produces new solutions for (5.1). The details of
this technique are, for instance, explained in [15]. We used the implementation in
HomotopyContinuation.jl [5] for our case of quartic symmetroids. After three
months the algorithm had found 849998 solutions for (5.1). At this point the com-
putation was aborted manually, because it hadn’t found any more solution in a
week. This led us to state Conjecture 2.2.

5.B. Further directions. Here, we explain an approach for answering the follow-
ing question: Given a homogeneous polynomial map f : Ca → Cb what is the
dimension of the vector space Id of polynomials of degree d that vanish on the
image?

The basic idea is this: suppose that we have run the algorithm from the pre-
vious section. Then, we have found a linear space L in W = Sc(Cn) and points
w1, . . . , wδ ∈ X ∩L, such that δ is the degree of X. Any equation that vanishes on
X also vanishes on the wi. We now discuss when the reverse is true. If this holds,
we can check numerically by solving a system of linear equations, whether or not
there are equations of a fixed degree d vanishing on the X. Note that this does
not yield equations for X. Furthermore, we can use coordinates for L for doing
the linear algebra. This kind of dimensionality reduction can provide a significant
reduction in computational complexity.

Let us write b := dim(Sc(Cn)) and the image of f is invariant under the action of
GL(Cn). We ask for the dimension of Id, that is the degree d part of I. It should be
emphasized that this is naturally a problem in linear algebra, as Id is a vector space.
Each point x ∈ X determines a linear condition on the space Sd(Cb), giving rise to
a hyperplane containing Id. In fact, Id is the intersection of all such hyperplanes.
For dimensional reasons, it would be enough to pick consecutively random x ∈ X
and intersect the hyperplanes in Sd(Cb), until the intersection stabilizes. This is
indeed sometimes done in practice, but the main problem is the large dimension(
d+b−1
d

)
of the space Sd(Cb). The method we describe is particularly useful if:

(1) the codimension of X is small,
(2) the degree of X is small.

From now on we work in the projective space P(Cb) and consider X as a projective
variety. Let e := codimX.

We pick a random subspace L = Pe ⊂ P(Cb). By Bertini’s theorem Pe intersects
X in δ = degX many smooth points

S = L ∩X.

A random linear form h1 is not a zero divisor in the ring C[y1, . . . , yb]/I, hence we
have an exact sequence:

0→ C[y1, . . . , yb]/I → C[y1, . . . , yb]/I → C[y1, . . . , yb]/(I + (h1)),
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where the first map is multiplication by h1. Hence, the Hilbert series of I + (h1)
equals (1 − t) times the Hilbert series of I. In particular, the numerators of the
Hilbert series are the same. The number of linear h1, . . . , hl such that hi+1 is not
a zero divisor modulo I + (h1, . . . , hi) for every 0 ≤ i < l is governed by the depth
of the (localization of the) ring C[y1, . . . , yb]/I. Depth is always at most equal to
the dimension and the cases when equality holds are called Cohen-Macaulay.

After choosing e = codimX many linear forms, we arrive at the ring

C[y1, . . . , yb]/(I + (h1, . . . he))

which describes S as a projective scheme. In general, the ideal (I + (h1, . . . he))
may have an embedded component at zero, however this again does not happen
if X is arithmetically Cohen-Macaulay (which means that its coordinate ring is
Cohen-Macaulay). In practice, we next choose an affine linear form and add it to
the ideal to represent S as a finite subset of an affine space.

In particular, if our variety X is arithmetically Cohen-Macaulay then the Hilbert
function of the finite set S in fact encodes the numerator of the Hilbert series of X.
In any case a nonzero element in Id gives rise to a nonzero element in I(S)d.
As long as I(S)d = 0 we also have Id = 0, hence we do not have to look for
equations in those degrees. Further, in smallest degree d such that I(S)d 6= 0 we
have dim Id = dim I(S)d in the Cohen-Macaulay case.

Example 5.1. In the following example we construct a toric ring of small depth.
Consider the map:

(x1, x2, x3, x4) 7→ (x1x
4
2, x1x

3
2x3, x1x2x

3
3, x1x

4
3, x1x

4
2x4, x1x

3
2x3x4, x1x2x

3
3x4, x1x

4
3x4).

The image is a toric variety of projective dimension two and degree eight. It
is minimally generated by nine quadrics and twelve cubics. If we intersect the
image with two affine linear forms we obtain eight points. These eight points do
not contribute to new linear equations, however their ideal has thirteen minimal
generators in degree two.

Thus, if we know S, we may estimate dim Id using linear algebra approach de-
scribed above, but now we deal with points in the ambient space of dimension
e = codimX. Hence, we have to solve degX many linear equations in

(
d+e−1
d

)
many variables.

Numerical methods help us both: to obtain S and to solve the linear equations.
To generate Pe we take a span of e + 1 many random/general points of X. We
obtain Pe together with e+ 1 many points of S. To generate all of S = {w1, . . . , wδ}
we apply the monodromy method from the previous subsection.

Now a new problem arises. As our points are just approximations of the points
in S, if we ask for the rank of the matrix associated to the system of linear equa-
tions, symbolically it will always be nondegenerate. Further, the matrix we obtain
depends on the choice of the basis of degree d polynomials we take. The idea is to
look at the singular values of the associated matrix in the basis. This allows us to
discover the rank of the approximated matrix.

We are confident that the approach, that we have just described, will be helpful
in future computations involving GL invariant families of polynomials. For the
particular case of quartic symmetroids Q, we were not able to apply it, yet. We
first must settle Conjecture 2.2.
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