L UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Fakultét fiir Elektrotechnik, Informatik und Mathematik
Institut fir Informatik
33098 Paderborn

On the complexity of computing Kronecker
coefficients and deciding positivity of
Littlewood-Richardson coefficients

Christian Ikenmeyer
Diplomarbeit

vorgelegt bei

Prof. Dr. Peter Biirgisser
Universitat Paderborn

Prof. Dr. Friedrich Eisenbrand
Ecole Polytechnique Fédérale de Lausanne

01. Oktober 2008

Abstract

Littlewood-Richardson coefficients are the multiplicities in the tensor product de-
composition of two irreducible representations of the general linear group GL,,(C).
Kronecker coefficients are the multiplicities in the tensor product decomposition
of two irreducible representations of the symmetric group S,,. Both coefficients
have a wide variety of interpretations in combinatorics, representation theory,
geometry and in the theory of symmetric functions.

It is known that the problem of computing Littlewood-Richardson coefficients
is hard. More specifically, it is #P-complete. This means that the existence of
a polynomial time algorithm for this problem is equivalent to the existence of
a polynomial time algorithm for evaluating permanents, which is considered un-
likely. Our first result shows that the problem of computing Kronecker coefficients
is computationally hard as well. More specifically, we prove that this problem is
GapP-complete.

Quite surprisingly, as first pointed out by Mulmuley and Sohoni, it is possible
to decide the positivity of Littlewood-Richardson coefficients in polynomial time.
This follows by combining the facts that Knutson and Tao proved the Saturation
Conjecture (1999) and that linear optimization is solvable in polynomial time.
In the second part of this work, we design an explicit combinatorial polynomial
time algorithm for deciding the positivity of Littlewood-Richardson coefficients.
This algorithm is highly adapted to the problem and uses ideas from the theory of
optimizing flows in networks. This algorithm also yields a proof of the Saturation
Conjecture and a proof of a conjecture by Fulton, which was proved by Knutson,
Tao and Woodward (2004). We further give a polynomial-time algorithm for
deciding multiplicity freeness, i.e. whether a Littlewood-Richardson coefficient is
exactly 1.

1

Zusammenfassung

Littlewood-Richardson-Koeffizienten sind die Multiplizititen in der Tensor-
produktzerlegung zweier irreduzibler Darstellungen der allgemeinen linearen
Gruppe GL,(C). Kronecker-Koeffizienten sind die Multiplizitdten in der Tensor-
produktzerlegung zweier irreduzibler Darstellungen der symmetrischen Gruppe
Sp. Beide Koeffizienten haben eine Vielzahl von Interpretationen in Kombina-
torik, Darstellungstheorie, Geometrie und der Theorie symmetrischer Funktio-
nen.

Es ist bekannt, dass das Problem der Berechnung von Littlewood-Richardson-
Koeffizienten schwierig ist, genauer, dass es #P-vollstandig ist. Dies bedeutet,
dass die Existenz eines Polynomialzeitalgorithmus aquivalent ist zur Existenz
eines Polynomialzeitalgorithmus zur Berechnung von Permanenten, was als un-
wahrscheinlich angesehen wird. Unser erstes Ergebnis zeigt, dass das Problem
der Berechnung von Kronecker-Koeffizienten auch schwierig ist. Genauer gesagt
beweisen wir die GapP-Vollstandigkeit dieses Problems.

Uberraschenderweise konnten Mulmuley und Sohoni aufzeigen, dass es
moglich ist, die Positivitat von Littlewood-Richardson-Koeffizienten in Polynomi-
alzeit zu entscheiden. Dies ergibt sich aus der Kombination der beiden Tatsachen,
dass Knutson und Tao die Saturiertheitsvermutung bewiesen haben (1999) und
dass lineare Optimierung in Polynomialzeit 16sbar ist. Im zweiten Teil dieser Ar-
beit konstruieren wir einen expliziten kombinatorischen Polynomialzeitalgorith-
mus, der die Positivitat von Littlewood-Richardson-Koeffizienten entscheidet. Er
ist stark an das Problem angepasst und benutzt Ideen von Flussoptimierungsalgo-
rithmen. Dieser Algorithmus liefert auch einen Beweis fiir die Saturiertheitsver-
mutung und fiir eine Vermutung von Fulton, die erstmals von Knutson, Tao
und Woodward (2004) bewiesen wurde. Auflerdem geben wir einen Polynomi-
alzeitalgorithmus zum Uberpriifen der Freiheit von Multiplizititen an, d.h. ob
ein Littlewood-Richardson-Koeffizient genau 1 ist.

111

Eidesstattliche Erklarung Hiermit versichere ich, dass ich die folgende Ar-
beit selbststandig verfasst und keine anderen als die angegebenen Quellen als
Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Paderborn, den 01.10.2008

Christian Tkenmeyer

v

Lass aller Menschen Tun gedeihn,
thr Werk von Dir behiitet sein.
Sei jedem nah mit Deiner Kraft,
dass er getreu das Rechte schafft.

Psalteriolum harmonicum sacrarum cantilenarum,
anonymus, Koln 1642

Acknowledgments

I would like to express my gratitude to my teachers who invested much time
in giving me valuable assistance during my research and with whom I had very
fruitful discussions, namely Prof. Dr. Peter Biirgisser, whose dedication to my
support was beyond comparison, and Prof. Dr. Friedrich Eisenbrand, whose
suggestions on the last two chapters were of great help. I would also like to
thank Martin Niemeier and Jaroslaw Klose for their proofreading and their helpful
comments.

vi

Contents

1 Introduction

2 Preliminaries — Complexity Theory
2.1 Decision complexity Lo
2.2 Counting complexityo Lo

3 Preliminaries — Representation Theory
3.1 Skew diagrams and tableaux
3.2 The algebra of symmetric functions
3.3 The algebra of characters of the symmetric group
3.4 Coefficients in decompositions

4 The complexity of computing Kronecker coefficients
4.1 Upper bound for KRONCOEFF
4.2 Special cases of Kronecker coefficients
4.3 Ballantine and Orellana’s description
4.4 Lower bound for KRONCOEFF

5 Preliminaries — Flows in networks
5.1 Graphs
5.2 Flowsondigraphs. o L
5.3 Flow decomposition oL
5.4 Capacities
5.5 The Ford-Fulkerson algorithm
5.6 The Ford-Fulkerson Capacity Scaling Algorithm

6 Deciding positivity of LR-coefficients
6.1 Saturation Conjecture and hive polytopes
6.2 Hivesand flows
6.2.1 The graph structure
6.2.2 Sources, sinks and b-boundedness
6.3 Comments on two-commodity flow
6.4 The basic algorithm LRPA

vil

6.4.1 Flatspaceso 54
6.4.2 The residual network 55
6.4.3 Flatspace chains and increasable subsets 63
6.4.4 The LRPA and the Saturation Conjecture 66
6.4.5 Shortest well-directed cycles 68
6.5 Checking multiplicity freeness 89
The polynomial-time algorithm LRP-CSA 91
7.1 The residual network oL 91
7.2 The LRP-CSA 92
7.3 Optimizing wrt. 1T .0 00000000 o 93
7.4 Aninitial solution 98
7.5 Correctness 101
7.6 Running timeo 102
7.7 Handling weakly decreasing partitions. 104

Viil

Chapter 1

Introduction

It is well known that the irreducible representations .#) of the symmetric group S,
on n letters (in characteristic zero) can be indexed by the partitions A F n of
n, cf. [Sag01]. For given partitions A, F n, the tensor product decomposes
into A ® 7, = D, Irurs, Where the multiplicity gy, is called the Kro-
necker coefficient. Related are the Littlewood-Richardson coefficients cf,,. They
describe the multiplicities in the tensor product decomposition of irreducible rep-
resentations of the general linear group GL,(C). These problems of computing
multiplicities are special cases of plethysm problems.

Both coefficients have a wide variety of interpretations in combinatorics, repre-
sentation theory, geometry, and in the theory of symmetric functions (cf. [Ful97]).
However, our interest in the tensor product multiplicities stems from lower bound
questions in computational complexity. FEarly work by Strassen [Str83] pointed
out that a good understanding of the Kronecker coefficients could lead to com-
plexity lower bounds for bilinear maps, notably matrix multiplication. The idea
is to get information about the irreducible constituents of the vanishing ideal of
secant varieties to Segre varieties, for recent results we refer to [LMO04].

Kronecker coefficients as well as Littlewood-Richardson coefficients play a
crucial role in the geometric complexity theory of Mulmuley and Sohoni (cf.
[MS01, MS06]). This is an approach to arithmetic versions of the famous P vs.
NP problem and related questions in computational complexity via geometric
representation theory. What has been achieved so far is a series of reductions
from orbit closure problems to subgroup restriction problems. The latter involve
the problems of deciding in specific situations whether multiplicities gy ., or cf,
are positive. However, until very recently, no efficient algorithms were known for
the general problem of deciding the positivity of such multiplicities.

The well-known Littlewood-Richardson rule gives a combinatorial description
of the numbers ¢§, and also leads to algorithms for computing them. All of these
algorithms take exponential time in the size of the input partitions (consisting
of integers encoded in binary notation). However, quite surprisingly, the posi-
tivity of c§, can be decided by a polynomial time algorithm! As pointed out by

CHAPTER 1. INTRODUCTION

Mulmuley and Sohoni (cf. [MS05]), this follows from the truth of the Saturation
Conjecture, which was proved by Knutson and Tao (cf. [KT99]). On the other
hand, Narayanan proved that the computation of ¢, is a #P-complete prob-
lem (cf. [Nar06]). Hence there does not exist a polynomial time algorithm for
computing ¢, under the widely believed hypothesis P # NP.

Much less is known about the Kronecker coefficients gy ... Lascoux, Remmel,
Whitehead and Rosas (cf. [Las80], [Rem89, Rem92], [RW94] and [Ros01]) gave
combinatorial interpretations of the Kronecker coefficients of partitions indexed
by two row shapes or hook shapes. Very recently, Ballantine and Orellana man-
aged to describe gy, in the case where ;4 = (n — p,p) has a two row shape
and the diagram of X is not contained inside the 2(p — 1) x 2(p — 1) square (cf.
[BOOT]). Except for these special cases, a combinatorial interpretation of the
numbers gy ., is still lacking. The existence of such a description is stated as an
outstanding open problem by Stanley (cf. [Sta00]).

This thesis has two main results: First we show that the problem of computing
the Kronecker coefficients is GapP-complete (published in [BI08]), which implies
that there does not exist a polynomial time algorithm for computing g, ,, under
the hypothesis P # NP. As a second result we give a combinatorial polynomial-
time algorithm for deciding the positivity of Littlewood-Richardson coefficients.

Structure of the thesis This work touches different mathematical areas,
namely complexity theory, representation theory and the theory of flows in net-
works. For each one of these areas there is a preliminary chapter with definitions
and facts from this area which are required for this work. Furthermore these
chapters introduce notations that will be used in the course of this thesis.

This work presents two independent main results, the first of which is pre-
sented in chapter 4 and the second is covered in chapters 6 and 7.

In Chapter 4 we show how the characterization of Ballantine and Orellana
can be used to prove that the problem KRONCOEFF of computing the Kronecker
coefficient is GapP-complete. It implies that there does not exist a polynomial
time algorithm for KRONCOEFF under the widely believed hypothesis P # NP.
Note that we do not know whether KRONCOEFF is contained in the class #P.
In fact, the latter would just express that gy ,, counts a number of appropri-
ate combinatorial objects (and it can be decided in polynomial time whether a
given object is appropriate), which in fact is a combinatorial description of the
Kronecker coefficient.

In Chapter 6 and Chapter 7 we design an explicit combinatorial polynomial
time algorithm for deciding the positivity of Littlewood-Richardson coefficients.
This algorithm is highly adapted to the problem and uses ideas from the the-
ory of optimizing flows in networks. It also yields a proof of the Saturation
Conjecture. It was conjectured in [MS05] that such an algorithm exists. In the

CHAPTER 1. INTRODUCTION

case of three strictly decreasing partitions the algorithm can further be used
to check multiplicity freeness in polynomial time, i.e., whether a Littlewood-
Richardson coefficient is exactly 1. In this case the analysis of this algorithm
gives a direct proof of a conjecture by Fulton, namely that for all N € N we have
s.=1< Ny ~, = 1. This was proved for arbitrary partitions by Knutson, Tao
and Woodward (cf. [KTWO04]).

In Chapter 6 we introduce the basic version of our algorithm called the
LRPA (Littlewood-Richardson Positivity Algorithm), while in Chapter 7 we re-
fine the LRPA with a capacity scaling approach to its polynomial-time counter-
part LRP-CSA (Littlewood-Richardson Positivity Capacity Scaling Algorithm).

Chapter 2

Preliminaries —
Complexity Theory

In this chapter we recall some definitions and facts from decision complexity
theory and the lesser known counting complexity theory. A great introduction to
complexity theory is given in [Pap94].

When considering alphabets, let 3 := {0,1}. Of course all definitions and
theorems work for any finite set. Any integers, rational numbers and matrices
over the rationals can be encoded in X*, which is the set of finite words over the
alphabet . Let |w|, w € ¥* denote the length of the word w. We assume that
the reader is familiar with the basic concepts of Turing machines and polynomial
running time of algorithms. For details, we refer to [Pap94].

2.1 Decision complexity

Given a language L C ¥* and x € ¥*, the problem of deciding whether z € L
is called the decision problem associated with L. We can identify languages with
their decision problems.

Definition 2.1. P denotes the class of all languages L C ¥* that can be decided
in polynomial time by a deterministic Turing machine. [

Definition 2.2. NP denotes the class of all languages L C >* that can be
decided in polynomial time by a nondeterministic Turing machine. [

For L C ¥* we define the characteristic function of L as

. 1 it wel

Definition 2.3. L' reduces to L, if there is a function pre : ¥* — X* computable
in polynomial time with x. = xr o pre.

CHAPTER 2. PRELIMINARIES — COMPLEXITY THEORY

L C ¥* is denoted NP-hard, if each language L' € NP reduces to L. If
additionally L € NP, then L is called NP-complete. [|

These reductions are often called many-one reductions in the literature.
Lemma 2.4. There is an NP-complete language in P iff P = NP.

Proof. If P = NP, then every language in P is NP-complete. The fact that P
is nonempty proves the first direction.

It is clear that P C NP. Now let L € P be NP-complete and L' € NP.
Then there is a reduction pre : X* — X* computable in polynomial time with
X = xr opre. As L € P, xp can be computed in polynomial time. Then y/
can be computed in polynomial time as well which proves L' € P. Therefore
NP C P which proves the other direction. O

Polyhedra We now recall some important complexity theoretic results from
discrete geometry.

Let N := {0,1,2,...}. Given a matrix A € Q™™ and a vector b € Q", the
points in P(A,b) := {z € Q™ | Ax < b} form a so-called polyhedron. Several al-
gorithms exist for checking whether a polyhedron is empty. The ellipsoid method
(see [Kha80, Sch98]) and interior point methods (see [Kar84]) are known to solve
this problem in polynomial time. Thus we have

LP := {(A4,b) € Q"™ x Q" | n,m € Nx1, P(A,b) # 0} € P
A related problem is to decide whether a polyhedron contains any integral points:
IP:= {(A,0) € Q" x Q" | n,m € Nxy, P(4,0) N 2™ # 0}

This problem is known to be NP-complete (see [Sch98, ch. 18]).

A matrix is called totally unimodular, if every square submatrix has determi-
nant 1, —1 or 0. It is known that if A is totally unimodular and b is integral,
then P(A,b) has an integral point iff it is not empty and thus

IPN{(A,b) € Z"™ x Z" | n,m € N>y, A is totally unimodular} € P

(see [Sch98]). As we will see, there exists a family of polyhedra - the hive polyhedra
- where the matrix is not totally unimodular but nevertheless the polyhedron is
empty iff it has no integral point. So for these polyhedra one can decide in
polynomial time as well whether they contain an integral point.

2.2 Counting complexity

If one does not only ask whether an integral point in a polyhedron exists, but
how many integral points exist, this problem lies in the complexity class #P as
defined in [Val79]:

CHAPTER 2. PRELIMINARIES — COMPLEXITY THEORY

Definition 2.5. The complexity class #P consists of the functions f: ¥* — N
for which there exists a nondeterministic polynomial-time Turing machine M
such that for all w € ¥* we have

f(w) = the number of accepting paths of M, when started with input w.
[|

For a counting problem f : ¥* — N, we define the associated decision problem
f>o as the following: fvo = {w € ¥*| f(w) > 0}.
Note that

#IP = {Q" x Q" 5 (A,b) — |{z € Z"| Az < b}| | n,m € N3, } € #P,

because IP € NP.

#P is closed under addition (f,g € #P = f + g € #P) and multiplication
(f,g € #P = fg € #P). #P is also closed under exponential summation in the
following sense (cf. [For97)):

Proposition 2.6. Let f : X* — N be in #P, p be a polynomial. Then the
function

S o Naoe > flally)

yeD
lyl<p(|z])

is in #P as well, where || represents the concatenation of words.

#P is not closed under subtraction, as #P only contains functions that map

to N. It is unknown whether #P is closed under “safe subtraction” (f,g € #P =
x — max{f(x)—g(x),0} € #P), but there are some unlikely consequences stated
in [OH91], if this were true. To get a class that is closed under subtraction,
[FFK91] introduced the following:

Definition 2.7. GapP is the class of functions f : ¥* — Z where f = g — h
with g, h € #P. Hence GapP is the closure of #P under subtraction. [|

[FFK91] showed that GapP := #P — #P = #P — FP = FP — #P, where
the difference of complexity classes is defined via the pointwise function difference
and FP is the class of functions f : ¥* — Z that can be computed in polynomial
time.

We now describe the definition of reductions and completeness for counting
complexity classes.

Definition 2.8. Let % be a class of functions ¥* — Z, e.g. € = #P or € =
GapP. We say that g € € reduces to f € €, if the following holds: There are
functions pre : ¥* — ¥* and post : Z — Z, both computable in polynomial time,
such that post o f o pre = g. If post = id, we call the reduction parsimonious. W

CHAPTER 2. PRELIMINARIES — COMPLEXITY THEORY

Definition 2.9. f is denoted & -hard [under parsimonious reductions/, if each
g € € reduces to f [with parsimonious reductions].

[is denoted € -complete [under parsimonious reductions], if it is ¢-hard [un-
der parsimonious reductions] and additionally f € €. [|

For example the problem #SAT of counting the satisfying truth assignments
of a boolean formula is #P-complete under parsimonious reductions (see [Pap94])
and the problem GapSAT of computing the difference between the number of
satisfying truth assignments of two boolean formulae is GapP-complete under
parsimonious reductions.

We now proceed with a few simple observations that will help us classifying
the hardness of computing Littlewood-Richardson and Kronecker coefficients.

Lemma 2.10. Let € = #P or ¢ = GapP. Let f be €-hard under parsimonious
reductions and let f-q be the associated decision problem. Then f~q is NP-hard.

Proof. Let SAT := #SAT.q. The well-known Cook-Levin theorem states that
SAT is NP-complete. Let f be %-hard under parsimonious reductions and f-q
be the associated decision problem. Let (pre,id) be the parsimonious reduction
from #SAT to f,i.e. fopre=#SAT. Fix any w € X*.

Now xsar(w) =1 < #SAT(w) > 1 & (f opre)(w) > 1 < X, (pre(w)) = 1.
Therefore xsat = Xf., © pre. Thus pre serves as a reduction from SAT to fs.
Moreover, f.q is NP-hard. O

Corollary 2.11. Let € = #P or € = GapP. If fvo € P and assuming
P # NP, then f is not €-hard under parsimonious reductions.

Proof. We combine Lemma 2.4 and Lemma 2.10. [
Proposition 2.12. f is #P-hard iff f 1s GapP-hard.

Note that this is false under parsimonious reductions, as there is no parsi-
monious reduction from the function (x — —1) € GapP to any function in

4P.

Proof. As #P C GapP, each GapP-hard function is obviously #P-hard. Now
let f be #P-hard, ¢ — go = g € GapP with ¢1,9, € #P. As ¢; and go count
accepting paths of nondeterministic polynomial-time Turing machines, there ex-
ists £ € N such that for all w € ¥* we have g;(w) < olwl* olwl*+1 anq
ga(w) < 27+ So we define

B:Y¥ — Nwm— Z‘w‘kﬂ, C: ¥ —>Nwr 92wl +2,

We have B,C € FP C #P. From the closure properties of #P it follows that
C + Bg1 + g2 € #P. As f is #P-hard, there is a reduction (post, pre) with
posto f opre =C + Bg; + go. Consider the following function

b:N— N,z +— QLUOEIJJ.

7

CHAPTER 2. PRELIMINARIES — COMPLEXITY THEORY

If given as input a natural number z that has an odd number n of bits in its
bitstring representation, then b(z) = 251. Note that (C' + Bg; + g2)(w) has an
odd number of bits in its bitstring representation for all w € ¥*. Also note that
b(x) can be computed in polynomial time, because |logx| can be determined
directly from the bitstring representation of x. Now we define

decode : N — Z,x — (x div b(z)) mod b(x) — x mod b(x),

where div and mod basically only cut the bitstring of z, because b(z) is a
power of 2. Then (decode o post) o f o pre = g; — go = g, which proves that g
reduces to f. Therefore f is GapP-hard. O]

Chapter 3

Preliminaries —
Representation Theory

In this chapter we describe definitions and facts about representations of the
symmetric group S, and the general linear group GL,(C) and about their
correspondence to symmetric functions. We will explain where Littlewood-
Richardson coefficients and Kronecker coefficients appear in these contexts. See
[Sag01, Ful97, FHI1, Sta99] for proofs, details and further reading.

3.1 Skew diagrams and tableaux

A Young diagram is a collection of boxes, arranged in left justified rows, such
that from top to bottom, the number of boxes in a row is monotonically weakly
decreasing. For A := (Aq,..., ;) € N® we define its length as £(\) := max({0}U
{i | Ay > 0}) and its size as |\| := Zf(z’\l) Ai. Moreover we set A, := 0 for all
r > s. If the A; are monotonically weakly decreasing and |[A\| = n, then we call
A a partition of n and write A - n. In this case, A\ specifies a Young diagram
consisting of n boxes with A; boxes in the ith row for all i (see Figure 3.1(a)).
If we know that m > £()\), we can additionally write A k-, n, which means that

‘ ‘ [JKJ .‘ ‘ o0 ‘
[] [1] olefe] | olole] |
(a) (b) () (d)
The Young diagram The Young diagram of A skew diagram The same skew
of the partition the conjugate partition with shape diagram also
A=(4,4,2,1,1), AN =(5,3,2,2), (4,4,2,1,1)/(3,3,2). has shape
A F 12, 4(N) =5. N oE 12, 00)) = 4. (4,4,3,1,1)/(3,3,3).

Figure 3.1: Young diagrams and skew diagrams.

CHAPTER 3. PRELIMINARIES — REPRESENTATION THEORY

Figure 3.2: The skew diagram of the product (3,2)/(1) * (3,2,2)/(2,1) .

ole[1]/2]3]
© 2|2
213[3
4]
Figure 3.3: A semistandard skew tableau of shape (5,3,3,1)/(2,1) and type
(1,4,3,1). The reverse reading word is (3,2,1,2,2,3,3,2,4).

the Young diagram corresponding to A has at most m rows. To any partition A
there corresponds its conjugate partition A’ which is obtained by transposing the
Young diagram of \, that is, reflecting it at the main diagonal (see Figure 3.1(b)).
We note that by definition every row in A corresponds to a column in A" and vice
versa. Moreover, |[A| = |N|.

A skew diagram is the set of boxes obtained by removing a smaller Young
diagram from a larger one (see Figure 3.1(c), removed boxes are marked with
dots). If we remove aw C A from A, then we denote the resulting skew diagram by
A/a and say that it has the shape A/a. Note that for a given skew diagram \/a,
the partitions o and A are not necessarily uniquely defined (see Figure 3.1(d)).
For example, we have (4,4,2,1,1)/(3,3,2) = (4,4,3,1,1)/(3,3,3). Every Young
diagram is a skew diagram, as one can choose « to be the empty set of boxes.
The product \/a * A/& of two skew diagrams A/« and A/ is defined to be the
skew diagram obtained by attaching the upper right corner of A to the lower left
corner of \ (see Figure 3.2). A similar definition applies for more than one factor.

A filling of a skew diagram A/« is a numbering of its boxes with (not neces-
sarily distinct) positive integers. A semistandard skew tableau T of shape A/« is
defined to be a filling of A/« such that the entries are weakly increasing from left
to right across each row and strictly increasing from top to bottom down each
column. If 7" houses p; copies of j, then the tableau 7' is said to have the type
o= (f1, fa, . ..) (see Figure 3.3). Note that |A\| — |a| = |u|, but in contrast to A
and «a, p need not be weakly decreasing. A semistandard Young tableau of shape
A is defined to be a semistandard skew tableau of shape \/a, where a = () is
the empty partition. The number of semistandard Young tableaux of shape A

10

CHAPTER 3. PRELIMINARIES — REPRESENTATION THEORY

and type p is called the Kostka number K,,. The number of semistandard skew
tableaux of shape A/a and type p is called the skew Kostka number Ky /qy,-

The reverse reading word w* (T') of a skew tableau T is the sequence of en-
tries in T" obtained by reading the entries from right to left and top to bottom,
starting with the first row (see Figure 3.3). The type of a word w € N% is the
type of any tableau T' with w™(T) = w. A lattice permutation is a sequence
(a1, ag, -+ ,a,) such that in any prefix segment (a1, as,...,a,), 0 < p < n the
number of i’s is at least as large as the number of (i + 1)’s for all i. For ex-
ample the word (3,2,1,2,2,3,3,2,4) is not a lattice permutation, but the word
(1,1,1,2,2,3,3,2,4) is a lattice permutation.

3.2 The algebra of symmetric functions

For m € N, a polynomial f € C[Xy,...,X,,] is denoted symmetric, if it is
invariant under permutation of its variables. For example, let m = 3, then

f=X0 X0+ X2X3 4+ X2X) + XX+ Xa X1+ XaXo + X1+ Xo + X5

is a symmetric polynomial. A homogeneous polynomial is a polynomial whose
monomials all have the same degree. Let

Ay ={f €C[Xy,...,X,] | f symmetric and homogeneous of degree n}

denote the vector space of homogeneous symmetric polynomials of degree n in
m variables. Then A, := @, .y A, becomes a graded commutative algebra with
the ordinary multiplication of polynomials.

Definition 3.1. Given A k-, n, the Schur polynomial sy corresponding to A is
defined as

svi= Y KuXMeZIX, .. X,
MeNm7‘u‘:n
where X# := X} X2 ... XHm |

It is remarkable that sy is symmetric and therefore contained in A}. It is
further known that (sy)-,,» form a Z-basis of A? . For most purposes it does not
matter how many variables are used, as long as the number of variables is not
smaller than the degree of the polynomial, because the projection

c] <7<
AT AT X X; 1f1_j._n
0 otherwise
is an isomorphism for m > n. Via the inverse of this isomorphism we can map
any f € A to f1™e Al as long as m > n. We define for all n € N5, :

11

CHAPTER 3. PRELIMINARIES — REPRESENTATION THEORY

A" = A, AY = C and make A := @, A" a graded C-algebra with the
following multiplication: Let f € A™ g € A™. Then

frg= gt e AT

where the multiplication on the right is the ordinary multiplication in A,,,,,. The
sy form a basis of A, where)\ goes over all partitions. A is called the algebra of
symmetric functions.

3.3 The algebra of characters of the symmet-
ric group

A representation of a group G is a C-vector space V with a group homomorphism
D : G — GL(V) from the group G into the general linear group GL(V') of V
where dim(V') is called the degree of the representation. For the sake of simplicity
we only consider finite dimensional vector spaces over C. A subspace W of V
that is fixed under D(g) for all g € G is called a subrepresentation of V. If V
has exactly two subrepresentations, namely the zero-dimensional subspace and V'
itself, then the representation is called irreducible, otherwise it is called reducible.
Two representations (Vi, D) and (Va, D) of G are isomorphic, if there exists a
vector space isomorphism « : V; — V5 with Vg € G : a0 Di(g) oa™ = Dsy(g).

It is well known that there are only finitely many isomorphism classes of
irreducible representations of S,. An explicit list of representatives . called
the Specht modules can be indexed by the partitions A - n in a natural way
(cf. [Sag01]).

A representation D : GL,,(C) — GL(V) of the general linear group for a
finite dimensional vector space V' is called polynomial, if after choosing bases
GL,(C) € €™ and GL(V) C CY* we have that the N? coordinate functions of
D are polynomial functions of the m? variables. An explicit list of representatives
E) of polynomial irreducible representations of GL,,(C) called the Schur modules
can be indexed in a natural way by the partitions A -, that have at most m rows
(cf. [Ful97]). The degree of E) is given by |A|.

Characters Let G be finite. After choosing bases, the values of D can be
interpreted as invertible matrices over C. By taking their trace, one obtains a
map xp : G — C, g — tr(D(g)) which is called the character of the representa-
tion D. It is well-defined, because the trace of a matrix is invariant under basis
transformations. A fundamental theorem states that two representations are iso-
morphic iff they have the same character. Characters are always class functions,
i.e. Vg,h € G : xp(g9) = xp(hgh™). Let R(G) denote the C-vector space of class
functions G — C . The characters of the irreducible representations of GG form a
basis of R(G).

12

CHAPTER 3. PRELIMINARIES — REPRESENTATION THEORY

The symmetric group Given a subgroup H < S, and ¢ € R(H), we define
the induced function ¢1%r€ R(S,) as

ng e : | H] Z r 1 gx),
rE€Sn
where ¢(z7'gx) := 0 for z7'gz ¢ H. Now set Ry := C and R, := R(S,) for
all n € N3;. Then R := €, .y R» becomes a graded commutative C-algebra by
defining a multiplication as follows:

o= (o x PN

where (¢ x) : S, x S, — C,(m,0) — p(m)(o) for ¢ € R, Y € R,. Let
X := X The x* form a basis of R, where \ goes over all partitions. R is called

the algebra of characters of the symmetric group.

Characters of GL,,(C) Given a polynomial representation D : GL,,(C) —
GL(V), then after choosing bases we define the character xp of the representa-
tion D as

p:C" = Clry,...,¢nl, (T1,...,Tmn) — tr(D (diag(:pl, . ,xm))))

The map is well-defined and satisfies xg, (1,...,2m) = sx(x1,...,2,) for all
partitions A ,,. According to a fundamental theorem we have that two repre-
sentations are isomorphic iff they have the same character.

3.4 Coefficients in decompositions

We define a linear map ch : R — A, ch(x*) = s). This is known to be an
isomorphism of graded C-algebras. Therefore

sx sy = ch(x* - x*).

Let % be the pointwise product of class functions in R,,. Then ch induces a
commutative and associative product on A" by

S\ kS, 1= ch(xA * x")

which is called the inner product of Schur functions. We are interested in how
these two different products decompose. It is known that in either case the decom-
position of a product of two basis elements decomposes into a linear combination
of basis elements that has only nonnegative integral coefficients. This gives rise
to the following definitions:

13

CHAPTER 3. PRELIMINARIES — REPRESENTATION THEORY

Definition 3.2 (Kronecker coefficient). Let A, u F n,

XX =D g’
vkn
Then g, .., is denoted the Kronecker coefficient of A, 1 and v.
The problem of computing g,, for given A\, pu,v F n is denoted by
KRONCOEFF with its associated decision problem KRONCOEFF. [

Definition 3.3 (Littlewood-Richardson coefficient). Let A = m, p b n,

Sx "8, = Z S uSv-
vEn+m
Then ¢, is denoted the Littlewood-Richardson coefficient of A,y and v.
The problem of computing 5, for given A = m, u = n,v = m+ n is denoted

by LRCOEFF with its associated decision problem LRCOEFF+. |

It is well-known that ¢, equals the number of semistandard skew tableaux
of shape v/\ and type p whose reverse reading word is a lattice permutation.
For the Kronecker coefficients such a combinatorial description is only known in
some special cases.

Symmetries It is clear from the definition that gy ., = gy, and ¢§, = ¢,

pA?
because both products are commutative. It is further known that
1 v
D =~ > X (X" (9)X"(9) (3.1)
" gEeS,

and thus that g, ,, is symmetric in A, 4 and v. Additionally we have g, ,, =
I ! and CK,LL = Cil’,u"

Tensor products of representations Maschke’s theorem states that repre-
sentations of finite groups can be decomposed into direct sums of irreducible
subrepresentations. This decomposition is unique except for order and isomor-
phism of its constituents. This is true also for the general linear group GL,,(C).
The number of summands in such a decomposition of a representation V' that are
isomorphic to a representation W is called the multiplicity of W in V. Given two
representations Dq : G — GL(V;) and Dy : G — GL(V3), then the tensor product
Dy ® Dy:G— GL(V} ® Va), g+— Di(9) ® Ds(g) is again a representation
with character xp,ep,(9) = Xp,(9) - Xp,(g9). Littlewood-Richardson coefficients
and Kronecker coefficients can be interpreted as multiplicities in decompositions
of tensor products as well:
For A\, u +n we have

y)\®yu - @g)\,u,l/‘ylj7

vkn

14

CHAPTER 3. PRELIMINARIES — REPRESENTATION THEORY

which directly follows from Definition 3.2 and for partitions A b, u F,,, we have

Ex®E,= P &,.E.,

VEIA+ [l

which directly follows from Definition 3.3 and the fact that xg, = s, for all
partitions A F,,.

From the interpretation of Littlewood-Richardson coefficients and Kronecker
coefficients as multiplicities in tensor product decompositions, we know that both
coefficients are always nonnegative integers. According to [BK99|, %\ ® ., is
irreducible only in the case of .#\ or ., being of degree 1.

15

Chapter 4

The complexity of computing
Kronecker coeflicients

In this chapter we prove the GapP-completeness of computing Kronecker coef-
ficients:

Theorem 4.1. The problem KRONCOEFF of computing Kronecker coefficients
1s GapP-complete.

We proceed in two steps, first proving in Section 4.1 that the problem is
contained in GapP and then proving in Section 4.4 that it is GapP-hard, which is
equivalent by Proposition 2.12 to being #P-hard. In contrast to the Littlewood-
Richardson coefficients, it is unknown whether the Kronecker coefficient g, .
counts a number of appropriate combinatorial objects. Therefore it is unknown
whether KRONCOEFF € #P. It is further unknown whether KRONCOEFF+(€ P
or not.

4.1 Upper bound for KRONCOEFF

Biirgisser and the author (cf. [BIO8]) use a formula of Garsia and Remmel
(cf. [Sta99, Ex. 7.84, p. 478]) and the Littlewood-Richardson rule to show the
following proposition:

Proposition 4.2. KRONCOEFF € GapP

Proof. The proof will use ideas and formulas from the literature (cp. [Sta99,
Chap. 7]). We fix n € N, m € N, m > n. Let hy denote the kth complete
symmetric function:

=Y X{XE2 Xpm,

LEN™
|u|=Fk

16

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

pt = Pt =1ele it =

Figure 4.1: A decomposition of shape i and type a.

For a partition «, we set

ho = hayhay oy,

The Jacobi-Trudi identity expresses the Schur polynomial s, A = n as the follow-
ing determinant of a structured matrix, whose entries are the complete symmetric
functions:

sy = det(hx_iyj)icij<n = ZHhAi—iw(i)

TESy 1=1
= Z Hh/\i—i—&-ﬂ(i) — Z Hh/\i—z‘-f—ﬂ(i)
T€A, i=1 TESH\An =1
=t Y Nhha = Y Noha. (4.1)

alFn akn

Here, N}, counts the even permutations 7 € A, such that [T hnimitn(i) = ha-
Similarly, N_, is defined by counting the odd permutations m € S, \ A,. Hence
the functions (o, A\) — NJ| and (o, \) — N, are contained in the class #P.

Definition 4.3 (Decomposition). Given partitions «, u = n. A finite sequence
of partitions D = (,uo,...,p/(“)) with 0 = u® C pt C --- C p¥® = g and
|t /1= = « for all i is called a decomposition of shape u and type . The set
of decompositions of shape u and type « is denoted with D(u, a). [|

See Figure 4.1 for an illustration.
We can define skew Schur polynomials sy, similarly to the Schur polynomials:

Snje = > KyapXP €Z[X0, ., X,

“eva‘““:n

17

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

A formula of Garsia and Remmel (see also [Sta99, Ex. 7.84, p. 478]) states that
for a,, u = n we have

hoaxsy= Y HW” (4.2)

DZ(HO ''''' l(a))

If for any decomposition D = (,uo, ol) of shape p and type a, we denote by

7(D)/o(D) the skew diagram gl (p2/pt) %% (@ /@) =1) then sy (py/op) =
; Sui/wi-1. Therefore we can restate (4.2) as
ha * S, = Z Sn(D)/o(D)- (43)
DeD(p,a)

It is well known that the Littlewood-Richardson coefficients appear in the expan-
sion of skew Schur polynomials as

D)/e(D) Z ¢ (4.4)

vkn

v oo W(D)
M= > o
DeD(u,a)
which according to (4.3) and (4.4) results in

he * 5, = Z Zc S, = ZM&’MSV. (4.5)

DeD(p,a) vbn vkn

We set

The Littlewood-Richardson rule implies that the map (7, p,v) + ¢, is in the
class #P (compare [Nar06]). Since #P is closed under exponential summation
(see Proposition 2.6), the map (a,u,v) +— MY, is contained in #P as well.
Combining (4.1) and (4.5), we have

S) * S, @ (Z N;F/\h Z Na_,\ha) * S,

akFn akFn
+ —

E :Noc)\(ha*sll) - E :Noz/\(ha*s,u)

akFn akFn
(4.5) + v v
= E N\ E Mausy E E Mws,,

atn vkn akFn vkn
— + v - v
= E < E NQAMCW — E Na)\]\/[au>sl,

vkn gkn atkn |

Def. 3.2
= 9x\pu,v

18

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

Hence the expression in the parenthesis equals gy ,,. Proposition 2.6 implies
that the map (A p,v) — > .. NALAMY, is in #P. Similarly, (A, pu,v) —
> arn NoaMZ, is in #P. Therefore we have written (X, 1,) = gx,,. as the
difference of two functions in #P, which means that it is contained in GapP. [

4.2 Special cases of Kronecker coefficients

There are many special cases in which the calculation of Kronecker coefficients
can be done in polynomial time. These situations are obviously not suited to
show the hardness of KRONCOEFF. Rosas (cf. [Ros01]) summarizes and gives
new proofs for several cases, at first discovered in [Rem89, Rem92, RW94|, where
explicit formulas exist that compute g, .., in polynomial time. We briefly discuss
these results.

A one-row partition If A = (n) is a onerow partition, then

)1 ifu=v
P = 0 otherwise

The proof follows directly from (3.1), x™ = 1 and the orthogonal relations
stating that for any two irreducible representations D; and D, of a finite group
1 if Dy is isomorphic to Ds

G we have L -
o desn X1 (9)xp,(9) 0 otherwise

Two two-row partitions ([RW94, Ros01]) If u = (w1, p2) F n,v = (v1,10)
n, A nand £(\) > 4, then g ,, = 0. If £(\) <4, then g, ,, can be described as
the number of paths through certain rectangles (cf. [Ros01, Thm. 39]). Explicit
formulas are also given for these. From these [Ros01] concludes that the set of
9xuvs Where p and v are two-row partitions, is unbounded, i.e. multiplicities can
become arbitrarily large.

Two hook partitions ([Rem89, Ros01]) For pu = (u1, 1,...,1) F n,v =
———

n—u1 times

(1, 1,...,1) F n,A F n, the formula for g, ,, gets rather complicated, but
———

n—v1 times
is still computable in polynomial time. In this case we have g, ,, € {0,1,2}.

A hook partition and a two-row partition ([Rem92, Ros01]) If u =
(g1, 1,...,1),v = (v1,n — 1), A F n, the formula for g,,, also is rather
——

n—p1 times
complicated, but is still computable in polynomial time. In this case we have

I €40,1,2,3}.

19

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

Certain two-row partitions ([BOO07]) In the case of p = (n—p,p), A\ Fn, vt
n such that n > 2p and A\; > 2p — 1, Ballantine and Orellana (cf. [BOO07])
give a combinatorial interpretation of g ,,. In Section 4.4 we will see that
this description is the key result that enables us to prove the #P-hardness of
KRONCOEFF.

4.3 Ballantine and Orellana’s description

To understand the description of the Kronecker coefficients from Ballantine and
Orellana, we recall the definitions from [BOO07].

Definition 4.4 (a-lattice permutation). Let o = (aq, ao, . .., ay) be a partition.
A sequence a = (ay, as,...,a,) is called an a-lattice permutation, if the concate-
nation (1,...,1,2,...,2,...,n,...,n)||a is a lattice permutation. [|
—— ——
a1 times a9 times oy times

For example, the word w = (4,4,3,2,1,1,1,4,3,2) is not a lattice permu-
tation, but an a-lattice permutation for o« = (4,3,2). As the concatenation of
two lattice permutations is a lattice permutation, the concatenation allb of an
a-lattice permutation a and a lattice permutation b is an a-lattice permutation.

Definition 4.5 ((\, v, «)-Kronecker-Tableau). Let the A, o, v be partitions such
that « € ANwv. A semistandard skew tableau T is called a (A, v, a)-Kronecker-
tableau, if it has shape A/« and type v —a, its reverse reading word is an a-lattice
permutation and additionally one of the following three conditions is satisfied:

® o) = (g
® a7 > ap and the number of 1’s in the second row of T is exactly a; — as,
e o1 > ap and the number of 2’s in the first row of 7' is exactly a; — ap.

We denote by k., the number of (), v, a)-Kronecker-tableaux. |

The reader may forgive that we did not use the same sub- and superscript
order as in [BOO7]. In our notation the outer shape and the type are always in
the subscript, as in the case of the Kostka numbers as well. See Figure 4.2 for an
example of a (\, v, «)-Kronecker-tableau.

The following theorem gives the desired combinatorial interpretation:

Theorem 4.6 (Key theorem from [BOO07]). Suppose u = (n —p,p),\Fn,vkn
such that n > 2p and Ay > 2p — 1. Then we have

_ _ B
g)\“u,,l/ - g)\,(n—p,p),l/ - Z k)\;l/'

Btp
BCANY

20

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

00033‘
o o004

Figure 4.2: A (), v, a)-Kronecker-tableau T' of shape A/« and type v — a for A =
(5,4), v = (3,3,2,1) and o = (3,3). w(T) = (3,3,4) is an a-lattice
permutation.

4.4 Lower bound for KRONCOEFF

Definition 4.7 (The problem KOSTKASUB). Given a two-row partition x =
(x1,29) F m and y = (y1,...,ye) with |y| = m, the problem of computing the
Kostka number K, is denoted by KOSTKASUB. [

Narayanan proved that KOSTKASUB is #P-complete (cf. [Nar06]). In this
section we will see that Ballantine and Orellana’s description is the key result that
enables us to reduce the #P-complete problem KOSTKASUB to KRONCOEFF,
which results in KRONCOEFF being #P-hard and therefore GapP-complete (see
Proposition 2.12 and Proposition 4.2). This proves Theorem 4.1. Although not
needed for the hardness result, our reduction will be parsimonious.

Proposition 4.8. The problem KRONCOEFF of computing Kronecker coeffi-
cients is GapP-hard.

Given a two-row partition = = (z1,x2) = m and a type y = (y1,...,yr) with
ly| = m, we have to find n,p € N, A\,v F n computable in polynomial time
with Kuy = gx (n—pp),»- This will be obtained step by step by the construction of
several bijections between classes of semistandard tableaux.

The rest of this section will be devoted to the proof of Proposition 4.8. For the
entire proof we fix a two-row partition x = (z1,x9) - mand atypey = (y1,...,ys)
with |y| = m.

For any skew shape A and any type v we denote by .7, the set of all semis-
tandard skew tableaux of shape A and type v. So Ky, = |7,

Definition 4.9. Given a skew shape A\ and a type v. We call the tuple (A;v)
a-nice, if a is a partition and for all skew tableaux T € .7, the reverse reading
word w (T) is an a-lattice permutation. [

In a first step, we try to find n,p € N, \,v = n,a F p such that we get a
bijection between

Ty — {(\, v,)-Kronecker tableaux}. (4.6)

The idea is to find A\, v and « such that (\/«; v — «) is a-nice, which will help us
to set up the bijection. From this, we will go on and find n,p € N, A\, v - n with

21

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

1[1]1]2]3]4]4]
2[314

Figure 4.3: A semistandard Young tableau T with shape z = (7,3) and type
y = (3,223). 0= (2+2+3 =72+3 = 53) = (7,5,3).
w(T) = (4,4,3,2,1,1,1,4,3,2) is not a lattice-permutation, but a o-
lattice permutation.

K.y = 9x(n—pp),»- This will be done by showing that gx ,—pp),, counts a number
of (A, v, a)-Kronecker tableaux, where the parameter o will be implicitly given
by A\, v,n and p.

We will construct the bijection (4.6) step by step. To see the main difficulty,
we have a look at the trivial construction: A := z, 4 := y and « := () is the empty
partition. We get an equality between 7., and 7., but in general (\;v) is not
()-nice, i.e. it is not true that every semistandard skew tableau of shape /o = A
and type ¥ — a = v has a lattice permutation as its reverse reading word. The
following lemma can be used to overcome this problem:

Lemma 4.10 (p-lattice permutation). Given a word w of type y = (y1,- .., Ye)-
Then w is a o-lattice permutation for 0 = (D ;o1 Yir D oiun Yis - - -+ Ye)-

We define for a word w, @ € N>q, k € N:
(i, k,w) := the number of entries 7 up to k in the word w.

For notational convenience, we define for a skew tableau 7', 7 € N1, k € N:

(i, k,T) = # (i, k,w(T)).

Proof of Lemma 4.10. The entries in y are nonnegative and thus p is a partition.
Let 1 < k < |w| be a position in w. For every entry i > 1 we have

(i, k,w) + 05 > 00 = 0iv1 + Y1 = # (i + 1Lk, w) + 0441
Therefore w is a p-lattice permutation, which proves the claim. O

Let 0 := (D ;o1 Yis 2 iz Yi>- - -»¥¢). Then Lemma 4.10 shows that the reverse
reading word w™ (T) of each skew tableau T of shape x and type y is a p-lattice
permutation (see Figure 4.3). Therefore (z;y) is g-nice.

Lemma 4.11 (Type shifting). Let k € N. Then there is a bijection between .,

and (.. 0 wiwaru)- Moreover, (x; 0,...,0,y1,92, - - . ,yg)) is (m,...,m)l||o-
k times k times k times

nice.

See Figure 4.4 for an illustration.

22

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

—_
—_
—_

213]4]4] 414]4]5]6]7]7]
6

~J

Figure 4.4: Illustration of the bijection between 7., and 7.(0,0,0,1,...y)-

Proof. Let z* := z, y* := (0,...,0,y1,¥2,...,%), 0 :== (m,...,m)||o. Con-
—— ———
k times k times
sider : ., — J=,» which sends each box entry e to e + k. This is clearly
a well-defined bijection, because the preimage is semistandard iff the image is
semistandard.

We know that o* is a partition, because p is a partition and m > o;. We have
to show that (z*;y*) is ¢*-nice.

Let n(T) € Fp»,~ with reverse reading word w (n(7")) = (wy; + k,we +
k,...,w,+ k). As (z;y) is o-nice, we have that w™(T) = (wy,wy,...,w,) is a
o-lattice permutation.

Let 1 < j < |w™(n(T))| be a position in w=(n(T)).

For the first entries 1 <7 < k — 1 we have that

(6 5,n(T) + o =m=#(i+1,5,0(T)) + of1-
For the kth entry we have
=0

——
(k. 3, n(T)) + e

m = 01+ Y

As w—(T) is an p-lattice permutation, we have for the other entries ¢ > k that

(7’ —k + 17j7 T) + Oi—k+1
= #@+1,75n0(T))+ o0f ;-

v

v

O

Now let z* := z,y* := (0,0,0,y1,92,...,%), 0" := (m,m,m)||o. Then, ac-
cording to Lemma 4.11, there is a bijection between .7,., and 7,«.,-. Moreover,
(J:*;y*) is ¢*-nice.

Lemma 4.12 (Adding 1s). Given M € N, M > zi. Then there is a bijection
between Tyey and Tan| e (M00,..)+y - Moreover, ((M)||z*; (M,0,0,...) +y*) is
o*-nice as well.

23

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

Llafafafafafajala]a]a]1]
414]4]5]6]7]7]) 4/4l4]5]6]7]7
50617 M [5]6]7

Figure 4.5: Illustration of the bijection between Z,,« and Jup|jax;(11,0,0,...)+y* With

)

M =12.
o[o[efofe]efe[ofefe1 1] 111 [T 1]1]1][1]1]
Llafafajafafafafafaj1]1] efslelelelslolals o illI5[s]7T
4 4 4 5 6 7 7 .. e 00 0 0 0 0
56|17 <P el
Figure 4.6: Illustration of the bijection between F«s o and Fgesygor)/geeyy== With

M =12.

See Figure 4.5 for an illustration.

Proof. (M)||z* is a partition, because M > zj. Consider n : Fpuyr —
T M)z (M,0,0,..)+y+ that adds a top row that is filled with M 1s. The map 7
is well-defined, i.e. the image is semistandard, because y; = 0 ensures column
strictness. The map n is a bijection, because the column strictness of semi-
standard tableaux forces 1s to be in the first row. It remains to show that
((M)||z*; (M,0,0,...) +y*) is ¢*-nice. Given T € T+, then w—(n(T)) =

(1,...,1)|Jw=(T"), which is a p*-lattice permutation, because w™(T) is a p*-
———

M times
lattice permutation. O

We set =™ := (M)||z*, y** := (M,0,0,...) + y*, 0™ := p*. According to
Lemma 4.11 and Lemma 4.12 we obtain the bijections

%,y — %*,y* — [Tl
Moreover, (z**;y*™) is ¢o**-nice. Note that z** and y** are dependent of M.

Remark 4.13. As ((2™) < 3 and o] = o5 = p}, there is an obvious
bijection (see Figure 4.6) between Fpesy«r and J(gesigee)/grey=. Moreover,
((:1:** + 0™) /0™ y**) is o**-nice as well.

Lemma 4.14. J(geeygre)/omye equals the set of (N v, «)-Kronecker tableaux
where A = ™ + 0™, v =y + 0™ and a = o**.

24

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

m
olofefofefo]efefefe| 11 11 1] 1]1]1]1]1]1]
-.o.o.o.o.l111‘1‘1‘1‘1‘1‘1‘1‘1‘ olo[efe]e|e|e[e]0|e|4][4][4]5]6]7]7]
olefofe|e|e[e[e]e|e][4][4]4]5]6]7]7] ole/e[e]eo]e[e]e]e[e][5[6]T7
o|e|oe|e /00000 567 elojojoj0j0j0|1 1|1
ejejejejoj0|e ojejojo|e|1]1]2/2]2
olefefele bij. ofefe[1]1]2]2]3]3]3
LK) -~ 111]1)2]|2]3|3]|4|4|4
2]2(2]3/3(4]4|5|5|5
~ J1313[3]4|4(5|5|6]6(6
g 4]141415(5|6]6|7|7|7
5|5|5]6(6|7|7
66677
T\7|7
Figure 4.7: Illustration of the bijection between 7, 4., _, and %\/a;f/—a with m =

10,0 =17.

Proof. We know that o = ¢** is a partition. A is the sum of two partitions and
therefore a partition. We have v = (M + m,m,m,y1 + 01,y2 + 02,.--,Ye) =

(M +m,m,m,m, 01,...,001), which is a partition, because g1 < |y| = m. As
a1 = ap and and ()\/a, v — a) is a-nice, the set of (A, v, a)-Kronecker tableaux
equals ‘%\/Q;V—a — (7(.@**+$**)/Q**;y**‘ D

With Lemma 4.14 we established a bijection between
Ty < INjaw-a = 1(A, v, a)-Kronecker tableaux}.

For the rest of this section, we fix A\, v, @ as in Lemma 4.14.
Now we want to connect this result with the Kronecker coefficients. With
Theorem 4.6 we have g5 (n—pp)i = > e k§'~ for A\Fn, v Fnifn > 2pand

B BCinp MV
A1 > 2p — 1. The next crucial lemma gives the desired connection:

Lemma 4.15. Let { == ((|v|) = £+ 3. Let A\ := (N + ([77 . ,g))/ result from A
——
m times
by adding { additional bozes in each of the first m columns (see Figure 4.7 for an
illustration). Let U := v+ (m,...,m). Then X\ and U are partitions and there is
%/—/
£ times
a bijection between I a0 —a and 5

2

Jasi—a Moreover, ()\/a; v— a) 15 a-nice and

Jop—a = {(\, 7, &)-Kronecker tableauz}.
Additionally, 75 5.,,_5 =0 for all B © | that satisfy 3 C AN and B # a.

Before proving Lemma 4.15, we present its implications. Recall that

A= 240" =Mz, 72) + 0"
= (M+m7x1+m7x2+m7017"'794—1>7

25

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

v.o= y**‘|‘Q**:(M70707917927---ayf>+g*
(M+m7m7mayl+Ql7y2+g27"'7y€) = (M—i_mvm?mam;Qla"')QK—l)

and o = (m,m,m, 01,...,00—1). Therefore
A= (M+m,x+m,xo4+m,m,....,m,o1,...,001), (4.7)
———
7 times
and
v=(M+2m,2m,2m,2m,m+ 01,...,m+ 0p_1) (4.8)

and we can set n = |\ = M + ({ + 3)m + |z| + |o| and p := |a| = 3m + |g|.
If we choose M to be large enough (e.g. M :=2p — 1 — m), we have n > 2p
and \; = 2p — 1 and therefore all technical restrictions are satisfied to conclude
with Theorem 4.6 that g5 ,,_,) =>" s k: . Moreover, \, ji,p and n can be

BC)\F]V ’
calculated in polynomial time. As p = |a|, we get from Lemma 4.15 the following

two equalities:
oKL =k, =k

Bkp
BCAND

Hence, applying the proved bijections, we get

g a
g)\np7p Z k.~: |<7a:y|_

Bkp
BCAND

This proves the #P-hardness of KRONCOEFF (Proposition 4.8).

Proof of Lemma 4.15. From (4.7) and (4.8) it follows that A\ and & are both
partitions. We have N = X + (g, o ,€~), which means that for 1 < i < m, the
m times
ith column of A has ¢ more boxes than the ith column of \. We have 7 — v =
(m,...,m), which means that in comparison to v we have additional m copies of
%/—/
£ times
each number from 1 to ¢ in 7.
Consider 1 : Pjaw—a — I Joip—a which fills the additional boxes in the
first m columns with the numbers from 1 to ¢ respecting column strictness (see
Figure 4.7 for an illustration). As « is a partition, this results in a semistandard
tableau: We have column strictness, because no box is filled in the first m columns
in the preimage tableau. We have row monotonicity, because « is a partition
and the rows of the new entries cannot overlap with the rows of entries in the
preimage tableau. So 7 is well-defined. It is clearly injective. To show that it
is surjective, we have to show that our filling of the first m columns is the only
possible semistandard filling of these boxes. This is true, because as (>0 (v—a),
we only have the numbers from 1 up to ¢ to fill any boxes and we have exactly ¢

26

CHAPTER 4. THE COMPL. OF COMP. KRONECKER COEFF.

boxes to fill in each of the first m columns. So 7 is surjective because of column
strictness.

We now show that (5\/04;17 — a) is a-nice. Let T € :%\/a;ﬂfa. Let T<3 be
the restriction of 7" to the first 3 rows and let 7%, be the restriction of 7" to the
remaining rows. By assumption w™(T<3) = w™(n~'(T)) is an a-lattice permuta-
tion. w* (754) is a lattice permutation, which follows from the observation that
for each entry ¢ > 1 in 75, there is an entry ¢ — 1 in the same column right above.
As w™(T) = w™ (T<3)||w™ (T>4) is the concatenation of an a-lattice permutation
and a lattice permutation, we conclude that w (7T) is an a-lattice permutation.
Therefore (5\ Jo; U —) is a-nice.

We have 5
(:\/a; U —) is a-nice.

Now we additionally prove that f;\/ﬁ;ﬂ_ﬁ = forall B+ |a|,5 C A7, 6 # a.

o = {(\, 7, a)-Kronecker tableaux}, because a; = ay and

Let g F |a|,5 C AN 7. Assume that we have T € %/ﬁf/—ﬁ' Then T can only
be filled with elements from the set {1,2,... ,!7} Hence, because of T"s column

strictness property, each of its columns can contain at most ¢ boxes. In the ith
column of \, 1 < ¢ < m, there are exactly (+ ol boxes. Since the ith column
of T can contain at most ¢ boxes, the top ol boxes must belong to 3, which
means 3, > «, for all 1 < i < m. So in the first m columns, this results in at
least Y ", af = || boxes belonging to 5. But § F |a|, therefore 5! = o for all
1 <i<mand g =0 for i >m. Hence ' = o/, which means § = a and proves
the claim. O]

It is easy to see that the proofs in this section are independent of the number
of rows in x, but it suffices here to consider two-row partitions.

27

Chapter 5

Preliminaries — Flows in networks

In this chapter we introduce basic terminology and facts about flows and
augmenting-path algorithms (cf. [AMO93, Jun04]). These will be used to de-
scribe the algorithms in Chapter 6 and 7. At the end of this chapter we will
have a look at the well-known Ford-Fulkerson algorithm and its polynomial-time
capacity scaling variant. This capacity scaling approach will be used in Chap-
ter 7 to refine the LRPA (Littlewood-Richardson Positivity Algorithm) into the
polynomial-time algorithm LRP-CSA (Littlewood-Richardson Positivity - Capac-
ity Scaling Algorithm).

5.1 Graphs

A graph G = (V, E) consists of a finite set V of vertices and a finite set £ C (%))
of edges whose elements are unordered pairs of distinct vertices. We say that the
edge {v,w} € E connects v and w. Since in our case edges are pairs of distinct
vertices, our graphs have no loops, which are edges that connect a vertex with
itself. We call two vertices v and w adjacent, if {v,w} € E. We call a vertex v
and an edge e incident, if v € e. A face is a region bounded by edges, including
the outer, infinitely-large region.

5.2 Flows on digraphs

Given a graph G = (V, E) we can assign an edge direction to each edge in E
by adding to G an orientation function o : E — V which puts the vertices in
order by mapping each edge to one of its vertices. This makes G a directed graph
(digraph). An edge {v,w} can either be directed away from v and towards w
(o({v,w}) = v) or directed away from w and towards v (o({v,w}) = w). The
incident edges of each vertex v € V' can then be divided into di,(v) (the edges

28

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

that are directed towards v) and dou(v) (the edges that are directed away from
v). Now for a mapping f : E — R we define

> fle)

e€din (v)

outU f Z f

eeéout ()

and

As a vertex can be contained in the vertex set of several digraphs, it is not always
clear from the context which underlying digraph is meant. In these situations
we add an additional superscript as for example in 6% (v, f) or %, (v, f) to avoid
confusion.

Definition 5.1 (Flow). A flow f on a digraph G = (V, E) is a mapping f : £ —
R which satisfies the following flow constraints:

Yo €V : Gin(v, f) = dous(v, f) (5.1)
n

Flows are also called circulations in the literature.

Flow vector space We note that negative flows on edges are allowed and that
therefore the flows on a digraph G = (V| E,0) form a real vector space F(G),
which is a subspace of the vector space of mappings £ — R. The next lemma
shows that the choice of the specific orientation function o is not essential.

Lemma 5.2. Let G = (V,E,0), G' = (V,E,d") be two digraphs that share the
vertex and edge set but have different orientation functions. Then there is the
following natural 1somorphism of vector spaces:

W F(G) — F(G), Ve € B¢ (f)(e) = {f(e) ifole) =o'le).

¢ —f(e) otherwise

Proof. We need to show that (2 is well-defined, i.e. for all f € F(G) we have
19 € F(G"). Tt is sufficient to prove the claim for two orientations o and o that
differ only on one edge {v,w}. Let {v,w} be directed from v to w w.r.t. o and
from w to v w.r.t. o. Let f be a flow on G. Trivially, the flow constraints are
satisfied for G’ in every node of V' \ {v, w}.
Since 0% (v, f) = 65 (v, f), we have
5 (v,) = 6% (v,) + (=€) = 3G (v, f) = F(€) = (v, f).
And since 551(10, f) =065 (w, f), we have
3G (. £) = 05w, 1) — 1(e) =3y (w0, 1) + (~F(6)) = 8w 1)
Thus 2 (f) € F(G") and thus (2 is well-defined.

Clearly, Lg’ is a linear map. It is bijective, because ¢, is inverse to Lg’. Therefore

/. . .
(9 is an isomorphism of vector spaces. O]

29

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

We now analyze the dimension of the vector space of flows on a digraph.

Definition 5.3 (Path, connected vertices). Given a graph G = (V, E) and two
vertices vy, v9 € V. A path between vy and vy in G is a finite sequence of distinct

nodes v; = vl ..., v™ = vy such that {v', v} € F forall 1 <i < m.
Two vertices v1,v9 € V are called connected, if there exists a path between v,
and v,. [|

It is easy to show that being connected is an equivalence relation on V. Each
equivalence class is called a connected component. If a graph G = (V, E) has only
1 connected component or if V' = (), then G is called connected.

Lemma 5.4. The flows on a digraph G = (V, E, 0) form a real vector space F(G)
with dimension dim F(G) = |E| — |V |+ #connected components of G.

Proof. Let C4,...,C,, be the connected components of G. For each connected
component C; and for each mapping f : F — R we have

Z 5in(v7 f) = Z 6out(vv f)? (52>

vECi UGCZ‘

because each edge contributes exactly once to the left sum and exactly once to
the right sum. Choose an arbitrary vertex v; € C; and let f : E — R be a
map such that di,(v, f) = dout(v, f) for all v € C; \ v;. Then we can deduce
Oin (v, f) = out(vs, f) as follows:

Yv € Cl \ {Uz} : 5in(v7 f) = 6out<vﬂ f)
= Z 6in(v7 f) = Z 6OUt<U’ f)

veC;\{v;} veC;\{vi}
(5.2)
= 5in(viaf) :5011t(viaf)‘
Hence in each connected component one flow constraint equality can be left out
and thus
dim F(G) > |E| — |V| + #connected components.

Now omit 2 restrictions in a connected component C: 0y, (vy, f) = dout(v1, f)
and i, (ve, f) = Oout(vVe, f) with vy, vy € C. Given a flow f € F(G). As C is a
connected component, there exists a path between v; and vy. Then by sending
1 unit along the path (that means increasing/decreasing the flow on the path’s
edges while respecting all flow constraints but the ones in v; and vy), f can be
transformed into a mapping f’ : £ — R where all flow constraints except the
flow constraints in v; and v, are satisfied. This shows that omitting 2 or more
restrictions in the same connected component strictly extends the vector space
F(G) beyond consisting of only flows. Therefore we have

dim F(G) = |E| — |V| + #connected components.

30

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

5.3 Flow decomposition

We want to decompose flows into smaller parts called cycles which are easier to
handle. Therefore in this section we describe the fairly standard idea of flow
decomposition.

Definition 5.5 (Cycle). A cycle ¢ = (vy,...,vs, 0001 = v1) onagraph G = (V, E)
is a finite sequence of vertices in V' with the following properties:

e />3
o V1 <4, j<U{li#]:v#v,
o V1<i</{:{v,vin1} €FE

We can see the edges {v;,v;41},1 < @ < £ as part of the cycle and write
{vi,viy1} € c. The length ¢(c) is defined as the number of edges in c. |

Given a digraph G = (V, E,0), we assign a cycle flow f. to each cycle ¢ =
(U1, ...,V 041 = v1) on G by setting for all 1 <i < ¢

1 if {v;,v;11} is directed from v; towards v

—1 if {v;, v} is directed from v,y towards v;

fel{vi,vipa}) = {

and f.(e):=0forallee E\ c.

To simplify the notation, we identify ¢ with its cycle flow f.. Note that
changing the underlying orientation from o to o’ changes a cycle’s flow ¢ to < (c)
(cf. Lemma 5.2).

We define the support of a flow f € F(G) as supp(f) :={e € E| f(e) # 0}.

Lemma 5.6 (Flow decomposition). Given a digraph G = (V, E,0) and a flow f
on G. Then there is m < |supp(f)| and cycles ¢1,...,cpm on G and oy, ..., €
Roo with Y it cic; = f such that for all 1 < i < m and for all edges e € ¢; we
have sgn(c;(e)) = sgn(f(e)). We call a; the multiplicity of the cycle ¢; in the
decomposition.

We will prove a stronger variant of this lemma later (cf. Lemma 5.11).

5.4 Capacities

We can assign capacities to a digraph G = (V| E,0) by defining two functions
u:FE — RU{oo} and [: E — RU {—o0} which we call the upper bound
and lower bound respectively. We use the subscript notation wu. = u(e),l. :=
l(e). A digraph with capacities is sometimes called a network in the literature.
Throughout this work, we will restrict ourselves to the simple case where

Vee EF:l. <0,u, > 0.

31

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

This is a general assumption whenever speaking about capacities. An edge e
with [, = —oc0 and u, = oo is called uncapacitated. All other edges are called
capacitated.

Definition 5.7 (Feasible flow). Let G = (V, E, 0) be a digraph with capacities u
and [. A flow f on G is denoted feasible with respect to u and [, if [, < f(e) < u,
on each edge e € E. The set Pras(G) C F(G) of feasible flows on G is called the
polyhedron of feasible flows on G. |

We now prove that the specific orientation of the edges is not essential for
feasible flows as well.

Lemma 5.8. Given two digraphs G = (V, E,0) and G' = (V, E,0') that share the
vertexr and edge set but have different orientation functions. Given upper bounds
u: FE — RU{oo} and lower bounds | : E — R U {—o00} on the digraph G and a
flow f on G. Define the natural bijective map 2 :

i F(G) x (RU{oo})P x (RU{—00})E — F(G") x (RU{oo})¥ x (RU{—00}),
(fousl) = (g (f), 1)
with Ve € E

- {u fole)=dle) , _ {ze if ole) = o/(e)

u,
c -1, otherwise —u, otherwise

Then f is feasible w.r.t. u and | iff 12 (f) is feasible w.r.t. u' andl'. Thus feasible
flows are invariant under i< .

Proof. Given a flow f on G. Then for each edge e € E with o(e) = o/(e) we have
l < fle)<ue sl =1, < fle) =2 (f)(e) <u =1,
And for each edge e € FE with o(e) # o'(e) we have
le < f(e) Sue e —u, < fle) < =l &1, <o (f)e) < ul,
[
We define the directed capacity function i@ :V x V — Rsq of G = (V, E, 0) as

follows:
0 if {fv,w} ¢ FE
(v, w) = § upwy if {v,w} € E and {v,w} is directed from v towards w
—lfpwy if {v,w} € E and {v,w} is directed from w towards v
From the definition we have @(v,w) > 0 for all v,w € V. Note that u(v,w)

is preserved under any 7. If it is not clear of which digraph G the capacity
functions are meant, we write @ (v, w).

32

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

Definition 5.9 (Well-directed cycle). A cycle ¢ = (vq,...,0p, 041 = v1) is de-
noted well-directed, if for all 1 < i < /¢ it holds @(v;, v;11) > 0. [|

Lemma 5.10. A cycle ¢ is well-directed iff there is an € > 0 such that the flow
ec 1s a feasible flow.

Proof. Let ¢ = (vy,...,vs, 0001 = v1) be well-directed. We set

€= &1}2({6(1}1-, Viy1)}

and note that ¢ > 0. Consider ec. Let e = {v;,v;41} forany 1 < i < (. Ife
is directed from v; to viy1, then [, < 0 < ec(e) = e < U(v;, V1) = ue. If € 8
directed from v; 41 to v;, then u, > 0 > ec(e) = —e > —i(v;, vi41) = lo. Therefore
cc is a feasible flow.

Now let ¢ > 0 such that ec is a feasible flow. Let e = {v;,v;41} for any
1 <i < /(. If e is directed from v; to viyq, then I, < ec(e) <ue = 0 < e < ue
and therefore u, = @(v;,v;41) > 0. If e is directed from v;; to v;, then [, <
ecle) < u, = 0 > —e > I, and therefore —I, = u(v;,v;41) > 0. Therefore ¢ is a
well-directed cycle. O]

There is a flow decomposition lemma for feasible flows as well (cf. Lemma 5.6):

Lemma 5.11 (Feasible flow decomposition). Given a digraph G = (V, E,0) and
a feasible flow f on G. Then there is m < |supp(f)| and well-directed cycles
ClyoosCm oon G and ay, ...,y € Rog with Y " aue; = f such that for all
1 <1 < m and for all edges e € ¢; we have sgn(c;(e)) = sgn(f(e)). We call
the multiplicity of the cycle ¢; in the decomposition.

Proof. We do induction by the size of the support of f. For the base case assume
that |supp(f)| = 0. Thus f(e) = 0 for all e € E and we can choose m = 0 to
show the induction basis.

Now let the assumption be true for all flows on G whose support contains at
most IV edges. Let f be a feasible flow on G with [supp(f)| = N + 1. We create
a well-directed cycle ¢ as follows: Start at a vertex v that is incident to an edge
ey with f(e;) # 0. Add v to ¢. Now choose an edge e that is either directed
away from v with f(e) > 0 or that is directed towards v with f(e) < 0. Such an
edge must exist because of the flow constraints. Now consider the other vertex
incident to e. This is the next vertex in ¢. Continue this process until you have to
add a vertex w to ¢ which you have already added. Then a cycle is found starting
at w. Just dismiss the first preceding vertices. Note that with this construction
we have for all edges e € ¢ : sgn(c(e)) = sgn(f(e)). Lemma 5.10 shows that c is
a well-directed cycle. Now set a to be the maximum value such that |ac| < |f].
By construction « is positive and there is an edge e with ac(e) = f(e). Thus
|supp(f — ac)] < N. By induction hypothesis, there are well-directed cycles
Clyevoy Gy and ag, ..., 0, m < N with f —ac = >, a;¢; such that for all

33

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

1 < ¢ < m and for all edges e € ¢; we have sgn(c;(e)) = sgn(f(e)). Hence by
setting Qi1 := @, Cpy1 = ¢, we get f = Z:’:{l a;c;, m+1 < N+1 and we have
for all 1 <i <m+ 1 and for all edges e € ¢; : sgn(c(e)) = sgn(f(e)). O

Note that this decomposition is not necessarily unique. Also note that we can
prove Lemma 5.6 by setting the capacities on each edge e to [, := —00, u, := 0
and using Lemma 5.11.

5.5 The Ford-Fulkerson algorithm

The LRPA has a close relationship to the Ford-Fulkerson algorithm (denoted FFA
here). See [AMO93, ch. 6] where the FFA is called the “labeling algorithm”. We
prove the correctness and running time of this well-known algorithm here in a
slightly different way as usual and then in Chapter 6 transfer the results to our
situation and explain the LRPA. In Section 5.6 we describe the polynomial-time
version of the FFA, which we call FF-CSA, which stands for Ford Fulkerson
Capacity Scaling Algorithm. The capacity scaling approach is used in Chapter 7
to convert the LRPA into its polynomial-time counterpart LRP-CSA.

We can restate the traditional maximum flow problem ([FF62, AMO93]) in
the following (slightly different) way:

Definition 5.12 (Maximum flow problem). Given a digraph G = (V, E, 0) with
integral capacities u, € Z>o,l. € Z<p on each edge e with one special edge {t, s}
directed from ¢ towards s, the mazimum flow problem is the problem of computing
a feasible flow f on G with maximum f({¢, s}). |

There are some minor differences to [FF62], but both formulations are easily
seen to be equivalent. Although this description of the maximum flow problem is
more complicated then the traditional description, it is suitable to illustrate the
ideas that are used in the construction of the LRPA.

Recall that Pias(G) € F(G) denotes the polytope of feasible flows on G:

Pfeas(G) = {f S F(G) ’ Vee I : le < f(e) < ue}
We define the linear function §, which is to be maximized, as § : F(G) — R, f
f({t,s}). Note that for all f € Pras(G) we have §(f) < ugsy < 0.

The residual network To state the FFA, we need the construction RES(f)
called the residual network with respect to f. RES(f) has the same underlying
digraph as G, only the capacities are different: Each edge’s bounds [., u. in G
are adjusted to new bounds I/ := [, — f(e),u, := u. — f(e). Recall that

? e

Proas(RES(f)) = {d € F(RES(f)) |Ve € E:I. < d(e) < u'}.

The following lemma shows a crucial property of the residual network:

34

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

Lemma 5.13 (Residual Correspondence Lemma for Maximum Flow). Given a
digraph G = (V, E,0) and a feasible flow f € Pieas(G). Then for all d € F(G):

d € Proas(RES(f)) <= f 4+ d € Preas(G).

Proof.
f4d€E Pras(G) Ve E:l. < (f+d)(e) < ue

eVee E:l.— fle) <d(e) < ue— f(e) & d € Pras(RES(f)).
]

AS Proas(RES(f)) = Proas(G) — f :={d € F(G) | d+ f € Pias(G)} we have
that Pras(RES(f)) and Pras(G) are the same polyhedra up to a translation. We
will see that the situation of the LRPA is more complicated and that we will
not have such a strong Residual Correspondence Lemma. In some cases we will
not be able to construct a residual network at all. We will be able to construct
RES(f) only for so-called shattered flows.

The following lemmas lead to the construction of the FFA:

Lemma 5.14. Given a digraph G with integral capacities u,l and let f € Preas(G)
be an integral feasible flow on G. Let ¢ be a well-directed cycle on RES(f). Then
f +c e PfeaS(G).

Proof. We have ¢ € Pias(RES(f)), because ¢ is well-directed and the capacities
on RES(f) are integral. Lemma 5.13 shows that f + ¢ € Pras(G). O

Lemma 5.15. Given a digraph G = (V, E,0) with capacities, a feasible flow
f € Pras(G) and any linear function 6 : F(G) — R. If there is no well-directed
cycle ¢ on RES(f) with 6(c) > 0, then f mazimizes § in Pieas(G).

Proof. Let f € Pieas(G) such that f does not maximize 0 in Pr,s(G). Then there
iS g € Preas(G) with 6(g) > §(f). Define d := g— f. As f+d € Pras(G) according
to Lemma 5.13 we have d € Ppas(RES(f)). With Lemma 5.11 we can decompose
d into well-directed cycles c1, ..., ¢, on RES(f) with

m
d= E ;G
=1

where «; > 0 for all 1 < i < m. We have §(d) > 0, because 6(g) > 0(f). As is
linear there exists ¢ € {1,...,m} with §(¢;) > 0. This proves the lemma. O

We can now describe the Ford-Fulkerson algorithm, which is Algorithm 1, and
prove its correctness.

Remark 5.16. Note that well-directed cycles ¢ with §(¢) > 0 are exactly those
cycles, which contain ¢ and s and have ¢({t,s}) > 0. So breadth-first-search or
any pathfinding algorithm from s to ¢ will suffice to find a well-directed cycle
with that property (line 6). These algorithms run in polynomial time.

35

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

Algorithm 1 Ford-Fulkerson algorithm (FFA)
Input: A digraph G = (V, E, 0) with integral capacities [and u and one special
edge {t, s} directed from ¢ towards s.
Output: A feasible flow f on G with maximal flow on {t, s}.
. f 0.
// We have f € Pias(G) and f is integral.
done « false.
while not done do
Construct RES(f).
if there is a well-directed cycle ¢ in RES(f) with d(c) > 0 then
Augment 1 unit over ¢: f «— f+c.
// Lemma 5.14 ensures that f € Pr,s(G). Moreover, f is integral.
else
done <« true.
end if
: end while
: // There are no well-directed cycles ¢ on RES(f) with §(¢) > 0. Lemma 5.15
ensures that f maximizes § in Pieas(G).
14: return f.

[S e e

Proposition 5.17. The FFA terminates on any input (G, 1, u, {t,s}).

Proof. We have to ensure that the while-loop in line 4 always terminates. Each
iteration of the while-loop increases §(f) by 1. For the initial solution 0 we
haved(0) = 0. We know that 6(f) is bounded by ug s. So the while-loop always
terminates. [l

Thus we have the following proposition:

Proposition 5.18. The FFA terminates on any input (G, 1, u,{t, s}) and returns
a feasible flow f € Pras(G) which optimizes § in Preas(G).

Proof. Combine Proposition 5.17 and Lemma 5.15. [

5.6 The Ford-Fulkerson Capacity Scaling Algo-
rithm

We will use a capacity scaling approach in chapter 7 to convert the LRPA into its
polynomial-time counterpart LRP-CSA. We now illustrate this scaling approach
by showing a scaled version of the Ford-Fulkerson algorithm: The Ford-Fulkerson
Capacity Scaling Algorithm, denoted FF-CSA here. See [AMO93, ch. 6, ch. 7.3]
where the FF-CSA is called the “labeling algorithm”. We prove the correctness

36

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

and running time of this algorithm in this section in a slightly different way as
usual and then in Chapter 7 transfer the results to the situation of the LRPA
and explain the LRP-CSA.

Recall that

Preas(G) ={f € F(G) |Ve€e E: l. < f(e) < ue}
and that §(f) = f({¢t, s}).

The residual network We will use a slightly different residual network
RES,x(f) defined as follows: We first construct RES(f) with capacities v, 1’ as in
the FFA. For k € N we obtain RES,x(f) by defining new capacities:

. {u; ifu, =20, {l; if i, < 2

0 otherwise ’ 0 otherwise

Note that Preas(RESox(f)) C Preas(RES(f)).

Lemma 5.19. Given a digraph G = (V, E,0) with integral capacities u,l and a
feasible flow f € Pieas(G). For each well-directed cycle ¢ on RESqk(f) we have
f + 2kC € Pfeas(G).

Proof. By construction of RES. () we have for all v, w € V that @RS+ (v, w) =
0 or wRESkW) (v, w) > 2F. Therefore 2¥c € Pras(RESok(f)) € Preas(RES(f)).
Lemma 5.13 shows that f + 2%c € Pras(G). O

The FF-CSA is listed as Algorithm 2. The following lemmas prove its cor-
rectness:

Lemma 5.20. When the FF-CSA terminates on an input (G, 1, u,{t,s}), it re-
turns a feasible flow f € Pras(G) that maximizes 0 in Preas(G).

Proof. When the FF-CSA terminates, there are no well-directed cycles ¢ on
RES;(f) with d(c) > 0. The graph G has integral capacities and the flow f
stays integral throughout the FF-CSA. Therefore the capacities on all residual
networks that appear during a run of the FF-CSA are integral. As in particular
the capacities of RES;(f) are integral, it follows that we have RES(f) = RES;(f)
at line 15. Then from Lemma 5.15 we know that f maximizes § in Pias(G). O

It remains to show that the FF-CSA runs in polynomial time:

Definition 5.21. Given a digraph G = (V,E,0) and a cycle ¢ =
(v1, ..., 0,041 = v1) on RES(f). A tuple (v;,v;41),1 < i < £ is called criti-
cal, if @RES2+) (v;,v41) = 0. [|

Note that well-directed cycles on RES,:(f) are exactly those that have no
critical tuple. Also note that @RES2+() (v, v,41) = 0 < @REW) (v, vi4,) < 2F.

37

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

Algorithm 2 Ford-Fulkerson capacity scaling algorithm (FF-CSA)
Input: A digraph G = (V, E, 0) with integral capacities [and u and one special
edge {t, s} directed from ¢ to s.
Output: A feasible flow f on G with maximal flow on {¢, s}.
1. f« 0.
2: // We have f € Pieas(G).
3: U «— max{i(v,w) | v,w € V}.
4: for k = [log(U)] down to 0 do
rounddone <« false.

5

6 while not rounddone do
7 Construct RESq«(f).
8
9

if there is a well-directed cycle ¢ in RESqx(f) with (c) > 0 then
Augment 2% units over c¢: f «— f + 2c.

10: // Lemma 5.19 ensures that f € Preas(G). Moreover, f is 2F-integral.
11: else

12: rounddone <« true.

13: end if

14: end while

15: end for

16: // Lemma 5.20 ensures that f maximizes 0 in Pieas(G).
17: return f.

38

CHAPTER 5. PRELIMINARIES — FLOWS IN NETWORKS

Lemma 5.22. On any input (G,l,u,{t,s}) the FF-CSA uses only polynomial
time.

Proof. There are subalgorithms for finding shortest well-directed cycles ¢ in
RES,(f) with d(c) > 0 in polynomial time. We call each iteration of the for-loop
in line 4 a round. As the edge capacities are encoded in the input, the number
of rounds is linear in the input size. We show that the while-loop in line 6 runs
at most 2|F| + 1 times each round:

Each iteration of the while-loop except the last one (where rounddone is set
to true) increases 6(f) by 2.

For the initial solution f =0 we have 0(f) = 0. We have 0(f) < uys) for all
[€ Pras(G). But ug < U. So in the first round (k = [log(U)]), there is at
most 1 iteration of the while-loop.

Let fuax € Preas(G) such that fiax maximizes § in Pias(G). Let f be a flow
after finishing the while-loop with a fixed k. Let d := fu.x — f- We want to show
that

0(fumax) — 6(f) = 6(d) < 2| E.

After finishing the while-loop, there are no well-directed cycles ¢ on RES,x(f)
with d(¢) > 0. Therefore each cycle ¢ = (vq,...,vp, ve41 = v1) on RESyk(f) with
d(c) > 0 must use a critical tuple. According to Lemma 5.11 the flow d can be
decomposed into at most |E| well-directed cycles on RES(f):

|E|
Z a;C; = d7
i=1
where ci, ..., ¢ are well-directed cycles on RES(f) and ay, ..., o, € Ry with

o, aic; = d such that for all 1 < ¢ < |E| and for all edges e € ¢; we have
sgn(c;(e)) = sgn(d(e)). Each one of these cycles ¢; has §(c;) < 0 or uses a critical
tuple (v, w), i.e. @0 (v, w) < 2%, Since d is a feasible flow on RES(f), we have
a; < 2% for all 1 < ¢ < |E| that satisfy 6(c;) > 0. Therefore §(d) < 2F|E].

In the next round in each iteration of the while-loop besides the last one,
5(f) is augmented by 2¥~1. Thus the while-loop only runs for at most 2|E| + 1
iterations in each round.]

39

Chapter 6

Deciding positivity of
LR-coefficients

In this chapter, we will design a combinatorial algorithm to decide the positivity
of Littlewood-Richardson coefficients. These coefficients have several different
combinatorial interpretations. Valuable work has been done by Pak and Vallejo
(cf. [PVO05]) by describing three major approaches and analyzing their corre-
lation. The most widely known interpretation can be given with the so-called
Littlewood-Richardson rule in terms of Littlewood-Richardson tableaux. The
other two interpretations are the Berenstein-Zelevinsky triangles (cf. [BZ92|)
and the Knutson-Tao hives (cf. [KT99]). [PV05] give explicit bijections between
them.

The idea of this chapter is to use the language of hives and transform the
problem of deciding positivity of Littlewood-Richardson coefficients into an opti-
mization problem and solve it with a Ford-Fulkerson-like algorithm. We will see
that for our problem we can design a residual network in which the so-called hive
inequalities are transformed into capacity constraints. On this residual network
shortest well-directed cycles can be used for augmenting the flow by an integral
amount.

We start with a motivation in Section 6.1 and continue with ideas and defi-
nitions in Section 6.2, then we introduce the basic algorithm in Section 6.4. In
Section 6.5 we discuss an algorithm that decides whether a Littlewood-Richardson
coefficient is exactly 1 and we give a proof of a conjecture by Fulton. In Chapter 7,
we will refine the LRPA to become a polynomial-time algorithm.

6.1 Saturation Conjecture and hive polytopes

Additionally to proving the #P-completeness of computing Kostka numbers,
Narayanan proved that the computation of Littlewood-Richardson coefficients
LRCOEFF is #P-complete (cf. [Nar06]). This is interesting, because the associ-

40

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

o /N e
WAVAY:
VAVVAY
o NNN/N oo
VAVAVV.VAN

Figure 6.1: The big triangle graph A.

ated decision problem LRCOEFF+ is decidable in polynomial time, which was
first pointed out by Mulmuley and Sohoni (cf. [MSO05]). We remark that as-
suming P # NP, LRCOEFF is not #P-complete under parsimonious reductions
(see Corollary 2.11). There are several ways to prove that LRCOEFF~, € P,
each using linear optimization algorithms and the following so-called Saturation
Conjecture, which was proved by Knutson and Tao (cf. [KT99]):

Theorem 6.1 (Saturation Conjecture). Let A\, u, v be partitions, N € N>;. Then
5, > 0= cNAN“ > 0.

Buch gives a proof based solely on the hive model (cf. [Buc00]). We do not
use the Saturation Conjecture for deciding LRCOEFF~,. Instead we do it the
other way round: We will use the hive model to give a combinatorial algorithm
for deciding LRCOEFF~y. As a byproduct we obtain a proof of the Saturation
Conjecture.

For our approach we now introduce notations that lead to the definition of the
hive polytope. Given partitions A, p, v such that |v| = |A| + |u], it is easy to see
that for {(v) < max{l(u), ()} we have c§, = 0, because c§, equals the number
of semistandard Young tableaux with shape v/ and type u whose reverse reading
word is a lattice permutation. So we can assume that max{/(\),{(u),l(v)} =
((v). Let n = L(v).

We start with a triangular array of vertices, n + 1 on each side, as seen in
Figure 6.1. This graph is called the big triangle graph A with vertex set H.
To avoid confusion with vertices in other graphs that will be introduced later,
vertices in A are denoted by underlined capital letters (A, B, etc.). The vertices
on the border of the big triangle graph form the set B. The inner vertices form

41

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

c B
®

A AN A

B & ® [@ ®

\g/ 4 B D

b o

Figure 6.2: Rhombus labelings in all possible ways.

the set [:= H \ B. Denote with 0 the top vertex of H and set H' := H \ {0}.
The graph A is subdivided into (n(n+1))/2+ (n(n —1))/2 = n? small triangles
whose corners are graph vertices. We call a triangle in A an upright triangle, if it
is of the form ‘A\’. Otherwise (‘5/’) we call the triangle an upside down triangle.
By a rhombus O(A,B,C,D) with A, B,C,D € H we mean the union of two
small triangles next to each other, where A is the acute vertex of the upright
triangle and B, C' and D are the other vertices in counterclockwise direction (see
Figure 6.2). If we do not want to assign a name to a vertex of the rhombus, we
use a syntax like O(A, B, ., D). Two rhombi are called overlapping, if they share
exactly one triangle.

Each rhombus induces a so-called hive inequality on the vector space of real
vertex labelings R”: The sum of the labels at the obtuse vertices must be greater
than or equal to the sum of the labels at the acute vertices. So for a rhombus
O(A, B,C, D) and a vertex labeling h € RY we require

MB) + WD) = h(4) + h(C). (6.1)
We call such a rhombus h-flat, if
WB) + h(D) = h(A) + h(C), (6.2)
or simply flat, if it is clear what h is meant. We define the slack of a rhombus as
o(0(4, B,C, D), h) := (h(B) + h(D)) — (h(A) + h(Q))-

It is clear that a rhombus ¢ is h-flat iff O'(<>, h) = 0.

If a vertex labeling h € R satisfies all thombus inequalities, h is called a
hive. The sum of two hives is again a hive. The difference of two hives is not
necessarily a hive.

As the vertex set H is embedded into the plane, h can be interpreted as
heights of the points H in R3:

42

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

/\Al
NWAVAY'
YAVAVAY
VAVAVAVAN
/\/\/\/\/\

o] = 1A + I

/

/ X
=

N

X
<
<)

Figure 6.3: Border labelings of A resulting from A, p and v.

Definition 6.2 (Hill function). The convex hull conv(H) in the plane can be
interpreted as the domain of A’ : conv(H) — R where A’ is induced by h via
linear interpolation and thus 2'|g = h. We call b’ the hill function of h. [|

It is essential that if A is a hive, then A’ is a concave function.
A hive h € Z" is called an integral hive. Given partitions)\, p and v with
lv] = |A] + |u|. Let b(\, i, v) € R be a border with labels as in Figure 6.3.

Theorem 6.3 (cf. [KT99], [Buc00]). Given partitions A, ju, v with |v| = |\ + |-
Then cX,, is the number of integral hives with border labels b, p,v).

We remark that Theorem 6.3 can be derived from the Littlewood-Richardson
rule (cf. [Buc00, PV05]).

The rhombus inequalities and the border labels can be encoded in a matrix
A, over {—1,0,1} and a vector by ,,, over N such that the Littlewood-Richardson
coefficient can be written as

= Hx e z/H | Ay < bx,u,,,}‘)

Thus LRCOEFF becomes a subproblem of #IP (see Section 2.2), namely
LRCOEFF = {(An,) — [{z € 2P| Ay < bA,W}}}.

The associated polytope
P(A7M7 V) = P(Ana b)\,u,u) =
{h € RY [hls = b\, i, v), YO(A, B,C, D) : h(B) + h(D) > h(A) + h(C)}
is denoted the hive polytope corresponding to A, u, v

43

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Now [MS05] use the Saturation Conjecture (Theorem 6.1) and Theorem 6.3
to decide LRCOEFF+ in the following way.

Corollary 6.4.
P\, p,v) # 0 <= ¢35, > 0.

Proof. The direction ” < 7 is clear. Let x € Q™ with A,z < by ,,. Let N € N
with Nz € Z™. Then A, (Nz) < Nb),,. From the definition of by ,, we get
Nby i = byanuny. Hence Nz € P(NX, Nu, Nv). So cyiy, > 0 and with the
Saturation Conjecture we get ¢, > 0. O]

Deciding whether a polyhedron P(A,b) is empty can be done in polynomial
time (see Section 2.1). Hence LRCOEFF, € P.

Purely combinatorial algorithms There are other problems where standard
methods lead to polynomial-time algorithms. For example the maximum flow
problem (see Definition 5.12) can be solved in polynomial time using ellipsoid
method or interior point methods. But these standard methods are not as fast
as algorithms that use the specific problem structure and operate directly on
the graph, like the Ford-Fulkerson algorithm (see Section 5.6, also described in
[AMO93, CLRS01]). We call algorithms of this kind (in the sense that they do not
use an explicit linear programming algorithm) purely combinatorial algorithms.
Such algorithms often have better runtime behaviour than the general methods
in theory as well as in practice.

We design a purely combinatorial algorithm for LRCOEFF-(in Section 6.4
which we call the LRPA (Littlewood-Richardson Positivity Algorithm). In Chap-
ter 7 we refine it into its polynomial-time counterpart LRP-CSA using a scaling
approach. Its worst-case runtime behaviour is not as good as one might hope
for. It is planned in the near future to implement the LRP-CSA and compare
its running time with other methods that determine the positivity of Littlewood-
Richardson coefficients. The worst-case analysis of LRP-CSA reveals interesting
problems that are to deal with, which makes the algorithm an interesting result
on its own. We quote [MS05] here:

It is of interest to know if there is a purely combinatorial algorithm
for this problem that does not use linear programming; i.e., one sim-
ilar to the max-flow or weighted matching problems in combinatorial
optimization. [...] It is reasonable to conjecture that there is a poly-
nomial time algorithm that provides an integral proof of positivity of
¢, In the form of an integral point in P.

This is exactly what the LRP-CSA does, as there are bijections between the
integer points in the quoted P and the integer points in the hive polytope (cf.
[PV05]).

44

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

6.2 Hives and flows

In this section we want to transfer the problem of finding an integral hive into the
language of flows and convert it into an optimization problem like the maximum
flow problem.

As seen, partitions A, u, v induce an integral vertex labeling b := b(\, u, v) €
R? on the border vertices of A (cf. Figure 6.3). This vertex labeling b € R is
called the target border. A border b € R® is called regular, if for all border ver-
tices A, B, C' € B which are consecutive vertices in clockwise or counterclockwise
direction on the same side of the big hive triangle, we have that

b(B) —b(4) > b(C) — b(B).

Note that b(B) — b(A4) > b(C) — b(B) < b(B) — b(C) > b(A) — b(B) and thus
is sufficient to look at the case where A, B, C are consecutive border vertices in
clockwise direction. If A\, p and v are strictly decreasing partitions, then the
target border b(\, i, v) is regular.

For z € R we call a real number z-integral, if it is an integral multiple of z.
We say h € R is z-integral, if h(A) is z-integral for all A € H.

6.2.1 The graph structure

Definition 6.5 (Throughput). For a flow f on a digraph G, we define for each
vertex v the throughput 6(v, f) as

Note that this definition depends on the edge directions of G. All vertices that
only have incident edges directed towards them or only have edges directed from
them have throughput 0. For each vertex v that has exactly one edge e; directed
towards v and one edge ey directed from v, we have (v, f) = f(e1) = f(ea).

We now define a bipartite planar digraph G' = (V, E, 0), which is homeomor-
phic to the dual graph of A. The definition is similar to the definition in [Buc00]:
G has one fat black vertex in the middle of each small triangle of A. In addition
there is one circle vertex on every triangle side (see Figure 6.4). We denote a
circle vertex between two upright triangle vertices A and B (read in counterclock-
wise direction) as [A, B]. Note that every circle vertex lies between two upright
triangle vertices. Each fat black vertex is adjacent to the three circle vertices on
the sides of its triangle. There is an additional fat black vertex o with edges from
o to all circle vertices that lie on the border of the big triangle. The graph G is
embedded in the plane in a way such that 0 € H lies in the outer face. Note that
G is essentially the dual graph of A with circle vertices added on each edge.

45

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

AP
AN A
oS\
et e R A\
val i \
3

AV S\
® ® \
/ S e\
A2 AWV AWV AWV A\
@W 2/4@

0

Figure 6.4: The digraph G and graph A.

46

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

A
D

%

dodakods

Figure 6.5: The sets A # (A) and A4 &(A). The vertex o is omitted here as in all
following pictures as well.

Next we assign a direction to each edge in G (see Figure 6.4): The edges
incident to o are directed from o towards the border of the big triangle graph.
The edges in an upright triangle are directed towards the incident fat black vertex,
while the edges in an upside down triangle are directed towards the incident circle
vertex.

Winding numbers Let A € H. Then define A4 # (A) to be the set of circle
vertices in V' that lie on the northwest diagonal drawn from A (see Figure 6.5).
This diagonal hits a border vertex B € B. Define 4 &(A) to be the set of circle
vertices in V' that lie on the northeast diagonal drawn from that border vertex B
(see also Figure 6.5). Now define the winding number of a vertex A € H with
respect to a flow f € F as

wind(4, f) =) 5 - Y 5
veN W (A veEN E(A
The winding number is linear in the ﬂow f.
Lemma 6.6. For each A € H, f € F, we have
|wind(A, f)] <n- max{|5(v,f)]}.
Proof. Let A€ H, f € F. We have |/ # (A)| + |4 &(A)| < n. This proves the

lemma. O

47

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.6: The isomorphism 7. Here n(h) is depicted where h(A) # 0 for only three
vertices A. The figure only shows edges that have nonzero flow value in

n(h).

Flow vector space Let F' denote the vector space F/(G) of flows on G. As G
is connected, by Lemma 5.4 we have dim F' = |E| — |[V| + 1. Note that a flow
f on G is completely defined by its throughput §([A, B], f) on each circle vertex
4, B].

Theorem 6.7 (Vector space isomorphism). There is an explicit isomorphism
n: R — F between the real vector space RY of vertex labels in A in which the
top vertez 0 has value 0 and the real vector space F of flows on G: For h € R’
and each circle vertex [A, B], set §([A, B],n(h)) := h(A)—h(B), which completely
defines n(h). The winding numbers give n=' by n~Y(f)(A) = wind(A, f) for
fer.

The isomorphism 7 is illustrated in Figure 6.6. Note that an integral hive
h results in an integral flow n(h) and that an integral flow f induces integral
winding numbers and thus n~*(f) is integral. So 1 preserves integrality in both
directions.

Also note that via n, all linear functions H' — R can be converted to linear
functions F' — R.

We remark that the proof of Theorem 6.7 does not make use of the special
problem structure and therefore this theorem can be generalized to any connected
graph.

48

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

A
5(1A, B)) = h(4) — h(B) 5(1C, A]) = h(C) — h(A)
N L
B c

0(1B, L) = h(B) = h(C)

Figure 6.7: Illustration of 7.

Proof of Theorem 6.7. Let h € R"'. Define a flow n(h) := f as described in
Theorem 6.7 (see Figure 6.7). As for each circle vertex v there is exactly one
edge e; directed towards v and exactly one edge e, directed from v, the flow on
e; and eq is defined as f(ey) := f(e2) := §([A, B], f). This completely defines f
on all edges of GG as each edge in G is incident to exactly one circle vertex. It is
easy to see that 7 is linear.

We show that f € F"

The flow constraints are satisfied by definition on each circle vertex. For an
upright triangle formed by A, B, C' in counterclockwise direction, all the 3 edges
that are both incident to the fat black vertex v in the center of the triangle
and incident to [A, B],[B,C] or [C, A] are directed towards v. So oy, (v, f) =
A, Bl v} + F{IB.CL,o}) + F({C, Al,v}) = h(A) — h(B) + h(B) — h(C) +
h(C) — h(A) = 0 and analogously dou(v, f) = 0. For an upside down triangle the
argument is similar. As the flow constraints are satisfied in all but one vertex o,
the flow constraints must be satisfied in all vertices (see proof of Lemma 5.4). So
f is a flow on G.

We show that R and F have the same R-dimension:

The number of faces of G equals |H|. As G is a connected planar graph,
Euler’s formula for planar graphs states that |V| — |E| + |H| = 2. So dim F' =
|E| - |V|+1=|H|—1=dimR".

We show that n is an isomorphism:

With the rank-nullity theorem it only remains to show that 7 is injective. Let
h € R"" with n(h) = 0. This means that for any two adjacent vertices A € H
and B € H we have h(A) — h(B) = 0 and therefore h(A) = h(B). As h(0) =0
and G is connected, it follows that h = 0. Therefore 7 is injective.

We show how to compute n~!:

Consider a standard basis vector h of R¥": Let A € H and h € R with
h(A) = 1 and h(B) = 0 for all B € H', B # A. Then it is easy to see that

49

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

wind(A,n(h)) = 1 and for all A # B we have wind(B,n(h)) = 0. As for all flows
of basis vectors the winding numbers give the vertex labels h and the winding
number is linear in the flow, the winding numbers are a way to compute n=t. [

Hive inequalities on flows As 7 is an isomorphism, we can identify a flow
f € F with its vertex labeling = (f) € R, For example we can now speak of
f-flat thombi. If for two flows f, g € F' the induced hives have the same border,
ie. 17 f)|s = n"(9)|p, then we write f|p = g|z. As n is an isomorphism of
vector spaces, the linear hive inequalities (6.1) can also be expressed as linear
inequalities in F. Given a thombus O(A, B,C, D). Let h be a hive and f = n(h).
Then

hA) +h(C) < WB) + D) < (h(A) = h(B)) < (WD) — h(C))

< 0([A, B], f) < o([D, C], /), (6.3)

which is a restriction on the throughputs of circle vertices of this rhombus. This
is equivalent to

WMA) +h(C) < M(B) + WD) < —=(h(D) — h(4)) < =(h(C) - h(B))

& 8(C, B), f) < 5(ID, Al f). (6.4)

We call a flow f a hive flow, if n71(f) is a hive. We note that f is a hive flow,
if for all rhombi O(A4, B,C, D) we have 6([4, B], f) < o([D,C], f). We can now

express the slack of a rhombus as

o(O(A,B,C, D), f) :=a(O(A,B,C,D), h) = &§(D,C], f)— (A, Bl f)

6.2.2 Sources, sinks and)-boundedness

In this section we introduce the optimization problem to be solved for deciding
whether a Littlewood-Richardson coefficient is positive.

Define the set . C V' of source vertices as the set of all circle border vertices
in GG at the right or bottom border of the big triangle. Define the set .7 C V of
sink vertices as the set of all circle border vertices in GG at the left border of the big
triangle. Note that for any flow f € F', we have) __ (s, f) + > ,c50(t, f) = 0.
The throughput §(f) of a flow f on G is defined as

3(f):=Y 6(s, [) =Y ot f) =2 d(s, f).

s€s teT s€s

For all but three border vertices v we define the predecessor pred(v) as follows:
For a vertex on the right border, it is its topleft neighbor border vertex. For a

20

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

vertex on the bottom border, it is its right neighbor border vertex. For a vertex on
the left border, it is its topright neighbor border vertex. We define the successor
as succ(pred(v)) := v.

Now we put additional constraints on hive flows: Let b € R” be a border
vertex labeling. We define the following bounds on the border vertices:

V[A, B] € 7 : dpa ([A, B]) == b(4) — b(B),
([4, B]) := b(4) — b(B).

VIA,Bl € T : 8%,
Let f € F be a flow on G. We call f b-bounded, if it satisfies
V[A,B] € & : 6([A, B], f) < 0pax([A, B]),

max

V[A, Bl € 7 :6([A Bl f) = onin([4, B)).

min

(6.5)

These inequalities (6.5) together with the hive inequalities (6.3) on the flow
vector space F'(G) define the polyhedron P® C F(G) of all b-bounded hive flows.
The following lemma shows the significance of P?:

Lemma 6.8. Let the border b = b(\, u,v) come from partitions A\, p and v with
lv| = |A| + |p|. Then the following statements hold:

(1)Vse 60 (s)>0andVte T, (t) <O0.

max min

(2) For any b-bounded flow f we have §(f) < 2Jv|.

(8) Let f be a b-bounded flow. §(f) = 2|v| iff f satisfies all 3n inequalities in
(6.5) with equality.

(4) A hive with border b exists iff max{d(f) | f € P*} = 2|v|.
(5) If max{d(f) | f € P’} <2|v|, then c§, = 0.
(6) If there exists an integral flow f € P® with 6(f) = 2|v|, then x> 0.

(7) 6. (succ(s)) < 88 . (s) for all source vertices s € .7 that have a successor
and 6%, (succ(t)) > 5b (t) for all sink verticest € .7 that have a successor.

min min

Proof. (1) The first statement holds, because b comes from partitions as seen
in Figure 6.3.

(2) The second statement is a result of a simple calculation using cancellation

of telescoping sums: 6(f) = > .., (s, f) =D e 0(t, f) < (|A|+|p| = 0) —
(0 —v]) = 2[v].

(3) If all 3n inequalities in (6.5) are satisfied with equality, then again by us-
ing cancellation of telescoping sums we get 6(f) = 2|v|. On the other
hand, as 0(f) < 2|v|, we can only get equality, if all summands in
i(f) = 236/ 0(s, f) = D 1e7 0(L, f) are maximized, which means that the

inequalities in (6. 5) are satisfied with equality.

o1

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

(4) If max{5(f) | f € P’} = 2Jy|, then with (3) we get a flow f that has all
3n inequalities in (6.5) satisfied with equality. Via n~! a hive with border
b can be created.

On the other hand, a hive with border b induces f € P’ that satisfies all
3n inequalities in (6.5) with equality. With (3) it follows that §(f) = 2|v|.
With (2) we have max{d(f) | f € P’} = 2|v|.

(5) If max{d(f) | f € P°} < 2|v|, then according to (4) no hive with border b
exists. In particular, no integral hive with border b exists and thus according
to Theorem 6.3 we have c§, = 0.

(6) If there exists an integral flow f € P with §(f) = 2|v|, then with (3) we
get that f has all 3n inequalities in (6.5) satisfied with equality. Via n~!
we get an integral hive with border b. Theorem 6.3 shows that ¢, > 0.

(7) Let [B,C] € . be a source vertex and [A, B] := succ([B, C]) its successor.

W.lo.g. &, ([B,C]) = b(B) — b(C) = \; for some i and 6% ([A4, B]) =
b(A)—b(B) = \ir1. As \is a partition, we have 6%, _([A, B]) < 6°%,.([B,C)).
An analog proof can be applied to 7.

O

6.3 Comments on two-commodity flow

The problem of deciding positivity of Littlewood-Richardson coefficients has a
natural description as a so-called homologous flow problem. TItai (cf. [Ita78])
proved that solving a homologous flow problem is equivalent to solving a cor-
responding two-commodity flow problem with only linear loss of time. He also
proved that solving this is polynomially equivalent to solving linear programs,
for which no purely combinatorial algorithm is known. Thus for our goal of
designing a combinatorial algorithm, we may not rely on the homologous flow
description or the two-commodity flow description. Nevertheless we describe the
approach here, because it might be a competitive way for deciding positivity
of Littlewood-Richardson coefficients. Fast interior point methods designed for
solving multicommodity flow problems as for example in [KP95] can be used to
solve the problem efficiently in polynomial time.

A homologous flow problem is a maximum flow problem with additional con-
straints:

52

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

5
[
<

e

\

Figure 6.8: The gadget for the homologous flow description.

o Yo

A
.

Definition 6.9 (Homologous flow problem). Given a digraph G = (V, E, 0) with
integral capacities u, € Z>q,l. € Z<o on each edge e with one special edge {t, s}
directed from t towards s, a natural number N € N and sets Fy,...,Ey C E,
the homologous flow problem is the problem of deciding whether a feasible flow
f on G exists with f({t,s}) > N that satisfies the following constraints:

V1<i< M: if e;,eg € E; then f(e1) = f(ea).
The sets E; are called homologous sets. |

If we use the Saturation Conjecture and Lemma 6.8(4), we can strengthen
Lemma 6.8(6) to

(6') If there exists a flow f € P* with 0(f) = 2|v|, then ¢, > 0.

Then for deciding positivity of Littlewood-Richardson coefficients we need not
care about integrality any more. We set N := 2|v/|, start with the graph G and
for each thombus ¢ := (A, B, C, D) we add the following gadget (see Figure 6.8)
containing four vertices xy, Yo, |4, Blo and [D, C|¢ and four uncapacitated edges:
{z¢, [A, Blo} directed from [A, Bl to x,

{yo,[4, Blo} directed from y, to [4, Blo,

{yo, [D,C]o} directed from [D, C]¢ to yo and

{z¢, [D, ¢} directed from z¢ to [D, Clo.

We add a fifth edge e := {yo, z¢} directed from y, to z¢ with I, = 0, u, = oo.
Then we create homologous sets that induce §([4, B], f) = (|4, Blo, f) and
(D,], f) =d([D,Clo, f). Note that the capacity constraints on the gadget are
equivalent to 8([4, By, £) < 6(1D, Clo, /).

As a last step, we split the vertex o into two vertices s and ¢ such that s is
connected with the source vertices and ¢ is connected with the sink vertices and
add an edge {t, s} directed from ¢ towards s. Then we have described the problem
of deciding positivity of Littlewood-Richardson coefficients as a homologous flow
problem in a natural way.

93

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.9: Possible shapes of flatspaces up to rotations, mirroring and different side
lengths.

6.4 The basic algorithm LRPA

The main idea of the LRPA is to find f € P’ which maximizes § in P® by doing
integral steps only. We will see that by doing so we can find an integral f € P?
which maximizes §. If 6(f) = 2|v| this proves c§, > 0 as seen in Lemma 6.8(6).
If 6(f) < 2[v|, then Lemma 6.8(5) says that ¢§, = 0. The LRPA starts with
f = 0 € P’ and increases the throughput &(f) while preserving an integral
b-bounded hive flow f.

The LRPA has a structure similar to the FFA presented in Section 5.5. But
the first problems already appear when trying to construct a residual network.
We manage in Section 6.4.2 to construct a residual network in which the hive
inequalities are represented as edge capacities. We show in Section 6.4.5 how
shortest cycles on this residual network can be used to make integral steps in P°.

6.4.1 Flatspaces

The LRPA can only construct a residual network for so-called shattered flows f.
Therefore in this section we introduce the notion of shatteredness.

A small triangle is a triangle formed by 3 pairwise adjacent vertices in the
big triangle graph A. Two small triangles are denoted connected, if they share
a side. An f-flatspace is a maximal connected union of small triangles such that
any rhombus contained in it is f-flat. We simply write flatspace, if it is clear,
which flow is meant. The flatspaces split the big hive triangle up in disjoint
regions. The following properties are easy to verify (cf. [Buc00]):

(1) Flatspaces are convex.

(2) All flatspaces have one of the shapes in Figure 6.9 up to rotations, mirroring
and different side lengths.

(3) A side of a flatspace is either on the border of A, or it is also a side of a
neighbor flatspace.

o4

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

®

o/ ® @ ®/®\?®\®—®—\®

®——

Figure 6.10: An example of a degeneracy graph.

(4) If the border of a hive is regular, then no flatspace has a side of length > 2
on the border.

For a hive h we can draw the degeneracy graph by removing all “diagonal” edges
{B, D} from A for which ¢(A, B,C, D) is flat. See Figure 6.10 for an example.

Flatspaces of rhombic shape that do not have side lengths (1,1,1,1) are
called big rhombi. Recall that flatspaces of rhombic shape that have side lengths
(1,1,1,1) are just called rhombi. We denote all flatspaces that are not small
triangles or rhombi as big flatspaces.

Definition 6.10 (Shattered hive). We call a hive h € R¥" a shattered hive, if all
of its flatspaces are small triangles or rhombi. We then call n(h) € F a shattered
hive flow. [

6.4.2 The residual network

In this section we introduce the residual network, in which the hive inequalities
will be converted into edge capacities.

Fix a target border b € R® that comes from partitions and fix a b-bounded
shattered hive flow f. The residual network RES’(f) w.r.t. b and f is constructed
as follows. The vertex and edge set of RES(f) are initially the vertex and edge
set of G. Then each f-flat rhombus O(A, B,C, D) is replaced by the following
construction (illustrated in Figure 6.11):

Remove all inner vertices of O(A, B,C, D) and keep [A, B], [C, B], [D, C] and
[D, A]. Then add auziliary vertices vy, ..., v14. Now we add edges, some of which
are marked with * or ~. We use the following syntax: (w; —F wy «— ws3) means
that we add the edge {wy,wy} directed from w; towards wy and marked with a
* and we add {ws, w3} directed from w3 towards ws. The intention of a * sign is

95

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

/ \ sub raph
D A \ / C B replacenrl)ent

Short notation:

A B

Figure 6.11: The subgraph replacement for an f-flat rhombus O(A, B,C, D) and its
short notation.

that the edge can only be passed by a well-directed cycle in the edge’s direction
while edges with a ~ sign can only be passed by a well-directed cycle against the
edge’s direction (compare Definition 5.9). The edges are the following:

pipaLpcy = ([D, Al =% vs v« v =7 [D,C]),
pp.anic.y = ([D, A] = vr vy < vs — [C, B]),

AL aB) = ([D, A =1 vz« [A, B]),

prasne) = (A, B] — vy « v3 « vi9 — [D, C]),
pia.slic.B) = ([A B] =~ v <1 vy <" vy =7 [C, B]) and

pes.pcy = (€ B] — vy =7 [D,C]).
We call the set of vertices and edges py, .} the direct path between v and w.

Note that in RES?(f), the circle vertex [B, D] is no longer present. We note
that RES(f) is still bipartite, but may not be planar. Up to here we defined the
digraph RES(f) independent of b.

We now introduce capacities on edges. For each edge e put initially [, «— —o0
and u, < oo. For each edge e that is marked with a + sign, set [, < 0. This
enforces that a well-directed cycle can only pass such e in the direction of e. For
each edge e that is marked with a — sign, set u, < 0. This enforces that a
well-directed cycle can only pass such e in the reverse direction of e. We now
introduce additional capacities that are dependent on b. For each edge e = {o, s}
with s € .7 we set u, « 6%, (s) — d(s, f). For each edge e = {o,t} with t € 7
we set [, < 68, (t) — (¢, f).

If we are not interested in the exact capacities, we write RES®"(f) and set
u, — oo for all e € F with v, > 0 and [, «— —oo for all e € E with [, < 0. We
note that the feasible flows on RES®""(f) form a convex cone and that a cycle ¢

o6

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.12: Examples of the polyhedra P® — f, Pfs)atf — f and Cf(Pb). Solid lines
represent hive inequalities and dashed lines represent border inequalities.

on RES*€™(f) is well-directed iff it is well-directed on RES’(f). If we ignore the
capacities, then the residual network is independent of b and we call it RES(f).
Let Eres denote the set of edges of RES(f).

Properties of the residual network We start with a general definition.
Given a polyhedron P in a real vector space V and a vector f € P. We can

define the cone of feasible directions Cy(P) of P at f as
Ci(P):={deV |3e>0:f+ede P}

Recall that P C F(G) is the polyhedron of all b-bounded hive flows on G and
thus
Ci(PY={de€ F(G)|3e>0:f+ede PY.

Now for f € P’ relax P® to P?, ;2 P? by removing every rhombus inequal-
ity that is not induced by an f-flat thombus. Thus we keep only the rhombus
inequalities which are satisfied with equality by f. Note that in a small neighbor-
hood of f, P}, s equals P Figure 6.12 illustrates the relation between P’ — f,
Pi.; — fand Cp(P").

The next lemma shows that C¢(PP) can be understood in terms of the convex

cone Preas(RES™™(f)) of feasible flows on RES™"(f).

Lemma 6.11 (Residual Correspondence Lemma). Given a b-bounded shattered
hive flow f € P°. Then there are Z-linear maps

F(G) « F(RES(/))

7_/

preserving the throughput of all vertices that are both in G and RES(f). In
particular, these maps preserve the global throughput §. Moreover 7" o1 = id and
we have the following properties:

o7

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

(1) 7(Cp(P")) C Preas(RES™®"(f)),
(2) 7(Phys — f) € Preas(RES’()),
(3) 7' (Preas(RES™™(f))) = Cy(P"),
(4) 7' (Preas(RES"())) = Paiy — /-

So via this lemma, feasible flows on RES*8™(f) give the directions from f € P
that do not point out of P®. Moreover, if the border capacity constraints on
RES®(f) are satisfied for a flow d’, then we have f + 7/(d') € P2, f» which means
that there are two cases: Either f + 7/(d’) € P? or f + 7/(d’) violates a rhombus
inequality of a rhombus that is not f-flat.

Proof of Lemma 6.11. Note that C;(PP) is the cone generated by Pé’atf — fand

that Preas(RES®®™(f)) is the cone generated by Pras(RES’(f)). Therefore it is
sufficient to show the 2nd and 4th claim. For the 4th claim it suffices to show
that 7/ (Pfeas(RESb< 1)) C P s — J. The other direction follows from combining
the 2nd claim and 7/ o 7 = id.

The first map 7 Given a flow d € F(G). We define a flow 7(d) := d’ on
RES(f) as follows: d' equals d on each edge that does not lie in a flat rhombus.
For each flat rhombus (A, B, C, D) we set d’ to 0 on all edges but the following:
The 4 edges ey, ..., e4 on the direct path from [A, B] to [D, C] get

d'(er) = —d'(es) 1= —d'(e3) := d'(ea) := 6°([4, B], d).

The 4 edges ey, ..., e, on the direct path from [D, A] to [C, B] get

d'(er) = —d'(e5) := —d'(e3) := d'(e4) := 6°([C, B, d).

The 4 edges ey, ..., e4 on the direct path from [D, A] to [D, C] get
d'(e1) = —d'(ez) := —d'(e3) := d'(e4) := 69([D, A],d) - 6°([C, B], d).

We now show that d’ is a flow on RES(f):

The flow constraints of d’ are satisfied in each fat black vertex due to the
fact that they are satisfied in d. We now consider the replacement of a single
flat thombus (A, B,C, D). Let d equal d on each edge outside this rhom-
bus. We see from the edge directions that this single replacement only affects

Sn (4, B, d), 50> ([C, B, &), 68D, €], &) and 55 ((D, Al d'). We

out » Yin) Yin out
now show that these values are equal to their counterparts on G. Recall that d is

a flow, which implies 6%([A, B],d) + 0%([D, A],d) = 6([C, B],d) + 6%(|D, C], d).
one DA, B),d) = 6°(1A, B, d), of>Y((C, B],d) = 6%([C, B, d),

o8

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

o I(D, €, d') = 6°([4, B), d) + 6%([D, A], d) — 6°(/C, B], d)
:5G([]’d
ohe (D, A],d') = 6°(C, B), d) + 6¢
= 3%([D, 4],

We now show that d € Py, , — f implies d' € Preas(RES?(£)).
We have to show that

Y

(
)
0°([D, A],d) = 6°(IC, B], d)
d).

Vee E:l, <d(e) < ue.

By construction this is satisfied on all edges incident to o.

Now consider an edge e that lies in the big triangle. To be capacitated, e
must lie in a flat rhombus O(A, B, C, D). If e is a capacitated edge and d'(e) # 0,
then e must be one of the four edges ey, ..., e, on the direct path from [D, A] to
[D,C]. As d' is a flow, the capacity constraints of ey,...,es are satisfied iff the
capacity constraint of e; is satisfied, which means d’'(e;) > 0. We have

d'(e1) = 69([D, A],d) — 5°(|C, B], d).
As O(A, B,C, D) is f-flat, we have
3°(1C, B, f) = 0°((D, Al, f).
Combining both equations we get
0%((C, B, f +d) = 6°([D, A, f +d) — d'(ex).
From d + f € Py, it follows that
3(IC, B), f +d) < 6%([D, A, f + d)

and therefore d'(e;) > 0.

The second map 7 The map 7’ is defined in the obvious way: Given a flow
d € F(RES(f)). We define a flow 7/(d') := d € F(G) as follows: d equals d’ on
each edge that does not lie in a flat rhombus. For each flat rhombus ¢(A, B, C, D)
we define the following:

The edge e directed from [A, B] gets d(e) = 6~=>)([A, B,).

out)
The edge e directed from [D, A] gets d(e) = 5§is(f)([2, Al,d).
The edge e directed towards [D, C] gets d(e) = o, (

The edge e directed towards [C, B] gets d(e) = :
The edge e directed from [B, D] gets d(e) = Z?Zl 5RES(f)(vi, d).

The edge e directed towards [B, D] gets d(e) 4 SRESU) (v, d).

=1 "in

29

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

We now show that g € F(G):
For a given flat rhombus ¢(A, B, C, D) the flow constraints on [B, D] are satis-
fied, because they are satisfied on vy, ..., vs. As for the first map, we only have to

check the values of 6S (|4, B], d) (5G([C BJ,d), 65([D,C],d) and 6 (D, A],d).

out) ¥iIn) Yin out

But these are equal to their counterparts on RES(f) by definition.
From the definitions, it follows that 7/ o 7 = id.
We now show that d’ € Preas(RES(f)) implies d € Pl — f
The capacity constraints on the circle border vertices force f + d to be b-

bounded. We know that for each f-flat rhombus O(A, B,C, D) we have
([, 4], f) = 6°(C. Bl,).
We must show that for each f-flat rhombus O(A, B,C, D) it holds
0D, 4], f +d) 2 0%([C. B, f + d).
Thus it suffices to show that
64(1D, A],d) = 6°([C. B],d).

From the capacity constraints on the edges it follows that

09([D, Al,d) = &F=U([D, Al d)
= d({[D, A}, vs}) +d({[D, Al,vr}) + d'({[D, A, v13})
> d({[D,A],vr}) = d({[C,B], vs})
> d'({[C, B],vs}) +d'({[C, B],vi2}) + d' ({[C, B, v14})
= 0=U(C, Bl.d) = 6°(IC, B]. d).

]

Note that there can be well-directed cycles ¢ on RES™"(f) that are mapped
by 7' to a flow that is not a cycle. See Figure 6.13 for examples.

For the construction of RES(f), we need f to be shattered. This is a funda-
mental restriction and the LRP-CSA spends much of its running time on keeping
f shattered. The following example explains why shatteredness is important:

Example Consider the case where n = 2, depicted in Figure 6.14. Let
O(A,B,C, D) and O(E,C, D, B) be f-flat rhombi and let O(F, D, B,C) be not
f-flat. Let no circle border vertex be on its d-bound: For all s € ¥ we
have d0(s, f) < &%, (s) and for all t € F we have 6(¢, f) > 6%, (t). Then

in C;(P?) there is a flow d with the following throughput: 6([A4, B],d) = 1,
5([§aE]>d) = 17 (5([E>Q]7d) = _17 5([Q7Q]ad) = 1 and 5([Q7A]7d) =0
(This setting can be seen as a “tilting” operation: E is being raised by 2

units, while B and C are being raised by 1 unit). We use a shorter notation

60

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

C1

Figure 6.13: A well-directed cycle ¢; in a flat thombus is mapped to a flow 7/(¢y)
which has a flow value of 2 on some edges and a well-directed cycle ¢
in a flat rhombus is mapped to a flow 7/(¢z) which decomposes into at
least two cycles.

Figure 6.14: A hive which is not shattered.

61

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Now assume that we could construct a residual network in this case, for-
mally: Assume that there is a digraph RES™"(f) and there is a pair of maps
T : F(G) — F(RES(f)), 7 : F(RES(f)) — F(G) that preserve the throughput
on all circle vertices and 7/(Preas(RES®™(f))) = C(P?). Then there is a feasible
flow d' € Preas(RES™™(f)) with 0ua(7/(d’)) = (1,1, —1,1,0). The flow d’ can be
decomposed into well-directed cycles. There are three possibilities:

e One cycle ¢; has 6ya(c1) = (1,0,0,1,0) and another cycle ¢y has dga(ce) =
(0,1,—1,0,0). But then 7(c;) ¢ C;(P®), which is a contradiction.

e One cycle ¢; has dya(c1) = (1,0,—1,0,0) and another cycle ¢; has dya(c2) =
(0,1,0,1,0). But then 7(c;) ¢ C¢(P?), which is a contradiction.

e One cycle ¢; has dya(cr) = (1,1,0,0,0) and another cycle ¢y has dga(ce) =
(0,0,—1,1,0). But then neither 7/(¢;) nor 7/(cg) can satisfy the flow con-
straints on (G, which is a contradiction.

Basically these tilting operations permit constructions of residual networks
for big flatspaces. So before constructing RES(f), it must be made sure that f is
shattered.

Cycles on RES’(f) can be used to determine whether f is optimal w.r.t. &
with the following lemma:

Lemma 6.12 (Optimality Test). Given a shattered, b-bounded hive flow f € P°
and any linear function § : F — R, then f mazimizes & in P® iff RES’(f) has no
well-directed cycle ¢ with §(7'(c)) > 0.

Proof.

f does not maximize ¢ in P°
3d € F with f4+d € P" and 6(d + f) > §(f)
3d € P’ — f and §(d) > 0

ad € Pé’atf — fand §(d) >0
3d' € Preas(RES?(£)) and 6(7'(d')) > 0
3 a well-directed cycle ¢ on RES’(f) with 6(7'(c)) > 0

=117

(x%)

koK

Bl

(*) holds, because P’ equals Py, ; in a small neighborhood of f.

(xx) is true due to the Residual Correspondence Lemma 6.11.

We now prove (* * *): Let d' € Pras(RES’(f)) with 6(7/(d")) > 0. Then
Lemma 5.11 says that d’ can be decomposed into well-directed cycles on RES(f):
d = Zf\il a;c; where a; > 0 for all 1 <4 < M. Thus

0<68(F(d) =0 (r’ (Z oaici>) = Z a;0(7'(c;))

62

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

and therefore there is a well-directed cycle ¢; with §(7/(¢;)) > 0.

On the other hand, given a well-directed cycle ¢ on RES’(f) with 6(7'(c)) > 0,
according to Lemma 5.10 this gives rise to a feasible flow ec on RESb(f) with
d(7'(ec)) > 0 for some £ > 0. O

Recall that 6(f) = >, 0(s, f) =2 1c7 6(t, f). We give some intuition about
cycles ¢ on RES®(f) with &(7/(c)) > 0:

Lemma 6.13. Given a shattered flow f € P° and a well-directed cycle ¢ on
RES®(f) with §(7'(c)) > 0, then there are two circle border vertices s € ./ and
t € T such that §(s,c) = 1, 6(t,c) = —1 and 6(v,c) = 0 for each circle border
vertex v ¢ {s,t}.

Proof. As cis a cycle, ¢ can only use the vertex o once. So we have (v, 7/(¢c)) # 0
for at most two circle border vertices v. As c satisfies d(7'(¢)) > 0, those two
vertices cannot lie on the same side of the big triangle and ¢ must use at least one
circle border vertex. Because of the flow constraints ¢ must use exactly two such
circle border vertices s € . and t € .7 with (s,c) =1 and 6(t,¢) = —1. O

6.4.3 Flatspace chains and increasable subsets

In this section we explain flatspace chains and increasable subsets and how they
can be used to shatter a flow.

Definition 6.14 (Increasable subset). An increasable subset w.r.t. a hive h €
R is a subset of vertices of S C H’ such that e > 0 exists with h + EXg IS a
hive, where xs(A) =1if A € S and xs(A) = 0 otherwise. [|

Definition 6.15 (Flatspace Chain). A flatspace chain ¥ w.r.t. h € R7 is a
region of connected flatspaces constructed in the following way (cf. [Buc00]):

(1) A flat hexagon is a flatspace chain on its own. If there are flat hexagons,
then these are the only flatspace chains.

(2) If there are no flat hexagons, let m be the maximal length among all sides
of flatspaces. If m = 1, then there are no flatspace chains and the hive is
shattered. If m > 2, then start by taking a flatspace which has a side of
length m and mark this side (see Figure 6.15). m is denoted the width of
U. Otherwise choose and fix a line crossing (the extension of) the marked
side in an angle of 60° and call it the moving direction. If the flatspace
is a triangle or a parallelogram, we furthermore mark an additional side.
For a triangle, this is the other side not parallel to the moving direction,
while for a parallelogram we mark the side opposite the one already marked.
We construct the flatspace chain, starting with the chosen flatspace. This
region will initially have one or two marked sides, depending on the shape

63

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

AL

moving
Figure 6.15: The construction of a flatspace chain.

direction

Figure 6.16: Two examples of flatspace chains. The upper one has an open ending
on the left. The inner vertices are drawn bigger than others.

of the chosen flatspace. As long as the region has a marked side on its outer
border and the marked side does not lie on the border, the flatspace on the
opposite side is added to the region. If the new flatspace is a triangle, we
mark its unmarked side which is not parallel to the moving direction. If the
new flatspace is a parallelogram, we mark the side opposite the old marked
side. If it is not a triangle or parallelogram, we do not mark any new sides.

Since the region always grows along the moving direction, it will never go in
loops. If a flatspace chain stops with a marked side on the border, we call this
side an open ending. By construction there can be at most 2 open endings. See
Figure 6.16 for examples on how a flatspace chains look like in the degeneracy
graph. We remark that the constructive definition of flatspace chains gives a
straightforward way to compute a flatspace chain in polynomial time.

Let Uiner € H denote the set of inner vertices of the area of ¥ united with the
inner vertices of open endings of W. We call Wy, the set of inner vertices of W.

64

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

®

\

&—O—®

Figure 6.17: A flatspace chain ¥ consisting of a pentagon, a parallelogram and a
trapezoid. The inner vertices are drawn bigger than others. Only the
edges of GG are drawn that carry nonzero flow in fg.

So if the sides of ¥ at the border of A have length 1, then Wy, consists of only
the inner vertices of the area of ¥. We define yy, . : R? — R, xy, (A) =1 for
all A € Uinner and xy,.. (A) = 0 otherwise. For a flatspace chain ¥ we define fy
to be the flow induced by raising Wipne, by 1 unit: fy := n(xw,,..). An example
for fy is given in Figure 6.17. We see that fy can be interpreted as a cycle on G.
Moreover, since each open ending cannot span more than one side of A, we have

d(fy) = 0 for any flatspace chain W.

Lemma 6.16. Let z € R. Given a z-integral hive h and a flatspace chain ¥ of
h whose sides at the border of A have length 1, then h + zxy s a hive.

inner

Proof. As h is z-integral, we have for each rhombus ¢ that O'(<>,h) = 0 or
U(O,h) > z. It is important that flatspace chains have acute angles only at
open endings. Therefore there are no flat rhombi ((A, B, C, D) that have only
one vertex contained in ¥y, and this vertex is an acute one A or C. As flatspace
chains do not have loops, there are no rhombi (A, B, C, D) that have only the
acute vertices A and C in Wi ner. Therefore a(<>, f\p) > —z for all rhombi ¢ and
0(@, f\p) > 0 for all flat thombi ¢. This proves the claim.

O

If a hive has regular border, no flatspace chain can have an open ending.
Therefore, if a hive has a regular border, all big flatspaces can be eliminated
by increasing the increasable subsets induced by flatspace chains to their maxi-
mum. The border vertices are not touched during this operation. This creates a
shattered hive.

65

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

The following lemma states that inner vertices of flatspace chains with open
endings can also be raised in certain situations:

Lemma 6.17. Let b be an integral, reqular target border. Given an integral flow
f € P® and an f-flatspace chain ¥, then f + fy € PP.

Proof. 1f U has no open ending, then Lemma 6.16 finishes the proof. Otherwise let
{vo, pred(vy), . .., pred™(vo) =: vy} C .7 lie in an open ending of ¥ on the border
of the big triangle with §(vg, fo) = —1, (v, fu) = 1. Decreasing throughput on
Vg is not problematic, but in v, the b-boundedness of f + fy must be checked.
As vg and v,, lie on the same side of an f-flatspace chain, we have d(vg, f) =
d(vm, f). As the target border is integral and regular, with Lemma 6.8(7) we
have 6%, (vo) +1 < &, (vm). Then 6(v, f+ fu) = 6(Um, f)+1=38(vo, f) +1 <
6. (vo) +1 <88 (v,,). The proof for 7 is analogous. O

max max

6.4.4 The LRPA and the Saturation Conjecture

The basic algorithm LRPA is listed as Algorithm 3. The most interesting
property is that shortest well-directed cycles on RES’(f) can be used to increase
d(f) by 1 unit (see line 15) and so f stays integral all the time. The reason for
this is explained in Section 6.4.5.

Theorem 6.18. If given as input three strictly decreasing partitions \, pu, v € N
with |v| = || + |u|, then the LRPA returns true iff c§, > 0.

Proof. First of all, the algorithm checks whether ¢(v) < max{¢(X),¢(x)}. If this
is the case, then we have ¢, = 0 and need no additional computation.

Note that during the algorithm f stays integral all the time, because inner
vertices of flatspace chains in line 9 are raised by 1 unit and 7/(¢) in line 15 is
integral. Raising the inner vertices of flatspace chains by 1 unit is possible, even
if they have open endings. This is due to Lemma 6.17. We do a rather involved
proof for f + 7/(c) € P’ in Section 6.4.5.

So if the algorithm returns true, an integral f € P° with §(f) = 2|v| is found.
Lemma 6.8(6) shows that ¢, > 0. If the algorithm returns false and did not
exit in line 2, then there is f € P° with §(f) < 2|v| and f maximizes § in P
according to Lemma 6.12. Therefore with Lemma 6.8(5), we have ¢§, =0. [

The Saturation Conjecture Given N € N, A\ u, v strictly decreasing parti-
tions with |v| = [A|4 |u|. If ¢y y, > 0, then there is an integral hive with border
associated with NA, Ny and Nv. This results in a rational hive with border
b = b(\, i,). Then there is a flow f € P° with §(f) = 2|v|. In this case, the
LRPA will find an integral flow f € P with 6(f) = 2|v| and therefore ¢§, > 0.
So the correctness proof of the LRPA is a proof for the Saturation Conjecture in
the case of strictly decreasing partitions. We will see in Section 7.7 that a variant

66

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Algorithm 3 The LRPA

Input: A\, p,v € N strictly decreasing partitions with |v| = |A| + |p].
Output: Decide whether cf, > 0.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

if /(v) < max{l(\),¢(p)} then
return false.

: end if
: Create the regular target border b and the digraph G.

Start with f « 0.

: done <« false.
: while not done do

while there are f-flatspace chains do
Raise the inner vertices of an f-flatspace chain W by 1: f «— f + fy.
end while
// f is shattered now.
Construct RES’(f).
if there is a well-directed cycle in RES®(f) with §(7/(c)) > 0 then
Find a shortest well-directed cycle ¢ in RES?(f) with 6(7'(c)) > 0.
Augment 1 unit over ¢: f «— f+ 7/(c).
// We have f € P.
else
done <« true.
end if
end while
if (f) = 2|v| then
return true.
else
return false.
end if

67

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

S

Figure 6.18: A rhombus ¢ := (4, B,C, D) with o(0,c) = —2.

of the LRP-CSA can also be used for partitions that are not strictly decreasing.
This proves the Saturation Conjecture for arbitrary partitions.

6.4.5 Shortest well-directed cycles

In this section we show that in Algorithm 3, after executing line 15, we have
f € PP. To simplify the notation, we define the throughput of a flow d on RES®(f)
and a vertex v € G as d(v,d) := 0(v,7'(d)). In particular, we set 6(d) := §(7'(d)).
We do the same for the slack of any rhombus ¢ by setting 0’(<>, d) = 0(0, T’(d))
for any flow d on RES’(f). Recall that

J(O(A;§7Q7Q)7f) = 5([Q>Q]>f) - 5([Aa§]af) = 5([27A]>f) - 5([Q7§]7f)

and that the slack is linear in the flow, i.e. for each rhombus { we have for all flows
f1, f2 on G and for all 21, zo € R that 0((}, 21f1+22f2) = 210(0, fl) —I—zgo(O, fg).
Unfortunately not all well-directed cycles ¢ on RES’(f) result in flows 7/(c)
with f + 7/(c) € P’
Consider for example a rhombus ¢ := (A4, B,C, D) with U(O,f) =1 and a
well-directed cycle ¢ with §([A, B],c) = 1, §([D, A],¢) = —1, §([D,C],c) = —
and §([C, B], ¢) = 1 (see Figure 6.18). Then o (0, ¢) = 6([D, C],c)—6([A, B, c) =
—1 -1 = —2 and we have 0((),f+c) = 0'(<>,f) +0(<>,c) =1—-2<0. Thus
f+7'(c) is not a hive flow, hence f+7/(c) ¢ P°. A first attempt for finding well-
directed cycles ¢ on RES?(f) with f + 7/(¢) € P’ could be to find well-directed
cycles ¢ on RESb(f) that have a(<>, c) > —1 for each rhombus). But we note
that in some situations well-directed cycles can be forced to have a((}, c) = —
on some rhombi ¢. See Figure 6.19 for examples: f-flat rhombi are drawn in
short notation (cp. Figure 6.11). The edge directions in the small triangles are
left out. In this notation, well-directed cycles can pass undirected edges in any
direction and directed edges e only in the direction of e. The fat edges in the
figure represent the cycles.

68

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.19: Well-directed cycles ¢ that use s and t are sometimes forced to induce
0(0(47E7Q72))C) = 2.

We now show that any well-directed cycle ¢ on RES®(f) with minimal length
{(c) (i.e. number of edges) satisfies f + 7/(c) € P°.

Theorem 6.19 (Shortest Cycle Theorem). Given a b-bounded integral shattered
hive flow f. Given a well-directed cycle ¢ on RESY(f) with 6(c) > 0. If f+7'(c) ¢
P then there is a well-directed cycle ¢ on RESY(f) with (') < £(c) and 6(c') > 0.

Corollary 6.20. Given a b-bounded integral shattered hive flow f and a well-
directed cycle ¢ on RES’(f) with §(¢) > 0 that is a shortest cycle among all
well-directed cycles & on RES’(f) that have §(¢) > 0. Then f + 7'(c) € PP.

Proof of the Shortest Cycle Theorem 6.19. The rest of this section will be de-
voted to the proof of Theorem 6.19. For the rest of the proof we fix a b-bounded
integral shattered hive flow f € P and a well-directed cycle ¢ on RESb(f) with
f+7(c) ¢ P’ and §(c) > 0. Let

e:=max{e' € R| f+¢€'7(c) € P},

g:=f+et(c)
for the rest of the proof. Note that g is not necessarily shattered. Depending on
f and g we introduce critical, loose, bending and rigid rhombi:

Definition 1. A rhombus is called critical, if it is not f-flat, but g-flat. A
rhombus is called loose, if it is neither f-flat nor g-flat. A rhombus is called
bending, if it is f-flat and not g-flat. A rhombus is called rigid, if it is both f-flat
and g-flat. [|

69

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Lemma 2. We have the following properties:
(1) For all v € G we have d(v,c) € {—2,—1,0,1,2}.

(2) If §(v,c) = 2 for v € G, then v = [B,D] for an f-flat thombus
O(A,B,C,D) and c uses all uncapacitated edges of this rhombus, from
D, C] to [A, B] and from [C, B] to [D, A].

(3) If 6(v,c) = =2 for v € G, then v = [B,D] for an f-flat rhombus
O(A,B,C,D) and c uses all uncapacitated edges of this rhombus, from
[A, B] to [D,Cland from [D, A] to [C, BJ.

(4) For each rthombus ¢ we have o(Q,c) € {-3,...,3}.

(5) There is at least one critical rhombus.

(6) For each critical thombus {, we have 0(<>, c) < 2.

(7) e € {3, 3,3}

(8) An f-flat thombus § is rigid iff ¢ uses no capacitated edge in §.

Proof. Recall that RES(f) and RES’(f) have the same vertex set. Let G\ RES(f)
denote the set of vertices that are in G and not in RES"(f).

(1) For each fat black vertex v € G, we have 6% (v, f) = 0 for any flow f on G, in
particular é(v, ¢) = 0 for each fat black vertex v of G. For each vertex v’ of
RES®(f), we have 6RES" (D (¢/ ¢) € {—1,0,1}, because ¢ is a cycle on RES®(f).
As 7/ preserves the throughput on each vertex (see Residual Correspondence
Lemma 6.11), we have 6%(v',c) € {—1,0,1}. Let v € G\ RES(f). Then

" = [B,D] for an f-flat rhombus (A, B,C, D). The flow constraints
on the fat black vertex in the upright triangle of this rhombus imply that
5([A, B, ¢)+6(|B, D], c)+6(|D, A],¢) = 0. As [A, B] is a vertex of RES®(f)
and [D, A] as well, we have §([B, D],¢) € {—2,—1,0,1,2}.

(2) Each fat black vertex v € G has §(v,c) = 0. Each vertex v of RES’(f) has
5(v,c) € {—1,0,1}, because ¢ is a cycle on RES’(f). So if 6(v,c) = 2, it
follows that v € G \ RES(f) and thus we have that v is a vertex [B, D] of
an f-flat rhombus O(A, B,C, D) =: {. Recall that in ¢ there are auxiliary
vertices vy, ...,v14. By construction of RES’(f), we have

2=06(1B, D], ¢) = c({vr,v5}) + c({va, v7}) + c({vs, vo}) + c({va, vn}).

The capacity constraints ensure that c¢({vy,v5}) < 0 and ¢({vg,v11}) > 0.

Assume that c¢({vg,v11}) > 0. As ¢ is a well-directed cycle, the structure
of RES’(f) implies that c({vs,v7}) < 0 and c({vs,v9}) < 0. Therefore
c({vs,v11}) > 2, which is a contradiction.

70

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

So we have c¢({vy,v11}) = 0. This implies that c({v1,v5}) = 0, c({ve,v7}) =
1 and ¢({vs,v9}) = 1, i.e. ¢ uses all uncapacitated edges of this rhombus,
from [D, C] to [A, B] and from [C, B] to [D, A] as claimed.

The proof is analog to (2).

From (1) we know that for each rhombus ¢ := (A, B,C, D) we have
o(0,c) € {—4,-3,...,3,4}, because 0 (0, c) = §([D, C], c) — §([4, B, ¢).

(
Assume (0, c) € {—4,4}. Consider the case (0, c) = 4. The proof for
o(0,c) = —4is analog. With (1) we have §([D, C], ¢) = 2 and §([4, B],¢) =
—2. Then with (2) and (3) both 0(D, A, ., B) and (., D, B,C) are f-flat.
But as 0(0, c) = 0([D, A, c)—0(|C, BJ, ¢), we also have that §([D, 4], ¢c) = 2
and 0([C, B],c) = —2 and thus that both {(B,D,.,A) and {(.,C, D, B)
are f-flat. This is a contradiction, because f is shattered.

Hence o (0,¢) € {-3,...,3}.

As ¢ € Preas(RES®(f)), the Correspondence Lemma 6.11 implies that f +
7'(c) € Piyy As f+7'(c) ¢ P°, the rhombus inequality of some non-f-flat
rhombus must be violated in f + 7/(¢). We use this to show that the set of
rhombi ¢ which have a((}, c) < 0 is not empty: As f is a hive flow, we have
0(<>, f) > 0 on each rhombus ¢. If for a rhombus ¢ we have 0(0, c) >0,
then 0’(<>, f+7 (c)) > 0. So a rhombus inequality can only be violated by
a rhombus ¢ with a((}, c) < 0.
Let

€max<<>) = _U(Qa f) /0(07 C)
for each rhombus ¢ that has a((}, c) < 0. Let ¢’ be a rhombus that mini-
mizes €. among all thombi ¢ that have a(<>, c) < 0. We have a(()’, f+
Emax(0’)c) = 0 and for any €” > 0 we have o (¢, f+(Emax(0)+€")c) < 0 and
thus f + (emax(Q') + €”)7'(c) ¢ PP. If we show that f + enax(Q')7(c) € PP,
then & = £1,0x(Q’) and ¢’ is critical.
Let O be an f-flat thombus, i.e. (0, f) = 0. As ¢ € Preas(RES’(f)), the
Residual Correspondence Lemma 6.11 ensures that f + 7/(c) € Pé’atf and
thus 0((}, f+7"(c)) > 0. Let { be a thombus with 0(<~>, f) > 0. If0(<~>, c) >
0, then a(<~>,f + T’(c)) > 0. If a((},c) < 0, then 5max(<~>) > emax(0') and
thus a(<~>, [+ emax(0)7'(¢)) > 0. Hence & = £ax(¢’) and ¢’ is critical.

As an auxiliary result, we prove 0 < € < 1:

By definition we have € > 0. As by (5) a critical rhombus exists, we have
e # 0, because critical rhombi are not f-flat, but g-flat. By assumption we
have f +e7/(c) € P’ and f + 7/(c) ¢ P’ and thus € < 1, because P’ is a
polyhedron and therefore convex. Hence 0 < ¢ < 1.

71

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

(6) Let O be a critical rthombus. As ¢ is a cycle, o(0,¢) is integral. The flow
f is integral and thus O'(<>,f) is integral. As f is a hive flow, we have
O’(<>, f) > 0. We have 0((}, f) > 1, because ¢ is not f-flat. The rhombus
¢ is critical and thus 0((}, f) + 50((}, c) = a((}, f+ 50) = J(O,g) =0. By
(*) we have 0 < € < 1 and thus 0(Q,c) < —1. Hence 0(0,c) < —2.

(7) According to (5) there exists a critical rhombus ¢. So o(0, f) +e0(0,¢) =
0. From (6) we have o(0,c) < 0. With (x) we know that £ < 1 and thus

a((},f) +a(<>,c) < 0.

From (4) and (6) it follows that o(0,c) € {-3,—-2}. We have o(0, f) >
0, because ¢ is not f-flat. As a(<>, f) is integral, it follows that
(U(<>; f)70(<>7 C)) € {(17 _2)7 (]-7 _3)7 (27 _3>} As 0(<>7 C) 7é 0 and
O’(<>, f) —1—50(0, c) =0, we have ¢ = —0((}, f)/a((}, c). Hence ¢ € {%, %, %}

(8) Let O := O(A,B,C, D) be f-flat. According to (7), we have ¢ > 0 and
thus we have the following equivalences: ¢ is rigid < a(<>, g) =0«
a(<>,f) +50(<>,c) =0 < 50(0,0) =0 < J(O,c) = 0. Recall that
in ¢ there are auxiliary vertices vy,...,vy4. By construction of RES’(f)
we have 6([4, B], ¢) = c({[4, B],vo}) + c({[4, B],vi1}) + c¢({[A, B], v1s})
and ([D,C],c) = c({[D,C]v6}) + c({[D,C] v10}) + c({[L, L], v14}).
As ¢ is a flow, we have c({[4, B],v9}) = c({[D,C],v10}). Therefore
7(0.¢) = 8(D,Cl,¢) — 8([A, Bl,c) = c({ID, C], v}) + e({[D, Cl, v1a}) —
c({[A, B],v11}) — c({[A, B],v13}). Note that ¢ is well-directed and thus we
have C({[Q,Q],U@}) U c({[Q>Q]7U14}) > 0, C({[A,B],UH}) < 0 and
c({[D,C],v13}) < 0. Therefore we have the following equivalence:

o(0,c) =0 & c({[D,C],u5}) =0Ac({[D,C],v14}) =0
A c({[4, B],vi1}) = 0 A c({[4, B],v13}) =0

< ¢ uses no capacitated edges in .

This proves the claim.

Proof outline of the Shortest Cycle Theorem 6.19

Our goal is to find a well-directed cycle ¢ on RES?(f) with 6(c/) > 0 and £(c) <
¢(c). We now introduce one main tool called the quasi-cycle-decomposition.

Definition 3. Given a flow f € F(G). A finite set of well-directed cycles
{c1,...,¢cn} on R~ESb(f) is called a quasi-cycle-decomposition of f into m cycles,

if 0 () = f. [|

72

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

The name quasi-cycle-decomposition arises from the fact that 7'(¢;) is not
necessarily a cycle on G. Also note that there can be cases where for a feasible
flow d on RES’(f) we have 3" 7/(c;) = 7'(d), but S7", ¢; # d.

We will see that quasi-cycle-decompositions of 7/(¢) into cycles ¢; exist with
U(c;) < U(c) for all i or that quasi-cycle-decompositions of 7/(c) 4+ fy into cycles
¢; exist with £(¢;) < £(c) for all 7. The following lemma then finishes the proof of
Theorem 6.19:

Lemma 4. (1) Given a quasi-cycle-decomposition {ci,...,cn} of 7'(c) with
m > 1, then there exists 1 < i < m with 6(¢;) > 0.

(2) Given a g-flatspace chain ¥ and a quasi-cycle-decomposition {cy,...,cn}
of T'(¢c) + fu with m > 1, then there exists 1 < i < m with §(¢;) > 0.

Proof. By assumption we have 6(7/(c)) > 0.

(1) 0 < 6(7'(c)) = o2 () = Do, 0(7 () = Fioe {l,...,m} :
d(7'(¢;)) > 0.

(2) 0(fu) =0=4(7'(c)

+ fu) >
0< (5(7"(0) + fq/) ZW;

o(r (i) = 3Jie{l,...,m}:6('(c;)) > 0.
O

In order to find a quasi-cycle-decomposition, we do a distinction of cases:

In case 1 ¢ uses at least one capacitated edge in an f-flat rhombus ¢ and at
least 3 of the circle vertices of ¢. In this case, we will easily find a quasi-cycle-
decomposition of 7/(¢) into one or two cycles.

In case 2 we assume the contrary, namely in each f-flat rhombus ¢ ¢ uses
either no capacitated edge at all or ¢ uses at most 2 of the circle vertices of ¢. In
this case we do again a distinction of two cases:

In case 2.1 there is a critical rhombus ¢ that is not overlapping with any other
g-flat rhombus. Here it will be relatively easy to find a quasi-cycle-decomposition
of 7'(¢) into two cycles by analyzing ¢ and rerouting ¢ at ¢ and its connected
small triangles.

In case 2.2 all critical rhombi are overlapping with at least one g-flat rhombus.
Hence there is a g-flatspace chain . We will completely classify all possible
shapes of g-flatspaces and additionally see which edges are used by ¢ and in
which direction. Then we will find a quasi-cycle-decomposition of 7/(¢) + fy into
m > 1 cycles.

The classification of all possible g-flatspaces and the behaviour of ¢ in
g-flatspaces is a major part of this proof. Note that each rhombus in a g-flatspace
must either be critical or rigid. As f is shattered, rigid rhombi cannot overlap.
Critical rhombi on the other hand can overlap in certain situations. We will
distinguish g-flatspaces with overlapping critical rhombi and those without and
analyze both situations independently.

73

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

D wy (C D wy C
® ® ® ®
//%& Wy ~~reoute o ///% wy
® \ ® @M
A wy B A B

Figure 6.20: Shortest cycles only use direct paths. The f-flat rhombus is drawn in
short notation and cycles are represented by fat arrows here as in all
upcoming figures.

We now start with considering the first case.

Case 1:

Assumption: The cycle c uses at least one capacitated edge in an f-flat rhombus
O and at least 3 of the circle vertices of .

We can handle this case with Lemma 4 and the following lemma:

Lemma 5. There is a quasi-cycle-decomposition of T'(c) into one or two cycles
that are each shorter than c.

Proof. Given a rhombus ¢ := Q(A, B, C, D) such that ¢ uses at least one capaci-
tated edge in ¢ and at least 3 of its 4 circle vertices. Each vertex can only appear
once in ¢. Thus ¢ uses 3 or 4 successive circle vertices (case (a)) or ¢ uses 4 circle
vertices and two at a time are successive circle vertices (case (b)).

(a) cuses 3 or 4 circle vertices (denoted with wy, we, [ws, Jwy) that are successive
circle vertices in ¢ (see Figure 6.20). We get ¢’ by doing local changes to
¢ such that ¢’ uses the direct path from w; to wy and omits wy [and ws].
It is easy to check that ¢ is still well-directed and that these local changes
preserve the throughput on all circle vertices. Thus {¢'} is a quasi-cycle-
decomposition of 7/(c) into 1 cycle. The fact that ¢(¢’) < ¢(c) finishes the
proof.

(b) ¢ uses 4 circle vertices that are not successive circle vertices in ¢ (see Fig-
ure 6.21). W.lLo.g. let ¢ use [D, A] and the vertices on the direct path to
[A, B, then a set of vertices Vi, then [C, B] and the vertices on the direct
path to [D,C] and then a set of vertices V5. Then 7/(c) = 7/(¢1) + 7/(c2)
where ¢; and ¢, are two well-directed cycles on RES’(f): ¢; uses [C, B], the
vertices on the direct path to [A, B] and V5. The cycle ¢y uses [D, A], the
vertices on the direct path to [D,C] and V;. So {¢1, 2} is a quasi-cycle-
decomposition of 7/(¢) into 2 cycles. Note that ¢, ¢; and ¢y each use exactly

74

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

|2 ¢ 2 ¢
RO
A % A %

Figure 6.21: Shortest cycles do not pass a flat rhombus twice.

4 edges in ¢. So l(c;) =4+ |Vi| <4+ |Vi| + |Va| = ¢(c) and analogously
Ucy) < Uc).

]

Case 2:

Assumption: In each f-flat rhombus ¢ ¢ uses either no capacitated edge at all
or ¢ uses at most 2 of the circle vertices of ¢.

The assumption leads to the following observation concerning bending rhombi:

Lemma 6. In each bending rhombus O(A, B,C, D), ¢ uses exactly one of the
four direct paths that have capacitated edges and ¢ uses no uncapacitated edge.
Moreover, we have 6([B, D], c) € {—1,0,1}.

Proof. Let := O(A, B,C, D) be bending. Then by Lemma 2(8), ¢ uses ca-
pacitated edges in ¢ and c¢ uses only 2 of the four circle vertices in ¢ by the
assumption of case 2. Therefore ¢ uses exactly one of the 4 direct paths in ¢
that have capacitated edges and ¢ uses no uncapacitated edge in . If ¢ uses
the direct path from [D, A] to [A, B] or if ¢ uses the direct path from [C, B] to
D, C], then 6([B,D],c) = 0. If ¢ uses the direct path from [D, A] to [D,C],
then §([B, D],c) = —1 and if ¢ uses the direct path from [C, B] to [A, B], then
5(1B, D, c) = 1. =

Case 2.1:

Assumption: There exists a critical rhombus ¢ that is not overlapping with
any other g-flat rhombi.

We can handle this case with Lemma 4 and the following lemma:

5

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.22: From c we obtain two cycles. This replacement operation is used twice,
once on each side of the fat line from B to D using rotational symmetry.
The new cycles both use [B, D]. The small triangle that does not belong
to the g-flat rhombus is dotted.

Lemma 7. There is a quasi-cycle-decomposition {cy,co} of 7'(¢) into two cycles

with £(cy) < £(c) and £(cq) < £(c).

Proof. Let ¢ := O(A, B,C, D) be a critical rhombus that is not overlapping with
any other g-flat rhombi. By Lemma 2(6) we have §([D,C],c) — §([A, B],¢c) =
U(O,c) < —2. By assumption of case 2.1, { cannot overlap with other g-flat
rhombi. Depending on their f-flatness, a rhombus overlapping with { can be
either bending or loose. If O(.,D, B,C) is loose, then [D,C] is a vertex of
RES®(f) and therefore 6([D, C],c) € {—1,0,1}. If (., D, B, C) is bending, then
by Lemma 6, we have §([D,C],c) € {—1,0,1}. Using rotational symmetry, we
get 6([A, B, c) € {—1,0,1} as well. As 0(0,c) < —2, we have §(|D,C],¢c) = —1
and §([4, B],¢) = 1. With a(<>, c) = 0([D, A, c)—0([C, B], ¢) the same argument
can be used to show that d([D, A],c) = —1 and §([C, B],¢) = 1. On the left side
of the “split” arrows in Figure 6.22 the possible cases of parts of g-flatspaces are
depicted up to rotational and mirror symmetry and a g-flat rhombus results from
glueing two parts together at the fat line from B to D. We get the mirror sym-
metric situations by mirroring the figure and reversing the directions of all arrows
including the fat ones. Let R denote the unification of { with its overlapping
f-flat thombi. Then c¢ uses vertices in R, then a set of vertices V;, then again
vertices in R and then a set of vertices V5. We do local changes to ¢ once on each
side of the line from B to D as seen in Figure 6.22 and obtain two well-directed
cycles ¢; and ¢y from which ¢; uses vertices on R and V; and ¢y uses vertices on
R and V5. See Figure 6.23 for an example. Both ¢; and ¢, use the vertex [B, D]
with 0([B, D],c1) = 1 and §(|B, D], c2) = —1. Note that ¢, ¢; and ¢, use exactly
k edges in R for some k € N. Therefore £(c) = |Vi| + |Va| + k > |Vi| + k = l(c1)

76

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.23: A situation where the cycle ¢ is split up into shorter cycles ¢; and cs
such that 7/(c) = 7/(c1)+7’(¢c2). The small triangle that does not belong
to the g-flat rhombus is dotted.

and analogously ¢(c) > ((cy). It is easy to check that on all circle vertices v € G,
we have (v, ¢) = 0(v, 1)+ (v, c2) and thus 7/(¢) = 7/(¢1) +7'(c2). Hence {c1, o}
is a quasi-cycle-decomposition of 7/(¢) into two cycles.]

Case 2.2:

Assumption: Each critical rhombus is overlapping with at least one g-flat rhom-
bus.

By Lemma 2(5) there exists at least one critical rhombus, which implies that g
cannot be shattered. So there must be big g-flatspaces. We will classify all shapes
of g-flatspaces up to rotational and mirror symmetry. We begin by proving the
following auxiliary result:

Lemma 8 (Correct direction of ¢ in critical rhombi). Given a critical thombus
O = O(A,B,C,D). We have 6([A,B],¢) > —1 and 6([C,B],¢) > —1 and
([D,Cl,c) <1 and §([D, A],c) < 1.

Proof. We only prove the first statement. The other three cases are analogous.
We show that if §([A4, B],c) < —1, then ¢ is not critical: Let 0([4,B],¢) <
—1. Then we have o(0,c) = §([D,C],¢) — 6([A, B],¢) < 6([D,C],c) + 1. But
according to Lemma 2(1), we have —2 < §([D, C], ¢) < 2 and thus ¢ (0, ¢) > —1.
Lemma 2(6) then states that ¢ is not critical. O

Lemma 8 will help to classify the shapes of g-flatspaces. We do the following
distinction:

Definition 9. A g-flatspace that contains two overlapping critical rhombi is
called special. Otherwise it is called ordinary. [

7

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.24: Three possibilities for g-flatspaces (hexagon, pentagon, big rhombus).
The rhombi ¢(F,C,D,B) and O(G,D,B,C) are overlapping critical
rhombi. A dashed line through a rhombus indicates that this rhombus
can be either bending or loose.

We start with analyzing special g-flatspaces and then continue with ordinary
g-flatspaces.

Lemma 10. If a g-flatspace is special, then it is a hexagon with side lengths
(1,1,1,1,1,1), a pentagon with side lengths (1,1,1,2,2), or a big rhombus with side
lengths (2,2,2,2). Moreover, in each of these cases, the only possibilities for ¢ in
this flatspace are the ones illustrated in Figure 6.24.

Proof. Let the vertices A, ..., J be arranged as in Figure 6.24. Let O(F,C, D, B)
and O(G, D, B,C) both be critical rhombi. The g-flatspace these two overlap-
ping critical rhombi lie in is denoted by R. According to Lemma 2(6), we
have §((B, D), ¢) — 8((E,C),¢) = o(O(F.C, D, B).c) < —2 and §((C, G, c) —
([B,D],c) = G(O(Q,Q,E,Q),c) < —=2. Therefore §([B,D],c) = 0,
i([C,G],¢) = —2and §([F, (], c) = 2. Lemma 2(2), Lemma 2(3) and Lemma 2(8)
imply that both ¢(D,C,J,G) and O(B, F,I,C) are rigid and ¢ uses all unca-
pacitated edges of these rhombi in only one possible way, which is illustrated
in Figure 6.25. Due to the fact that flatspaces are convex, R spawns at least a
hexagon of side length 1 and C is an inner vertex of R. So ¢(J,C, F,I) and
O(L,J,G, C) are overlapping critical rhombi as well. Now Lemma 8 implies that
O(C, B, ., F) is not critical, because §([C, B],c¢) = —1. Analogously, we get that
0C,G, ., D), O(.,1,C, F) and O(.,G,C,J) are not critical. As neither of those
4 rhombi is rigid, because f is shattered, the border of R contains the vertices

(1) Neither O(A, B,C, D) nor $(C,1,.,J) is g-flat.

78

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.25: Situation where O(F,C, D, B) and O(G, D, B,C) are critical.

(2) O(A,B,C, D) is g-flat, but O(C, I, ., J) is not g-flat.
(3) Both O(A,B,C,D) and ¢(C, 1, .,J) are g-flat.

So the shape of R is either a hexagon with side lengths (1,1,1,1,1,1), a pentagon
with side lengths (1,1,1,2,2) or a big rhombus with side lengths (2, 2,2, 2).

We show next that in each of these cases the only possibilities for ¢ in this
flatspace are those illustrated in Figure 6.24. We distinguish the cases where
O :=0(A, B,C, D) is critical, rigid, loose or bending.

As §([C, B],c) = —1, Lemma 8 prohibits that ¢ is critical.

If ¢ is rigid, then from 6([C, B],¢) = —1 and 6([D, C],c) = 1 it follows with
Lemma 2(8) that ¢ must use all uncapacitated edges from [C, B] to [D, A] and
from [D, C] to [A, B].

If ¢ is loose, then from §([C, B],¢) = —1 and 6([D, C],¢) = 1 it follows that
¢ must use the two edges from [C, B] to [D, C].

If ¢ is bending, then according to Lemma 2(8) ¢ uses capacitated edges in ¢.
By Lemma 6 ¢ uses no uncapacitated edge and exactly one direct path in {. As
we know already that §([C, B],c¢) = —1 and §([D, C],¢) = 1, ¢ must use the two
edges on the direct path from [C, B] to [D, C].

Hence in each case there is only one possibility for c. We have analog results
for O(C, 1, ., J). Note that these are the results illustrated in Figure 6.24. O

We have fully classified all special g-flatspaces and described ¢ on these. We
now classify the ordinary g-flatspaces by proving several restrictions on their
shape.

Definition 11. A pair of critical rhombi that have the same orientation ("(’, * &’
or '0’) and which are both overlapping with the same f-flat rhombus is called a
forbidden pair of nearby critical rhombi. |

Lemma 12. We have the following restrictions on g-flatspaces:

79

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Ao—o0—o H

"

Be—0& D

o C

Figure 6.26: Forbidden pairs of mnearby critical rhombi ((A,B,C,D) and

O(K, A, D, H) are impossible.

(1) Ordinary g-flatspaces do not contain three rhombi that share a small trian-

gle.

(2) There is no forbidden pair of nearby critical rhombi.

(8) There are no ordinary g-flatspaces that have a side with length greater

than 2.

Proof. (1) Note that the only situation in which three rhombi share a small

triangle is when the three rhombi form a triangle of side lengths (2,2,2).

Each rhombus in a g-flatspace must be either rigid or critical. Rigid rhombi
cannot overlap, because f is shattered. By Definition 9 ordinary g-flatspaces
contain no overlapping critical rhombi. But we cannot assign rigidity and
criticality to three rhombi that share a small triangle in a way that we
have no pair of overlapping rigid rhombi and no pair of overlapping critical
rhombi.

O(K,A,D, H) are critical and O(B,D,H,A) is f-flat. By Lemma 2(6),
we have (D, Al) — 6(IC, Bl,¢) < —2 and S(H, K]) — 6(D, A]) <
—2. Lemma 2(1) implies that §([D, A],c) = 0, §([H, K],¢) = —2 and
§([D,A],c) = 2. With Lemma 2(2) and Lemma 2(3) this results in
O(,C,D,B) and O(A, H, ., K) being f-flat and ¢ using the uncapacitated
edges to [A, H] and [B,D]. Thus §([A4, H],c¢) = —1 and §(|B,D],c) = 1.
The edge capacities in (B, D, H, A) force ¢ to use the direct path from
(B, D] to [A, H]. But this implies §([A, H], c) = 1, which is a contradiction.

The same proof can be applied in all mirrored and rotated settings.

80

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Figure 6.27: The arrangement of vertices in Lemma 12(3).

AN NN NN NN
AN NANY NN/ N/

Figure 6.28: The possible shapes of g-flatspaces.

(3) Assume that the vertices E, B,C,J are part of a side of an ordinary

g-flatspace of length greater or equal to 3 as illustrated in Figure 6.27.
Let other vertices of this g-flatspace be denoted with A, D and G and
w.l.o.g. be arranged as in Figure 6.27. The rhombi ¢; := ¢(D,C, J,G),
02 = O(G, D, B,C), 03 := O(A,B,C, D) and Oy = O(D, A, E, B) each
must be g-flat and thus either rigid or critical. Rigid rhombi cannot over-
lap, because f is shattered. By Definition 9 ordinary g-flatspaces contain
no overlapping critical rhombi. There are only two possibilities to assign
rigidity and criticality to {1, ..., Q4 that respect these rules for overlapping
rhombi:

(a) 01 and Q3 are critical and Q9 and 4 are rigid.
(b) 09 and Q4 are critical and ¢ and O3 are rigid.

In case (a) the rhombi ¢; and {3 form a forbidden pair of nearby critical
rhombi and in case (b) the rhombi {5 and ¢, form a forbidden pair of
nearby critical rhombi. This is a contradiction to (2).

UJ

We can now fully classify the possible shapes of g-flatspaces. We note that
we do not state that all possible shapes can really occur. We only say that all
other shapes can not occur.

Lemma 13. The possible shapes of g-flatspaces are exactly those depicted in
Figure 6.28 up to rotational and mirror symmetry. The pentagon and the big
rhombus are special. The hexagon can be special or ordinary. All other shapes
are ordinary.

81

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Proof. Recall that Lemma 10 classifies all possible shapes of special g-flatspaces:
There are only hexagons, pentagons big rhombi. For the ordinary shapes we now
go through all possible shapes (cp. Figure 6.9):

There can be ordinary small triangles with side lengths (1, 1, 1), but not with
side lengths (2,2, 2) or larger because of Lemma 12(1).

There can be ordinary parallelograms with side lengths (1,1,1,1) and there
can be ordinary big parallelograms with side lengths (2, 1,2, 1). Larger parallel-
ograms are prohibited because of Lemma 12(1) and Lemma 12(3).

There can be ordinary trapezoids of side lengths (1,1, 1,2), but larger trape-
zoids are prohibited because of Lemma 12(3).

Ordinary pentagons are prohibited because of Lemma 12(1).

There can be ordinary hexagons of side lengths (1,1,1,1,1,1), but larger
hexagons are prohibited because of Lemma 12(1). O

We now want to analyze ¢ on big g-flatspaces. Note that Lemma 10 already
describes ¢ on special g-flatspaces.

Lemma 14. In each possible ordinary big g-flatspace, f-flatness and non-f-
flatness are assigned to the contained rhombi as on the left side of the “reroute”
arrows in Figure 6.29 and Figure 6.30 up to rotational and mirror symmetry.
Moreover, the only possibilities for c¢ in ordinary big g-flatspaces are the cases
depicted in these figures on the left side of the “reroute” arrows.

ure 6.30 (VI). There is only one possible way to assign f-flatness and non-
f-flatness to the g-flat rhombi that avoids forbidden pairs of nearby critical
rhombi: O(D, A, E,B) and O(G, D, B,C) are rigid and (A, B,C, D) is criti-
cal. As O(A, B,C, D) is critical, according to Lemma 2(6) we have §([D, A], c) —
5([C,B],¢) < —2. As [D,A] is a vertex of RES’(f) and [C,B] is a ver-
tex of RES’(f) and ¢ is a cycle on RES’(f), we have §([D, A],¢) = —1 and
([C,Bl,c) = 1. As O(D, A, E,B) and O(G, D, B,C) are rigid, according to
Lemma 2(8) ¢ must use the uncapacitated edges on the direct paths from [B, E]
to [D, A] and from [G, D] to [C, B]. ¢ may use the other uncapacitated edges
from [E, A] to [C, G] as well in any direction.

Up to mirror symmetry there is only one possible way to assign f-flatness and non-
f-flatness to the g-flat rhombi: O(F, C, D, B) isrigid and (G, D, B, C) is critical.
Thus [B, D] is a vertex of RES’(f) and 6([B,D]) € {—1,0,1}. If O(D,C,.,G)
is loose, then [C,G] is a vertex of RES’(f) and §(|C,G],c) € {-1,0,1}. If
O(D,C,.,G) is bending, then by Lemma 6 we have 6([C,G],c¢) € {—1,0,1}.
As O(G, D, B,C) is critical, according to Lemma 2(6) we have §(|C,G],c) —
d([B,D],c) < —=2. Thus §([C,G],c¢) = —1 and 6([B, D],c) = 1. As O(F,C, D, B)
is rigid, according to Lemma 2(8) ¢ cannot use capacitated edges in O(F,C, D, B).
Thus ¢ uses the uncapacitated edges on the direct path from [F,C] to [B, D],

82

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

LS e LN
EKK/E/{%\Q F@A@j/g%@G

(II) Bge o D Be e D
A %

r —0 G ®—O0——
C c
(II1) o B 2 M
e ﬁ//\w .
F Fe N /c@/l\ /{Q

reroute

reroute

Figure 6.29: Rerouting c in all possible ordinary trapezoid cases up to rotation and
mirroring. f-flat rhombi are drawn in short notation. The fat lines
indicate where the g-flatspace chain is glued together. Inner vertices of
g-flatspace chains are drawn bigger than others. Small triangles that
do not belong to the g-flatspace are dotted. They are part of bending
rhombi.

83

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

reroute

B D
A

sl o G
L e
I I
(VIII) v L 7 D
®——0O0——® ®——0O0——®
a %%
MAVAY MAVAY
I J I J

Figure 6.30: Rerouting c in all possible ordinary non-trapezoid cases up to rotation
and mirroring, namely the cases of a parallelogram and a hexagon. f-flat
rhombi are drawn in short notation. The fat lines indicate where the
g-flatspace chain is glued together. Hexagons are g-flatspace chains on
their own and are not glued together with other g-flatspaces. Inner
vertices of g-flatspace chains are drawn bigger than others. The up-
down-arrows in case (VI) indicate that ¢ may use the uncapacitated
edges from [C, G] over [B, D] to [E, A] in any direction or ¢ may not use
them at all.

84

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

because §([B, D], c) = 1. Note that O(D,C,.,G) =: ¢1 and O(C,G,., D) =: 0o
can be bending or loose. They cannot both be bending, because f is shattered.
So there are the following cases:

e O and O are both loose, i.e. the triangle (D, C, G) is an f-flatspace. Then
there are two possibilities: (I): 6([G,D],c¢) = 1 or (II): §(|B, F],¢c) = 1,
illustrated in Figure 6.29.

e (O is loose and ¢ is bending. Then there are two possibilities: (III):
d([B, Fl,c) =1or (IV): 6(|G, D], c) = 1, illustrated in Figure 6.29.

e {; is bending and {9, is loose. Because of the edge capacities and
Lemma 2(8) there is only one possibility to have 6([C,G]) = —1:
)([G, D], c) =1 as illustrated in Figure 6.29 (V).

C as in Figure 6.30(VII) and (VIII). There is only one possibility up to rota-
tional symmetry to assign f-flatness and non- f-flatness to the hexagon’s g-flat
rhombi that avoids overlapping critical rhombi: O(F,C, D, B), O(J,C, F,I) and
O(D,C, J,G) are rigid and the other three rhombi O(G, D, B,C), O(C, B, F,I)
and O(I,J,G,C) are critical. As O(G,D,B,C) is critical, according to
Lemma 2(6) we have §([C,G],c) — §([B,D],c¢) < —2. We have §([B,D],c) €
{—1,0,1}, because [B, D] is a vertex of RES’(f). Using Lemma 2(1) we have
(6(IC.Gl,0),6(1B,D],c)) € {(-2,1),(=1,1),(—2,0)}. Note that according to
Lemma 2(8), ¢ may use only uncapacitated edges in the whole hexagon.

If 0([B, D], c) =1 (see Figure 6.30 (VII)), then ¢ uses the uncapacitated edges
from [I, J] over [F,C] to [B, D]. If §(|B, D], ¢) = 0 (see Figure 6.30 (VIII)), then
¢ does not use uncapacitated edges on the path from [I, J] over [F, C] to [B, D].
If §(|C,G],c) = —2, then Lemma 2(3) states that ¢ uses the direct paths from
D, C] to |G, J] and from [G, D] to [J,C], which results in ¢ using additionally
the direct paths from [B, F] to [D,C] and from [J, C] to [I, F].

This describes the cases where (6([C, G, ¢),d([B, D], c)) € {(-2,0),(-2,1)}.
If 6([C, G], ¢) = —1, then there are two cases: Either ¢ uses the direct paths from
B, F] over [D, (] to [G,J] or ¢ uses the direct paths from [G, D] over [J,C] to
[I, F]. These two cases for (5([Q, Q],c),é([ﬁ,Q],c)) = (—1,1) are rotationally
symmetric to the case (0([C,G],c),d([B,D],c)) = (—2,0). So up to rotational
symmetry, we have the two cases depicted in Figure 6.30. [

We now want to find a quasi-cycle-decomposition of 7/(¢)+ fy into cycles that
are shorter than c for a g-flatspace chain .

Recall that RES(f) and RES’(f) have the same edge set Eres. Note that the
domain of the map 7' : F(RES(f)) — F(G) can be extended from only the flows
on RES(f) to all mappings Eres — R and that 7" preserves d;,(v) and oy (v) on
each circle vertex v of RES(f).

85

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

Lemma 15. Given a map d : Eres — R such that for each f-flat rhombus { we
have §;n(vi, d) = dous(vi, d) on all auxiliary vertices vy, ... ,v14 of O. If 7/(d) is a

flow on G, then d is a flow on RES(f).

Proof. The flow constraints for d are satisfied on each auxiliary vertex by as-
sumption. The flow constraints on each fat black vertex are satisfied, because
the restriction of 7 to edges adjacent to fat black vertices is the identity function.
Let v be a circle vertex of RES(f). Then

o (v, d) = 65 (v,7'(d)) = 0

in out

(v,7'(d)) = o5 P (v, d)

out
and thus d is a flow on RES(f). O

Lemma 4 and the following lemma finish the proof:

Lemma 16. There is a quasi-cycle-decomposition {ci,...,cn} of T'(¢c) + fy into
m > 1 cycles with £(¢;) < £(c) for all 1 < i < m where ¥V is a g-flatspace chain.

Proof. Let ¥ be a g-flatspace chain. Then for each g-flatspace of ¥ we want to
apply to c the local changes depicted in Figure 6.29, Figure 6.30 and Figure 6.31.
In most cases ((I), (II) and (VI) up to (XI)), the depicted region equals a g-
flatspace. In the cases (III), (IV) and (V) the depicted region spans one extra
small triangle (D,G, M) or (C,J,G). In the cases (III) and (IV) this triangle
does not belong to ¥ and (C, G, D) is the only small connected triangle belonging
to W. Therefore, if there is no case (V), if we apply the local changes, the order
in which we apply them does not matter. Thus, if there is no case (V), the
operation of applying local changes to ¥ as depicted in Figure 6.29, Figure 6.30
and Figure 6.31 is well-defined.

If there is a case (V), then we have 6([C,G],c) = —1 and according to
Lemma 8 {(.,G,C,J) is not critical and therefore not g-flat. By the proper-
ties of flatspaces, we have that the line from F over C to G is a side of a neighbor
flatspace and thus both O(J,C, F,I) and O(I,J,G,C) are g-flat and therefore
either critical or rigid. As by definition in an ordinary flatspace neither critical
nor rigid rhombi overlap, we have that O(J,C, F,I) is rigid and (L, J,G,C) is
critical. As 0([F, C],c) = 1, the rigidity of ¢(J,C, F,I) and Lemma 2(8) imply
that ¢ uses the uncapacitated edges from [I,J] to [E,C]. As §([J,C],c) =0, ¢
does not use the other uncapacitated edges in ¢(J,C, F,I). As 6([C, I],c) = —
we can conclude with Lemma 8 that both O(C,I,.,J) and O(., I, E,C) are not
g-flat. Thus ¥ spans exactly two trapezoids that form a hexagon together. We
can see that the second trapezoid is a case (V) via mirror symmetry and that
the local changes in the dotted triangle (C, J, G) made by the first trapezoid are
exactly the changes that are made by the second trapezoid in (C,J,G). Hence
the order of applying the two local changes does not matter. Hence the operation
of applying the local changes is well-defined and from applying the local changes
we obtain a mapping d : Fres — R in all cases.

86

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

reroute

B D
®— — — —@
reroute %\O\/%
-0 Q>
@e— — — —®
I J

Figure 6.31: Rerouting c in all possible special cases up to rotation and mirroring.
The fat lines indicate where the g-flatspace chain is glued together.
Hexagons are g-flatspace chains on their own and are not glued together
with other g-flatspaces. Inner vertices of g-flatspace chains are drawn
bigger than others.

87

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

LFe felte fe A AR
‘ () fu

7(e) + fu = 7'(d) d

Figure 6.32: An example of rerouting on a trapezoid in case (I). The fat lines indicate
where the g-flatspace chain W is glued together. The inner vertex of W
is drawn bigger than others.

It is easy to check that 7/(c) + fu = 7/(d), because §(v, c) 4+ 0(v, fy) = (v, d)
for all v € G. Figure 6.32 shows an example. As 7/(c) + fy is a flow on RES(f),
by Lemma 15 we have that d is a flow on RESb(f). By construction we have
that d = ", ¢; for well-directed vertex-disjoint cycles ¢y, ..., ¢y, on RES®(f)
with m > 0. Thus {¢i, ..., ¢} is a quasi-cycle-decomposition of 7/(c) + fg. Also
by construction d uses less edges than ¢ in each g-flatspace of ¥ and the same
number of edges outside of W. Therefore ¢(c) > ¢(¢;) for all ¢ € {1,...,m}.

We show m > 1 by showing that 7/(c) + fu # 0: The case that 7'(c)(e) +
fu(e) = 0 for all edges e in a g-flatspace R of ¥ can only happen, if R is a
parallelogram of side lengths (1,2, 1,2), as can be seen by looking at all cases in
Figure 6.29, Figure 6.30 and Figure 6.31. So 7/(¢) + fy = 0 implies that ¥ com-
pletely consists of parallelograms of side lengths (1,2, 1,2). Then ¥ has two open
endings. But there can be no flatspace chain consisting of only parallelograms of
side lengths (1,2, 1,2) that has two open endings, because the long sides of all
flatspaces in such a flatspace chain all share the same orientation —,\ or ,/ and

two open endings of a flatspace chain by construction never lie on the same side
of A. O

As all cases are considered, this proves the Shortest Cycle Theorem 6.19. [

We can also prove the following three variants of the Shortest Cycle Theo-
rem 6.19 with similar proofs. We will need these variants in Section 6.5 and Chap-
ter 7. Let RES,(f) denote the digraph that results from adjusting in RES’(f)
the capacities on all edges e that are incident to o as follows: [(e) < u(e) « 0.
Note that RES,(f) is independent of b.

Theorem 6.21 (Variant 1). Given a b-bounded integral shattered hive flow f and
a well-directed cycle ¢ on RESy(f) that is a shortest cycle among all well-directed
cycles on RES, (f). Then f + 7'(c) € P°.

Theorem 6.22 (Variant 2). Let S be a subset of the set of circle border vertices.
Let R denote the digraph that results from adjusting capacities in RES’(f) as
follows: For all edges e connecting o with a verter from S we set u, < l, < 0.
Let z > 0 such that @™(v,w) = 0 or @f(v,w) > z for all vertices v,w € V. Given

88

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

a b-bounded z-integral shattered hive flow f and a well-directed cycle ¢ on R with
d(c) > 0 that is a shortest cycle among all well-directed cycles ¢ on R that satisfy
§(¢) > 0. Then f+ 27'(c) € PP.

Theorem 6.23 (Variant 3). Given any linear function 1 : R?" — R with non-
negative coefficients, i.e. for all A € H' we have 1(xa) > 0 where xa(A) =1
and xp =0 for A # B.

Let z > 0. Given a b-bounded z-integral shattered hive flow f and a well-
directed cycle ¢ on RES, (f) with 1(n~'(7'(c))) > 0 that is a shortest cycle among
all well-directed cycles ¢ on RESy(f) that satisfy 1(n~'(7'(¢))) > 0. Then f +
27'(c) € PP.

Dijkstra’s algorithm and the Bellman-Ford algorithm Recall
Lemma 6.13: If a well-directed cycle ¢ on RES’(f) has é(c) > 0, it uses
one circle border vertex on the left side and one circle border vertex on one of
the other two sides. It goes from o to the latter, traverses the big triangle, uses
the former and returns to 0. We search for such a well-directed cycle that uses a
minimal number of edges. We can split the vertex o into two vertices 0; and 0,
in a way that oy is connected with the source vertices and o, is connected with
the sink vertices. Then Dijkstra’s algorithm (see [CLRS01]) can be used to find
a shortest path from oy to 05 in polynomial time, which gives the desired cycle.

If we only search for a shortest well-directed cycle on RES,(f) and do not
require that §(c¢) > 0 (e.g. in Variant 1), then we can use Breadth-First-Search
in the following way: We start at a vertex v and do Breadth-First-Search until
we find a well-directed cycle. Then we determine its length. We do this for each
vertex v and take the shortest well-directed cycle.

Now we consider Variant 3: Given any linear function 1 : R¥" — R. Since
lontor : F(RES(f)) — R is a linear function and F(RES(f)) is a subspace
of REres the function 1 o n~! o 7/ can be continued linearly to w : RFrRes — R
with w|pres(p)) = 1 0 n~!to 7. The function w can be seen as an edge weight on
RES(f). If the Bellman-Ford algorithm (see [CLRS01]) is started from a vertex
v that is contained in a shortest well-directed cycle ¢ on RES?(f) with w(c) > 0,
the algorithm is known to return such a cycle ¢ in polynomial time. We can find
the desired cycle by starting one instance of the Bellman-Ford algorithm from
each vertex and comparing their lengths.

6.5 Checking multiplicity freeness

It A, p and v are strictly decreasing partitions and ¢, > 0, one can use for
example the LRPA or the LRP-CSA as it will be explained in Chapter 7 to

89

CHAPTER 6. DECIDING POSITIVITY OF LR-COEFFICIENTS

obtain an integral, shattered flow f € P° with §(f) = 2|v|. Given such a flow f,
then more can be said according to Lemma 6.8:

cu =2 <= thereis an integral flow g € P’ g # f with 6(g) = 2|v|.
<= there is an integral flow 0 #d € P* — f C Pfll’atf — f
that uses no circle border vertex.
<= there is a well-directed cycle on RES,(f).

The last equivalence holds because of Theorem 6.21 and the fact that by construc-
tion of RES, (f) each cycle ¢ on RES,(f) has 7/(c¢) # 0. As checking RES (f) for
a well-directed cycle can be done in polynomial time and obtaining the flow f
can be done in polynomial time with the LRP-CSA, as we will see in Chapter 7,
we can decide multiplicity freeness in polynomial time.

We get two corollaries from the above equivalences:

Corollary 6.24. Let A, pu, v be strictly decreasing partitions. Given two distinct
not necessarily integral hives hy, hy € P(\, i, v). Then ¢, > 2.

Proof. Let hi,hy € P\, p,v), hi # ha, f = n(h), g = n(ha) with o(f) =
d(g9) = 2|v|. Then the LRPA finds an integral shattered hive flow f € P’ with
o(f) = 2|v]. We have f # f or f # g. Wlo.g. f # g. Then according to

Lemma 6.11, 7(g — f) is a feasible flow on RES’(f). As 6(v,g — f) = 0 on each

circle border vertex v, we have that 7(g — f) is a feasible flow on RES,(f). With

Lemma 5.11 7(g — f) can be decomposed into well-directed cycles on RES, (f)
and thus ¢, > 2. O

Corollary 6.25. Let A\, i, v be strictly decreasing partitions with |v| = |\ + |-
Then c§, =14 cySy, =1 for all N € N.

Proof. Note that for all hive flows f we have RES, (f) = RES. (N f). In particular
there are no well-directed cycles on RES (f) iff there are no well-directed cycles
on RES, (N f), which proves the claim. O

W. Fulton conjectured c§, =1 < N ~, = 1 in the more general setting that
the three partitions are not necessarily strictly decreasing. His conjecture was
proved by Knutson, Tao and Woodward (cf. [KTWO04]).

90

Chapter 7

The polynomial-time algorithm
LRP-CSA

In this chapter we present the scaling method that turns the LRPA into its
polynomial-time counterpart LRP-CSA. This method is basically about keeping
f € P’ 2*integral for large k and finding well-directed cycles ¢ in the residual
network with f + 2%7/(c) € P’. During the algorithm % decreases. One problem
is that inner vertices of flatspace chains with open endings can be raised by 1 unit
but one might not be able to raise them by 2* units without leaving P?. Therefore
while £ > 1 the algorithm preserves the regular border of f and thus prohibits
that flatspace chains with open endings appear. For this reason we introduce a
new residual network in Section 7.1. We describe the LRP-CSA in Section 7.2.
The subsequent sections elaborate the technical details of the LRP-CSA.

7.1 The residual network

Recall that . C V is the set of source vertices and .7 C V is the set of sink
vertices. To define the residual network, we first classify the circle border vertices
into three types: small, medium and big. Let k& € N and let f be a 2*-integral
b-valid shattered hive flow. %ﬁg(f,2%) is the set of circle vertices that are at least
2% away from their capacity bound and where adding 2* units of flow preserves
regularity on the border. They are called big vertices. ¥ y...(f,2%) is the set
of circle vertices that are at least 2% away from their capacity bound and where
adding 2* units of flow does not preserve regularity on the border. They are
called medium vertices. ¥ (f,2¥) is the set of circle vertices that are less than

small
2% away from their capacity bound. They are called small vertices. Formally:

V125 = {5 € 7185,) > Shls) =2 JU{t € 7| 812,) < 8 (1) 42"}

91

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Vet (£,25) 1= {5 € 71005, £) < 8huls) = 25, 0(pred(s), f) = d(s. f) + 2}
U {te 10 1) = 8hu(t) + 25, (pred(t), f) = (¢, f) - 2*}

Vel £.29) 1= {s€718(s, f) < Bhuls) =24, 0(pred(s). f) > 0(s.) + 2}
U {t € T |6(t, f) > &b () + 2%, 8(pred(t), f) < 8(t, f) — 2‘6}

According to Lemma 6.8(7), each circle border vertex is either small, medium
or big.

Definition 7.1 (The residual network RESS.(f)). We start with RES’(f) which
has capacities u, [as in Section 6.4.2. We get the new residual network RESSk(f)
by adjusting the capacities to u/, I’ on all edges e by setting

(u’(e), l'(e)) =

(0, 0) if e connects o with a small or medium vertex
(u(e),l(e)) otherwise '

Lemma 7.2. Given a b-bounded, 2*-integral, shattered hive flow f € P® with a
reqular border. The set of well-directed cycles c on RES(f) for which f42F7'(c) €
P® and f+2%7'(c) has a regular border equals the set of well-directed cycles ¢ on
RES%.(f) that satisfy f + 287'(c) € PP.

Proof. Given a well-directed cycle ¢ on RES%, (f) that has f+2%7'(c) € P°. Then
¢ is a well-directed cycle on RES?(f) and by construction of RESS.(f), ¢ does not
use small or medium vertices. Therefore f + 2¥7/(c) has a regular border.

On the other hand let ¢ be a well-directed cycle on RES?(f) for which f +
2k7'(¢) € P® and f + 2¥7'(c) has a regular border. Then ¢ does not use small or
medium vertices. Thus ¢ is a well-directed cycle on RESS.(f). O

7.2 The LRP-CSA

As a residual network can only be established, if the flow f is shattered, we need
a mechanism to efficiently shatter a given flow f. This could be done by raising
inner vertices of flatspace chains, but because of running time issues this is done
by also optimizing a linear target function 1 on the set of inner vertices I = H\ B
of the big triangle graph A:

92

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Definition 7.3 (1-optimality).

1:R'— R, > hi).

el

A hive flow f € F'is called 1-optimal, if there is no hive flow g € F with f|g = ¢|5
and 1(g) > 1(f). |

Lemma 7.4. Let f be a hive flow with a reqular border. If f is 1-optimal, then
f s shattered.

Proof. Assume that f is not shattered. Then according to Lemma 6.16 we can
find a flatspace chain ¥ and increase its inner vertices Wi, to get a better
solution with respect to 1 that has the same border. This is a contradiction. [

We define 1(d) := 1(7/(d)) for flows d on RES(f). For notational convenience
we call a flow d on RES(f) or on G §-positive, if §(d) > 0. We do the same for
1-positivity.

The LRP-CSA is listed as Algorithm 4. We call each iteration of the for-loop
a round. The LRP-CSA operates on b-bounded hive flows with a regular border
and thus initial solution cannot be the 0-flow, because the 0-flow has no regular
border. The construction of an initial solution is described in Section 7.4.

Theorem 6.22 ensures that f € P® in line 13. Lemma 7.2 shows that addi-
tionally f has a regular border in line 13. Theorem 6.19 ensures that f € PP in
line 27. To regain shatteredness, the regular border is fixed and f is optimized
w.r.t. 1 as described in Section 7.3. The intuition for optimizing w.r.t. 1 after
each step is that many increasing steps of size 2 should be made when k is still
large. The correctness of the LRP-CSA is proved in Section 7.5. Running time
issues are considered in Section 7.6.

7.3 Optimizing w.r.t. 1

In this section we show how flows can be shattered by optimizing w.r.t. 1 (line 14
and line 28) with Algorithm 5 and Algorithm 5. Algorithm 5 is not listed
separately and will be explained in this section. We first consider the case in
line 14. Recall that RES (¢g) is the digraph that results from adjusting in RES’(g)
the capacities on all edges e that are incident to o as follows: I(e) < u(e) < 0.
The LRP-CSA uses Algorithm 5 as a subalgorithm. We prove its correctness
with the following lemma:

Lemma 7.5. Given a 2*-integral, b-bounded, 1-optimal hive flow f with a reqular
border and a well-directed cycle ¢ on RESS.(f) with f + 287'(c) € P*. When
Algorithm 5 terminates on input (k, f,c), it returns a flow g € P’ such that
(f +2%¢)|p = gl and g is 28-integral and 1-optimal.

93

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Algorithm 4 The LRP-CSA

Input: A, p, v € N strictly decreasing partitions with |v| = |A| + |p].
Output: decide whether CKH > 0.

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:
31:
32:
33:

34:
35:
36:
37:
38:

if /(v) < max{l()\),¢(n)} then
return false.
end if
Create the regular target border b and the digraph G.
Find an initial 2M°8(¥D1+1_integral, b-bounded, 1-optimal hive flow f with a regular
border (see Algorithm 6).
for k = [log(|v|)] + 1 down to 1 do
rounddone <« false.
while not rounddone do
// f is a 2k-integral, b-bounded, 1-optimal hive flow with a regular border.
Construct RESS,(f).
if there is a d-positive well-directed cycle on RESSk (f) then
Find a shortest d-positive well-directed cycle ¢ on RESgk(f)-
Augment 2 units over ¢: f «— f + 2F7/(c).
Fix the border of f and optimize w.r.t. 1 with Algorithm 5 to obtain a
2k_integral, b-bounded, 1-optimal hive flow f with a regular border.
else
rounddone <« true.
end if
end while
end for
// Last round:
rounddone <« false.
while not rounddone do
// [is an integral, b-bounded, 1-optimal hive flow with a regular border.
Construct RES®(f).
if there is a d-positive well-directed cycle on RES®(f) then
Find a shortest d-positive well-directed cycle ¢ on RES®(f).
Augment 1 unit over ¢: f «— f+ 7/(c).
Optimize w.r.t. 1 with Algorithm 5’ to obtain an integral, b-bounded, 1-
optimal hive flow f with a regular border.
else
rounddone « true.
end if
end while
// f is an integral, b-bounded, 1-optimal hive flow with a regular border and there
are no well-directed d-positive cycles on RES?(f).
if 6(f) = 2|v| then
return true.
else
return false.
end if

94

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Algorithm 5 Optimize w.r.t. 1

Input: k € N, a 2*-integral, b-bounded, 1-optimal hive flow f with a regular
border and a well-directed cycle ¢ on RESS, (f) which satisfies f+2F7'(c) € P
and for which f + 2¥7/(c) has a regular border.

Output: A 2*-integral, b-bounded, I-optimal hive flow g on G such that g|p =
(f - 2’“7”(0)) }B.

1: g« f+ 2Fc.

2: done «— false.

3: while not done do

4: while there are g-flatspace chains do

5 Compute a g-flatspace chain V.

6 Augment Wy, by 2% g « g+ 2Ffy. // This increases 1 by at least 2*.
7. end while

8: // g € P’ is shattered and 2*-integral.

9: if there is a 1-positive, well-directed cycle on RES«(¢g) then

10: Find a shortest 1-positive, well-directed cycle ¢ on RES,(g).

11: Augment 2% units over ¢: g « g+ 2%7'(¢/). // This increases 1 by at
least 2F.

12: // We have g € P° and g is 2*-integral.

13: else

14: done <« true.

15: end if

16: end while
17: return g.

95

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Proof. The inner vertices of flatspace chains in line 6 can be raised by 2%, as
[+ 2%7'(c) has a regular border (cf. Lemma 6.16). Theorem 6.23 shows that we
have g € PP in line 12.

When the algorithm returns a flow g, then ¢ is shattered and there are no
I-positive well-directed cycles on RES,(g). Assume that g is not I-optimal.
Then there exists a flow ¢’ on P’ with g|p = ¢'|s and 1(g') > 1(g). Therefore
g —g€ P —gand ¢ — g has §(v,g — g) = 0 for each border vertex v. With
Lemma 6.11 we have that there exists a feasible flow d € Preas(RES’(g)) with
7'(d) = ¢’ — g and thus 1(d) > 0. Lemma 5.11 shows that d can be decomposed
into well-directed cycles. None of these cycles uses any border vertices, so they
are all cycles on RES,(g) as well. Using the linearity of 1, one of those cycles ¢
must have 1(c) > 0, which is a contradiction. O

We now want to analyze the running time of Algorithm 5. The idea is to
show that 1(g) < 1(f + 2*¢) +O(2*n?). This is sufficient to prove its polynomial
running time, because 1 is increased by 2* in line 6 and in line 11. We proceed
by proving two lemmas.

Lemma 7.6. Let f be a shattered hive flow and ¢ a cycle on RES(f). Then
I(c) <n(n—1)(n—2).

Note that this lemma holds for all cycles, not just for well-directed ones.
Proof. 1t is easy to check that |I| = (n_lgﬂ We have 1(c) =} 4, wind(A4, c).
As [0RESU) (v, 7'(c))| < 2forallv € V (cf. proof of Theorem 6.19, Lemma 2(1)), by
Lemma 6.6 we have wind(A, ¢) < 2n. Therefore 1(c) < |I]-2n = ("71)2& 2n =

n(n—1)(n — 2).]

Lemma 7.7. Given a 2*-integral, b-bounded, 1-optimal hive flow f € P’ with a
reqular border and a flow d on RESP(f) that has a flow value —m2F < d(e) < m2F
on each edge e in RES(f) for somem > 0. Let d' be a flow on G with §(v,d') = 0
for all circle border vertices v, f+7'(d)+d' € P and f+7'(d) +d' is L-optimal.
Then 1(f +7'(d) + d') — 1(f + 7'(d)) = 1L(d') = O(2*n’m).

Before proving Lemma 7.7 we recall the situation in Algorithm 5. Given
a 2F-integral, 1-optimal hive flow f € P’ with a regular border and a well-
directed cycle ¢ on RESS.(f) such that f + 257/(¢) € P® and a flow g which is
returned by Algorithm 5 and is l1-optimal with f|p = g|g. If we set d := 2Fc
and d' := g — f — 2*7'(d), we can apply Lemma 7.7 with m = 1 and get 1(g) =
1(f + 2%7'(c)) + O(2%n®) as desired.

We note that in order to apply Lemma 7.7 f must be 1-optimal. So the
LRP-CSA must reoptimize w.r.t. 1 after each step.

Definition 7.8. Given a cycle ¢ = (vy, .. 5 Vg Vg1 = v1) on RES’(f). A tuple
(vi,vi41),1 < i < £ is called critical, if @RE>) (v;, v;41) = 0. [|

96

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Proof of Lemma 7.7. Given m > 0 and f,d,d" as in Lemma 7.7. The flow 7(d’)
is a flow on RES (f) which is not necessarily feasible. We want to find an upper
bound for 1(d’).
Let M denote the number of edges in RES, (f). In each flat rhombus, RES, (f)
has 20 edges. As f can have at most n?/2 flat rhombi, we have M < 10n? ().
According to Lemma 5.6 the flow 7(d") can be decomposed into not necessarily
well-directed cycles on RES, (f):

M
7(d) = Z e
i—1

with cycles ¢1,..., ey on RES,(f) and ay,...,an € Rsq such that for all 1 <
i < M and for all edges e € ¢; we have sgn(c;(e)) = sgn(f(e)).

Let ¢ be such a cycle in the decomposition with 1(¢) > 0. Assume that ¢ is
well-directed. Then Lemma 6.11 shows that f+¢e7/(¢) € P’ for some € > 0. This
is a contradiction to f being l-optimal. So ¢ cannot be well-directed. Hence
¢ contains a critical tuple (v;,v;41). Let e := {v;,v;11}. W.lo.g. I(e) = 0,
é(e) < 0 and 7(d')(e) < 0. By assumption we have |d(e)| < m2*. As according to
Lemma 6.11 we have d+7(d’) € Preas(RES"(f)), it follows that d(e)47(d')(e) > 0
and therefore 7(d')(e) > —m2F. Thus from the cycle decomposition we get that

M

Z o; < m2k.

=1

c;(e)#0

In particular a; < m2* for all i with c;(e) # 0. As each I-positive cycle in the
decomposition uses a critical tuple, we get

M Lemma 7.7 M

I(d) < > alla) < Y amnn-1)(n-2)

i=1 i=1

1(c;)>0 1(c;)>0
M
< Z m2fn(n — 1)(n — 2) < Mm2*n(n — 1)(n — 2)
1(ep)>0
) k, 3 k, 5
< 10m2°n°(n — 1)(n — 2) = O(2"n’m).

]

Algorithm 5 We now describe Algorithm 5" used in Algorithm 4, line 28, and
prove its correctness and polynomial running time. It is not listed separately,
because it is nearly the same as Algorithm 5 with & = 0. The only difference
is that the input f + 7/(c¢) not necessarily has a regular border. Therefore, in

97

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

the first iteration of the while-loop in line 6, inner vertices of flatspace chains
with open endings can be raised. We already know that raising inner vertices of
flatspace chains with open endings works without leaving P?, because the target
border b is regular (see Lemma 6.17). This proves the correctness of Algorithm 5’.

Lemma 7.9. Algorithm & runs in polynomial time.

Proof. To prove the polynomial running time of Algorithm 5’ it remains to show
that the first iteration of the outer while-loop runs in polynomial time as only
this iteration differs from Algorithm 5.

Let Wy, ..., ¥, denote the flatspace chains whose inner vertices are raised in
line 6 during the first iteration of the outer while-loop. Our goal is to show that
M = O(n®). We have f + 7/(c) + fo, + ...+ fu,, € P’. Let J C {1,..., M} be
the set of indices ¢ such that ¥; has an open ending. Let each ¥, have at most
1 open ending and let this open ending be on the right side of A. The proof for
the other cases is similar. Let ¢ :=) ._; fy,. Algorithm 5 returns a flow g with
d(v,g) = 6(v, f +7'(c) + 9) for each circle border vertex v.

We bound M by first proving |J| < n. This bounds the absolute flow value
on each edge of 7(7'(¢) +v) and we can apply Lemma 7.7 with d = 7(7/(c) + ¢)
to bound M — |J|. We now show that |J| < n:

Let ¢ be the smallest element of J, if |J| # (). Note that the flatspace ¥,
in (f+7'(c)+ fo, + ...+ fu,_,) has an open ending and width 2, because on
each side of the big triangle graph A ¢ uses at most 1 border vertex. We have
d(v, fu,) = —1 and d(pred(v), fu,) = 1 for a circle border vertex v with (v, c) =1
and 0 (pred(v),c¢) = 0. Thus 6(v, 7'(c) + fe,) = 0 and d(pred(v), 7'(c) + fo,) =1
Let i’ be the smallest element of J \ {i} i v
(f+7'(c)+ fo,+...+ fu,_,) has and open ending and width 2 with (v, fy,) =0

d(pred(v), fu,) = —1 and 5(pred2(v), fw,) = 1. Thus 6(v, 7'(c) + fu, + fu,) =0,
d(pred(v), T ()+ fu, + fo,) = 0 and d(pred”(v), 7'(c) + fo, + fv,) = 1. We can
continue this construction and see that |J| < n.

As there can be open endings on two sides, we have |¢(e) +7/(c)(e)| < 2n+1
for each edge e € E. Note that 7(¢) + 7/(c)) is a flow on RESb(f) with absolute
flow value at most 4n + 2 on each edge. Lemma 7.7 shows that 1(f + ¢ +7'(c) +
d)—1(f+v+7'(c)) = O(2FnS) for the 1-optimal flow f+1+7'(c)+d. Therefore

— |J| = O(n®) and thus M = O(n"). O

7.4 An initial solution

In this section we describe how to find an initial b-bounded, 2*-integral, 1-optimal
hive hi,;; with a regular border for a given k& € N. We proceed step by step until
we get a desired hive.

Each vertex in A € H lies in a row g|(A) counted from the top row (row 1)
to the bottom row (row n + 1). Each vertex in A € H lies in a column g (A)

98

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

hq ®—® ho ® ®
1 1 1 1
/ ® \® ®/—® —®
1 1 1 2 2 2
/ ® \® ®/ ® \®
/ 1 1 1 1\ / 2 2 2 2\
® ® ® ® ® ® ®
1 1 1 1 1 2 2 2 2 2
®/ ® ® \® ®/ \® ® ® ®/ \®
/ 1\ 1 1 1 1 / 1\ / 1 2\ 2 2 / 2 1\
® ® ® ®
0 1 1 1 1 1 0 0 1 2 2 2 1 0

A FANRAN
®/2 ® 3\® ’ ®/3 ® 2\@9 ®/5\@ 6\® ' ®/6 ® 5\@9
@/1 2 3\ /3 2 1\@ /3\ 5\ 6\ /6 /5 /3\@

®
0

0 1 2 2 1 0

Figure 7.1: The construction of hy =), h;.

counted from the column 1 (the vertices on the right border) to the column n+ 1
(the vertex in the lower left corner). Generate a hive h; € R by setting

hi(4) = e (4) -1
and generate a hive h , € R by setting

ho(A) = 0, (4) — 1.

Note that both hives consist of exactly one flatspace, namely one big triangle.
Define hg,t := h;+h . Let faar := n(haat). On all source vertices s € . we have
d(s, faas) = 1. On all sink vertices t € .7 we have §(t, fua) = —2.
Each vertex in A € H lies in a layer o(A), which is the shortest edge distance
in A to a corner of A. The 3 corner vertices each have p(4) = 0. For i € N,
define
hi(A) = min{i, o(A)}.

See Figure 7.1 for an illustration. Let opa.c = L"T_lj If1 <i < pmax and
n > 1, then h; is a hive that consists of 4 flatspaces: 3 triangles in the corners
and 1 triangle or hexagon in the center. It is easy to see that this results in
a hive. Now consider the sum of hives hy := Y ?™*h,;. Since hy, is a sum of

99

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

hives, it is a hive itself. Let fg := n(hy). On all source vertices s € . we
have (s, fx) € {—0Omax; - - -, Omax}- On all sink vertices t € .7 we have 0(t, fx) €
{_Qmaxa R Qmax}-

Now fix the border of hy and optimize w.r.t. 1 with Algorithm 6. Like
Algorithm 5 it searches for shortest well-directed 1-positive cycles in RESb(f)
and augments over them. Whenever detecting any big flatspaces, it increases
their inner vertices. Note that in line 11 we have f + 7/(c) € PP because of
Theorem 6.23.

Algorithm 6 Initially optimize w.r.t. 1
Input: The hive hy € R¥.
Output: A I-optimal hive h € R¥" with hs|g = h|p.

L f e n(hs).

2: done <« false.

3: while not done do // at most "2(2—71)2 steps

4: while there are f-flatspace chains do

5 Compute an f-flatspace chain W.

6: Augment Uipner by 10 f < f + fy. // This increases 1 by at least 1.
7. end while
8
9

// f is integral and shattered.
if there is a 1-positive well-directed cycle on RES,(f) then

10: Find a shortest 1-positive well-directed cycle ¢ on RES, (f).
11: Augment 1 unit over ¢: f « f+7'(¢). // This increases 1 by at least 1.
12: end if

13: end while

Proposition 7.10. Given a hive hy, generated as above, then Algorithm 6 finds
a 1-optimal hive h with hy|p = h|g in polynomial time.

Proof. The correctness of Algorithm 6 can be proved in the same way as the
correctness of Algorithm 5. For any hive h € R with fixed border hlp = hs|p
and for each A € I, h(A) can be bounded as follows: Recall that A’ : conv(H) —
R is a concave function (see Definition 6.2). Note that the top vertex 0 of A has
hx(0) = 0 and the two adjacent vertices B have hs(B) = Omax- As h is a hive,
h’ must be concave and therefore each vertex C' € H can have height at most
hZ(Q) S 7+ Omax-

As each operation of Algorithm 6 in line 6 and line 11 raises 1(f) by 1 and
1(hyg) > 0 and 1 is bounded by |I]- 7 0max, the outer while-loop runs for at most
(n=D)(n=2) . ”T_l = M steps. So an integral 1-optimal hive h with fixed
border h|p = hyx|p can be found in polynomial time. O

Lemma 7.11. Let z € R. A hive h is 1-optimal with border hyx|p iff b + zhfa
is L-optimal with border hs|p + zhfa| 5.

100

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Proof. Note that adding or subtracting any multiple of hg,; does not change any
rhombus’ slack. Assume that h + zhga,, is a hive with border hy|g + zhgat|p that
is not l-optimal. Then there is a hive h + zhga; + h with border hs|B + zhgat|B
that is L-optimal with 1(h) > 0 and h|z = 0. But then h + h is a hive with
border hy|p with 1(h+ h) > 1(h) which is a contradiction to the T1-optimality of
h. O

Since h(0) = 0, we can set f := n(h). Consider f — gmaxfaar: On all source
vertices s € . we have d(s, faat) = 1 and (s,) < Omax- S0 we have

5(57 f - Qmaxfﬂat) S 0.

On all sink vertices t € 7 we have §(t, fuas) = —2 and (¢, f) > —0Omax. S0 we
have

5(t7 f - Qmaxfﬂat) Z 0

This results in f — omaxfaat and any positive multiple of f — gnaxfaae being
b-bounded for any b that comes from partitions.

Let k := [log(|v|)| + 1. Thus k is linear in the input size. Scale f — Omax fhat
by setting for := (f — Omaxfaat) - 2¥. We have that for is b-bounded, 2*-integral
and that it has a regular border.

Pinit := 0~ (for) is the desired initial hive.

We now show that its d-value is not very far from 2|v|:

We have

5(f2k) = 2k ’ (5<f) - Qmaxé(fﬂat))

> 2’“~(0—gmax~4n):—2’%4%”;1

—1
> ok, 4n"T = 2% . 2p(n— 1),

We also have 2|v| < 2- 2%, Hence
)| — 6(far) < 28(2n(n — 1) +2) = O(2%n?).

This ensures that the first round of Algorithm 4 runs in polynomial time.

7.5 Correctness

After introducing the LRP-CSA and all necessary subalgorithms, we can now
prove the main result:

Theorem 7.12. If given as input three strictly decreasing partitions A\, u, v € N*
with |v| = |A|+|p| that consist of natural numbers smaller than 2F for some k € N,
then the LRP-CSA returns true iff ¢, > 0. Its running time is polynomial in n
and k.

101

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Proof. The running time issues are considered in Section 7.6.

First of all the algorithm checks whether ¢(v) < max{¢()\),¢(u)}. If this is
the case, then we have ¢§, = 0 and need no additional computation.

If the LRP-CSA returns true, an integral b-bounded hive flow f was found
with 0(f) = 2[v|. Lemma 6.8(6) shows that ¢, > 0.

If the LRP-CSA returns false and has not returned in line 2, then there is an
integral hive flow f € P’ with §(f) < 2|v| and for which there is no d-positive
well-directed cycle in RES?(f). The Optimality Test (Lemma 6.12) ensures that
f maximizes ¢ in P’. So by Lemma 6.8(5) we have c§, = 0. O

7.6 Running time

Each subalgorithm of the LRP-CSA runs in polynomial time as described in the
respective sections and the number of rounds is linear in the input length. We
will prove the polynomial running time of Algorithm 4 in this section by showing
that the while-loop in line 8 runs only a polynomial number of times for each &
and that the while-loop in line 25 runs only a polynomial number of times. As k
is polynomial in the input length, the LRP-CSA runs in polynomial time.

Let Omax := max{d(f) | f € P°}.

Lemma 7.13 (Scaling-Lemma). Given a 2-integral, shattered hive flow f € PP.
If there are no well-directed, §-positive cycles on RESS.(f), then dmax — 0(f) <
2kn2.

Proof. Let f € P® be a 2F-integral, shattered hive flow such that there are no
well-directed, d-positive cycles in RESS.(f). A well-directed cycle on RES’(f)
that uses two big vertices is a well-directed cycle on RESS,(f) as well. So there
are no well-directed, d-positive cycles in RES’(f) that use two big vertices.

Let w be a circle border vertex, w.l.o.g. w € %, and let

6f)nax(w) - 5(11), f) < C

for some ¢ € R, e.g. the case where w is a small vertex and ¢ < 2¥—1. Let succ(w)
be a medium vertex. Since from Lemma 6.8(7) we know that 62, (succ(w)) <

68 (w), we have 0 (succ(w)) — §(w, f) < ¢. As succ(w) is medium, we have

§(w, f) = d(succ(w), f) + 2%. So
80 (succ(w)) — §(succ(w), f) < ¢ + 2",

max

So if there are consecutive medium vertices that have a small vertex as pre-
decessor, for all those medium vertices v we have

O (W) =8,)< 2" =1)+(n—1)-2F <n-2~

max

102

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

5 pred2 =0

pred =0

/

Figure 7.2: A flatspace chain ¥ in f + 2¥7/(c) + v which has an open ending on the
right side of A. The inner vertices are drawn bigger than others. The fat
arrows represent fy.

We call these medium vertices minor medium vertices. All other medium vertices
are called major medium vertices.

So far we have bounded 6%, (v) — 6(v, f) for small and minor medium ver-
tices v. Additionally we know that no well-directed d-positive cycle uses two big
vertices.

We want to show that there is no d-positive well-directed cycle on RES®(f)
which uses two major medium vertices or one big and one major medium vertex.
Assume the contrary, i.e. that that there is a J-positive, well-directed cycle ¢
on RESb(f) which uses two major medium vertices or one big and one major
medium vertex. Let v be a major medium vertex used by c. Let w be the
other border vertex used by ¢, i.e. a big or major medium vertex. The flow
f+2%7(c) has big flatspaces, because its border is not regular. Therefore flatspace
chains without open endings can be found and raised by 2* each until there are
only flatspace chains left that have an open ending. Let ¢ € F(G) be the flow
corresponding to this raise. Then f + 287/(c) + ¢ € P® and f + 2%7/(c) + 9 is
2%-integral. The flatspace chains of f + 287/(c) + 1 each have width 2, because
¢ uses at most one border vertex on each side of the big triangle graph A. At
least one of the these flatspace chains ¥ has an open ending containing v and
pred(v). W.lo.g. v € ., pred(v) € .¥ and w € . Then fy(v) = —1 and
fw(pred(v)) = 1 (see Figure 7.2). Note that since v is major medium and w is
major medium or big, we have f + 2%7/(c) + ¢ + 2¥fy € P’. Also note that
§(v, 257 () + 1 +2F fy) = 0 and 6(pred(v), 287 (c) + 9 + 2% fy) = 2%, If w is major

103

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

medium, then depending on whether W has an open ending containing w, we have
d(pred(w), 277/ (c) + b+ 2% fg) = —2F or §(w, 287(c) +9 + 2% f) = —2%. The flow
7(257'(¢) 41+ 2% fi) on RES’(f) can be decomposed into well-directed cycles and
one of these cycles must use pred(v) and w or pred(v) and pred(w). This cycle
is d-positive, while the other cycles ¢’ have §(¢’) = 0. pred(v) and pred(w) each
are major medium or big. Repeat this argument until a well-directed J-positive
cycle on RES’(f) is found that uses two big vertices. This is a contradiction.

So a d-positive well-directed cycle that uses a major medium vertex must also
use a small or a minor medium vertex. And a d-positive well-directed cycle that
uses a big vertex must also use a small or a minor medium vertex.

Now consider a flow d on G with f +d € P’ and §(f + d) = dpax. If the sum
of throughput in d through big and major medium vertices exceeds the sum of
throughput through minor medium or small vertices, then d must decompose in
at least one well-directed cycle on RES?(f) that uses two big vertices or a big and
a major medium vertex or two major medium vertices, which is a contradiction.

As | 7| =n, we have dpayx — 0(f) = 6(d) < n? - 2. O

How many J-positive well-directed cycles on RESZk(f) can be found during
a round in Algorithm 47 The first iteration runs in polynomial time as seen
at the end of Section 7.4. After the kth round we have d., — 6(f) < n? - 2F.
So how many d-positive well-directed cycles can be found in the next round on
RESS, 1 (f)? Clearly at most 2n?. So we know that every round besides the
last one run in polynomial time. At the beginning of the last round, we have
Omax — 0(f) < n?- 2. This ensures that the last round runs in polynomial time
as well.

7.7 Handling weakly decreasing partitions

The LRPA and the LRP-CSA can only handle triples of strictly decreasing par-
titions A\, p and v. What if at least one of these input partitions is only weakly
decreasing? We will adjust A, g and v to A, it and 7 such that they are strictly
decreasing and ¢, > 0 <= cgﬂ > 0.

Recall the hives hy and hg,, from Section 7.4. e_md that omax = L”T_IJ
Figure 7.3 shows an example of hs + Omaxhgat. Let b € RE be the border of
Ry, + Omaxhaas. Then b is regular and weakly increasing from top to bottom on
the left and on the right and from right to left on the bottom. Thus we have for

any three consecutive border vertices A, B, C that
b(A) = b(B) > b(B) — b(C).

Therefore adding b to any border b coming from any three partitions will eliminate
the irregularities:

b(A) = b(B) = b(B) —b(C) = (b+b)(4) = (b+b)(B) > (b+b)(B) — (b +b)(C).

104

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

h’E + Qmaxhﬁat ® ®

9 6

@ —®
7 14 17

SN
Ve NN
SN NN

36 36 35 33 29 24 18

Figure 7.3: An example of hy + Omaxhfat-

Let b := b(\, p,v) be the border induced by A, 1 and v. Given N € N, we
can define \, fi and 7 to be the partitions that induce b(X, ji, 7) = Nb+ b. Note
that Nb -+ b is a regular border.

For every N € N we have ¢§, > 0 = c~ > 0.

We must choose N large enough to get the other direction as well. We need
an important lemma for this approach that is a slight generalization of [Buc00].

Lemma 7.14. Given partitions A\, u,v € N*. For each flow f € P*MY) that
mazimizes § in P* ™) we have that 0(f) € Z.

Proof. Given A\, u,v € N" b := b(\ u,v). Note that we can also define
b(Arats fheat, Vrat) € QP for rational vectors Apat, fhrat, Vst € Q3" as in Figure 6.3.
With the constructions from Section 7.4 we can show that P¥ contains a rational
flow for any rational border b'. Let {1}U{a;|i € H} be a set of real numbers that
is linearly independent over Q and for which a; > 0 for all ¢ € H, e.g. a; = \/ps,
where p; denotes the ith element in the sequence of primes. Define

1*:R¥ - R, b Zaih(z)
icH
Note that for any two distinct hy, hy € Qf we have 2y + 1*(hy) # 29 + 1*(hy) for
all 21,29 € Q. Define
Oh t F(G) = R, fr=M(f) +1*(n " (f)).

Then for each (Auat, fhrat; Viat) € Q3" there exists exactly one rational flow which
maximizes 0}, in PPPratsractrat) hecause the problem is bounded and feasible, and
according to [Sch98] there is always at least one vertex of PP(ratstracrat) which
maximizes d3,. Let ¢ > 0. Then there is M(e) € N such that for all rational
f € F(G) we have

. . . / . . . /
J maximizes 0y in P¥ = f maximizes § in P°

105

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

for all ¥" with ||b’ — b|| < e. Define

gs . an N QH7 (>\rat7 Mraty Vrat) — f Such that
Srio(f) = max{dy) (g)]g € PPOmwtmanred)},

Note that £.(\, u,v) = f such that §(f) = max{d(g)|g € P’} for £ small enough.

We show that ¢.(A, u,v) is integral. The function ¢, is continuous, which
follows from [Sch98], ch. 10.4 “Sensitivity analysis”. Note that (. (Aat, frat, Vrat)
is a vertex of the polyhedron PP(ratstratvrar) because there is only one vector that
maximizes 07, © in PPOravhraciiar) - et ()\rat, W os U ﬁat) be a sequence in Q3"

with |[b(X,,, 12, 2..) — b|| < € and for which b()\rat, T, r;t) is a regular border
for all j € N and which satisfies 1lim; o (X, s, v20) = (A, 1,). If we can show
that Cc(N ooy i, V2 (A) s a Z-linear combination of entries from Mz, and
for each A € H, we have that /. (X, iz,) is integral, which proves the lemma.
We define 0 := b(M,,, pil., v2,). Let f maximize Orr(e) 10 PY. Recall that
f has a regular border. Then f is shattered: If we assume the contrary, then

we can raise inner vertices of a flatspace chain and increase (534(5), which is a

rat

contradiction. Since % € P is shattered as well, we can construct RESb/(g).

As f € PY, Lemma 6.11 shows that T() € PfeaS(RESb/()). Therefore 7(f) €
Pfeas(RESSg“b/(). In each -flat rthombus ¢, () uses no capacitated edge, since
¢ is f-flat as Well Thus 7'(f) uses no capa(ntated edges in any f-flat rhombus.
There can be no cycles in RES,(f) that only use uncapacitated edges, because
for such cycles ¢ we have f +¢'7/(c) € P and f —'7'(c) € P¥ for some & > 0.
This means that f is no vertex of P”, which is a contradiction.

We know which rhombi are f-flat and we know that 7(f) uses no capacitated
edges in any f-flat rhombus and that there are no cycles on RES, (f) that use
only uncapacitated edges. Therefore, if we know the troughputs on the circle
border vertices, we can uniquely assign throughputs d(v, f) to circle vertices v
iteratively starting at the border respecting the flow constraints. For each vertex
v we have that §(v, f) is a Z-linear combination of the throughput on the circle
border vertices.

It remains to show that the throughputs on the border vertices are Z-linear
combinations of entries in X, /., and v7,: We delete all capacitated edges
including the edges incident to o from RES(f) and obtain a digraph G*. The
digraph G* has no cycles and each connected component of G* contains at least
2 circle border vertices. Circle border vertices s € . with (s, f) < ¥, (s)
and circle border vertices ¢t € 7 with §(t, f) > 6%, (t) are called open. No
connected component has two open border vertices, as this would induce a well-
directed cycle ¢ on RESY(f) and a well-directed cycle —c on RESY(f), which
with Lemma 6.11 is a contradiction to f being a vertex of a polytope. As in each
connected component there is at most one open vertex, the throughputs on the
circle border vertices are Z-linear combinations of entries in A, and v7,,. [

106

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

Proposition 7.15. Given three partitions X, u, v € N* with |[v] = |\ + [u]
and b as described above. Let b := b(\, u,v) and b(\, ji,0) = Nb+b. For
N > 337430 . op3(n — 1) we hcwecKH>0<:)c§ﬂ>O.

Proof. One direction is clear. To figure out how big N must be for the other
direction, we write the problem of optimizing § in P’ as a linear program and do
a sensitivity analysis (cf. [Sch98|, ch. 10.4 “Sensitivity analysis”): We want to
optimize 0(f) =2 ,.» [({t,0}) subject to the constraints

Vo € VA{0}: Toes o F(0) = Tecnn f(6) =0
YOA,B,C.D): S(AB)-(D.C) <O

VA, Bl e 7 ; 5(1A, B]) < b(A) — b(B
V[A, Bl € T : —3([4, B)) < b(B) — b(4)

In standard form the first equalities each become two inequalities of the form
< 0 and > 0. Note that §([A, B]) is in fact a flow value f(e) on a single edge
e. Putting this system of inequalities in matrix notation A’f < ¥, then A’ has
at most 3 nonzero entries in each row, namely each flow inequality of a fat black

vertex has 3 nonzero entries. We now determine |V| and |E|: We have n? small
(1)

triangles with a fat black vertex each, uprlght triangles with 3 cn"CIe vertices
each and 1 additional vertex o, so we get V| =n?+ 355~ (” Dy1= n — §n +1
and |E| = 3n% — 3n, because we have twice as many edges than c1rcle vertices.
This results in A’ having at most 2(|V| — 1) 4+ 3|V| + 3n = £n? — In + 3 rows.

So in each square submatrix B’ of A’, according to the Leibniz formula, we
have det(B') < 3%°~3" As B'~! = adj(B')/ det(B'), each entry of B'~! has a
bounded absolute value of at most 3337,

As seen in [Sch98, ch. 10, eq. (22)], for a second right-hand side b” we have

| max{d(f) | A'f <V} — [max{a(f) | A'f < 0"} < nAfd]l, - IV =]l .

where A = 337737 ig an upper bound on the absolute values of entries in B~}
for each square submatrix B’ of A’ and ||6||; = 2n. In particular, since we have

[Nb+b— Nb||__ = |b]|. < 2n0max
by construction of b, we get
| max{d(f) | A'f < Nb}| — | max{d(f) | A'f < Nb+ b}
<n- 33n*=3n o . 2N 0max < 33n*=3n 2n3(n — 1).

Let Gmax(\, p,v) = max{6(f) | f € POw} If 5, = 0, according
to Lemma 6.8(6) and Lemma 7.14 we have Opmax(A, p,v) < 2|v| — 1. Then
Smax(NA, N, Nv) < 2N|v| — N. Choose N to be larger than 333" .2n3(n — 1)
to get dmax(\, i, 7) < 2N|v| < 2|7|. Therefore cl:’ﬂ =0. O

107

CHAPTER 7. THE POLYNOMIAL-TIME ALGORITHM LRP-CSA

We note that the bitsize of A, i and 7 is polynomial in the bitsize of A, y and
v. Therefore using this precalculation, the LRP-CSA can be used to determine
the positivity of Littlewood-Richardson coefficients in polynomial time even in
the case of weakly decreasing partitions. This again can be used to prove the
Saturation Conjecture in the case of weakly decreasing partitions. However,
although it does not directly use the Saturation Conjecture, the precalculation
uses almost all ideas from Buch’s proof of the Saturation Conjecture.

108

Bibliography

[AMO93]

[BIOg]

[BK99)

[BOO7]

[Buc00]

(BZ92]

[CLRSO01]

[FF62]

[FFK91]

[FHO1]

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work flows: theory, algorithms, and applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1993.

Peter Biirgisser and Christian Ikenmeyer. The complexity of com-
puting Kronecker coefficients. To appear in DMTCS, special issue
dedicated to FPSAC ’08, 2008.

C. Bessenrodt and A. Kleshchev. On Kronecker products of complex
representations of the symmetric and alternating groups. Pacific Jour-
nal of Mathematics, 190(2):201-223, 1999.

Cristina M. Ballantine and Rosa C. Orellana. A combinatorial inter-

pretation for the coefficients in the Kronecker product sg,—p ;) * si.
Sém. Lothar. Combin., 54A:Art. B54Af, 29 pp. (electronic), 2005/07.

Anders Skovsted Buch. The saturation conjecture (after A. Knutson
and T. Tao) with an appendix by William Fulton. FEnseign. Math.,
2(46):43-60, 2000.

A. D. Berenstein and A. V. Zelevinsky. Triple multiplicities for sl(r +
1) and the spectrum of the exterior algebra of the adjoint representa-
tion. J. Algebraic Comb., 1(1):7-22, 1992.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, 2nd edition,
2001.

L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univer-
sity Press, Princeton, N.J., U.S.A., 1962.

Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-
definable counting classes. In Structure in Complexity Theory Con-
ference, pages 30-42, 1991.

William Fulton and Joe Harris. Representation Theory - A First
Course, volume 129 of Graduate Texts in Mathematics. Springer, 1991.

109

BIBLIOGRAPHY

[For97]

[Ful97]

[Tta78]
[Jun04]

[Kar84]

[Khag0]

[KP95]

[KT99]

[KTW04]

[Las80]

[LMO4]

IMS01]

Lance Fortnow. Counting Complexity. In Alan L. Selman, Editor,
Complezity Theory Retrospective, In Honor of Juris Hartmanis on the
Occasion of His Sixtieth Birthday, July 5, 1988, volume 2. 1997.

William Fulton. Young tableauz, volume 35 of London Mathematical
Society Student Texts. Cambridge University Press, Cambridge, 1997.

Alon Ttai. Two-commodity flow. J. ACM, 25(4):596-611, 1978.

Dieter Jungnickel. Graphs, Networks and Algorithms (Algorithms and
Computation in Mathematics), volume 5. Springer-Verlag New York,
2004.

Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. Combinatorica, 4(4):373-396, 1984.

L. G. Khachian. Polynomial algorithms in linear programming.
Zhurnal Vychislitelnoi Matematiki © Matematicheskoi Fiziki, 20:53-72,
1980.

Anil Kamath and Omri Palmon. Improved interior point algorithms
for exact and approximate solution of multicommodity flow problems.
In SODA °95: Proceedings of the sixzth annual ACM-SIAM symposium
on Discrete algorithms, pages 502-511, Philadelphia, PA, USA, 1995.
Society for Industrial and Applied Mathematics.

Allen Knutson and Terence Tao. The honeycomb model of GL,(C)
tensor products. I. Proof of the saturation conjecture. J. Amer. Math.
Soc., 12(4):1055-1090, 1999.

Allen Knutson, Terence Tao, and Christopher Woodward. The hon-
eycomb model of gl(n) tensor products ii: Puzzles determine facets
of the littlewood-richardson cone. J. Amer. Math. Soc., 17(1):19-48,
204.

Alain Lascoux. Produit de Kronecker des représentations du groupe
symétrique. In Séminaire d’Algébre Paul Dubreil et Marie-Paule Malli-
avin, 32éme année (Paris, 1979), volume 795 of Lecture Notes in
Math., pages 319-329. Springer, Berlin, 1980.

Joseph M. Landsberg and Laurent Manivel. On the ideals of secant
varieties of Segre varieties. Found. Comput. Math., 4(4):397-422, 2004.

Ketan D. Mulmuley and Milind Sohoni. Geometric complexity the-
ory. I. An approach to the P vs. NP and related problems. STAM J.
Comput., 31(2):496-526 (electronic), 2001.

110

BIBLIOGRAPHY

IMS05]

IMS06]

[Nar(6]

[OHO1]

[Pap94]

[PVO5]

[Rem89)]

[Rem92]

[Ros01]

[RW94]

[Sag01]

[Sch9g|

Ketan D. Mulmuley and Milind Sohoni. Geometric complexity the-
ory III: On deciding positivity of Littlewood-Richardson coefficients.
cs.ArXive preprint ¢s.CC/0501076, 2005.

Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory
IT: Towards explicit obstructions for embeddings among class varieties.
cs.ArXive preprint ¢s.CC/0612134. To appear in SIAM J. Comput.,
2006.

Hariharan Narayanan. On the complexity of computing Kostka num-
bers and Littlewood-Richardson coefficients. J. Algebraic Combin.,
24(3):347-354, 2006.

Mitsunori Ogiwara and Lane A. Hemachandra. A complexity the-
ory for feasible closure properties. In Structure in Complexity Theory
Conference, pages 16-29, 1991.

Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley Publishing Company, Reading, MA, 1994.

Igor Pak and Ernesto Vallejo. Combinatorics and geometry of
Littlewood-Richardson cones. Eur. J. Comb., 26(6):995-1008, 2005.

Jeffrey B. Remmel. A formula for the Kronecker products of Schur
functions of hook shapes. J. Algebra, 120(1):100-118, 1989.

Jeffrey B. Remmel. Formulas for the expansion of the Kronecker prod-
ucts S(mn) @S(1p-r) and S(ikory@S(1p-r 1. Discrete Math., 99(1-3):265-
287, 1992.

Mercedes H. Rosas. The Kronecker product of Schur functions indexed
by two-row shapes or hook shapes. J. Algebraic Combin., 14(2):153—
173, 2001.

Jeffrey B. Remmel and Tamsen Whitehead. On the Kronecker product
of Schur functions of two row shapes. Bull. Belg. Math. Soc. Simon
Stevin, 1(5):649-683, 1994.

Bruce E. Sagan. The symmetric group, volume 203 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 2001.
Representations, combinatorial algorithms, and symmetric functions.

Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, 1998.

111

BIBLIOGRAPHY

[Sta99]

[Sta00]

[Str83]

[Val79]

Richard P. Stanley. Enumerative Combinatorics Volume 2, volume 62
of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 1999.

Richard P. Stanley. Positivity problems and conjectures in algebraic
combinatorics. In Mathematics: frontiers and perspectives, pages 295—
319. Amer. Math. Soc., Providence, RI, 2000.

Volker Strassen. Rank and optimal computation of generic tensors.
Lin. Alg. Appl., 52:645-685, 1983.

Leslie G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8:189-201, 1979.

112

