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Exercise 1 (10 points).
Prove that the Waring rank of a polynomial is always finite by proving that
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Exercise 2 (10 points).
Let A = C[x, y]2. Let X ⊆ A denote the set of Waring rank 1 polynomials. Determine the
homogeneous part I(X)2 of the vanishing ideal I(X).

Exercise 3 (10 points).
Let A = C[x, y, z]2, so xy ∈ A. Let X := GL3(xy) ⊆ A. Determine the homogeneous part
I(X)2 of the vanishing ideal I(X).

Exercise 4 (10 points).
Let V and W be metric spaces and let f : V → W be a continuous map. Prove that for all

subsets A ⊆ V we have f(A) ⊆ f(A) and that f(A) = f(A).


