A first introduction to geometric complexity theory Summer 2018

Assignment 3
due on Wednesday, May 2, 2018

Name:

Exercise 1 (10 points).
Consider the action of CN*¥ on C[X7,..., Xy]q defined in the lecture. Compute the following
polynomial in the standard monomial basis:
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Exercise 2 (15 points).
Prove that the Waring rank of a polynomial is always finite by proving that
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Exercise 3 (15 points).
Let GL,, denote the group of invertible complex n x n matrices. Let G = GL,, x GL,, and let
V = C™*"™. Define an action of G on V by
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where is the product of matrices. Let v € V have matrix rank rk(v) = k. Prove that

Gv ={w eV |rk(w) = k}.



