Some algebraic algorithms and complexity classes inspired
by connections between matrix spaces and graphs

Youming Qiao
University of Technology Sydney

@ Workshop on Algebraic Complexity Theory (WACT) 2023
30 March, 2023

Some typos corrected, N.B. added,
on 5 April.
Talk outline

1. Some connections between graphs and matrix spaces

2. Algorithm: alternating paths and Wong sequences

3. Complexity: graph isomorphism and matrix space equivalence

4. More connections, more problems
* Based on the following joint works:

- **Yinan Li, Youming Qiao, Avi Wigderson, Yuval Wigderson, Chuanqi Zhang:** Connections between graphs and matrix spaces. CoRR abs/2206.04815 (2022). To appear in Israel J Maths
- **Yinan Li, Youming Qiao:** Linear algebraic analogues of the graph isomorphism problem and the Erdős-Rényi model. FOCS 2017: 463-474.
From graphs to matrix spaces

* For \(n \in \mathbb{N} \), \([n] := \{1, 2, \ldots, n\} \). \(\mathbb{F} \): a field

* \(M(n, \mathbb{F}) \): the linear space of \(n \times n \) matrices over \(\mathbb{F} \)

* For \(i, j \in [n] \), \(E_{i,j} \in M(n, \mathbb{F}) \) is the \((i,j) \)th elementary matrix

\[
E_{i,j} = \begin{bmatrix}
0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{bmatrix}
\]
From graphs to matrix spaces

* For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}$. F: a field

* $M(n, F)$: the linear space of $n \times n$ matrices over F

* For $i, j \in [n]$, $E_{i,j} \in M(n, F)$ is the (i, j)th elementary matrix

* A bipartite graph $G = (L \cup R, F)$ \Rightarrow A matrix space $B_G \subseteq M(n, F)$

$L = R = [n]$, $F \subseteq L \times R$ \Rightarrow $B_G = \text{span} \{ E_{i,j} \mid (i, j) \in F \}$
From graphs to matrix spaces

* For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}$. F: a field

* $M(n, F)$: the linear space of $n \times n$ matrices over F

* For $i, j \in [n]$, $E_{i,j} \in M(n, F)$ is the (i, j)th elementary matrix

* A bipartite graph $G = (L \cup R, F)$ implies a matrix space $B_G \subseteq M(n, F)$ where $L = R = [n]$, $F \subseteq L \times R$.

$B_G = \text{span}\{E_{i,j} \mid (i, j) \in F\}$

Observation. (Tutte, Edmonds, Lovász)

G has a perfect matching $\iff B_G$ contains a full-rank matrix
Connections between graphs and matrix spaces

Observation. (Tutte, Edmonds, Lovász)

\[G \text{ has a perfect matching} \iff B_G \text{ contains a full-rank matrix} \]

* A classical result of the type: \(G \) has property \(P \) iff \(B_G \) has property \(Q \)
Connections between graphs and matrix spaces

Observation. (Tutte, Edmonds, Lovász)

\[G \text{ has a perfect matching } \iff B_G \text{ contains a full-rank matrix} \]

* A classical result of the type: \(G \) has property \(P \) iff \(B_G \) has property \(Q \)

* Symbolic determinant identity testing (SDIT) essentially asks to test if a general matrix space contains a full-rank matrix: a problem of key importance in algebraic complexity [Kabanets–Impagliazzo]

* Quasi–NC algorithm for perfect matching [Fenner–Gurjar–Thierauf]

* We now examine another side of the above observation
Another correspondence between graph and matrix space structures

\[G = (L, U, R, F) \Rightarrow B_G = \text{span}\{ E_{i,j} \mid (i,j) \in F \} \subseteq M(n, \mathbb{F}) \]

\[L = R = [n] \]

Obs. \(G \) has a perfect matching \(\Rightarrow \) \(B_G \) contains a full-rank matrix

Prop. (Hall) \(G \) has a shrunk subset \(\Rightarrow \) \(B_G \) has a shrunk subspace

\[S \subseteq L, |S| > |N(S)| \]

\[N(S) \subseteq R \text{ is the set of neighbours of } S \]

\[S \subseteq \mathbb{F}^n, \dim(S) > \dim(B_G(S)) \]

\[B_G(S) = \text{span}\left(\bigcup_{B \in B_G} B(S) \right) \]
Another correspondence between graph and matrix space structures

* $G = (L, U, R, F) \implies B_G = \text{span}\{E_{i,j} \mid (i, j) \in F\} \subseteq M(n, F)$

$L = R = [n]$

Obs. G has a perfect matching $\iff B_G$ contains a full-rank matrix

Prop. (Hall) G has a shrunk subset $\iff B_G$ has a shrunk subspace

* Non-commutative rational identity testing (NC-RIT) essentially asks to test if a general matrix space admits a shrunk subspace [Hrubeš–Wigderson]

* Geometric complexity theory [Mulmuley], polynomial identity testing [Derksen–Makam], non-commutative algebra [Cohn], analysis [Garg-Gurvits-Oliveira-Wigderson]...
$$\text{Sk}_3 = \text{Span}\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}.$$
SDIT versus **NC-RIT**

* SDIT: in coRP over large fields. A major open problem to derandomise it.

* NC-RIT: in P by [Garg-Gurvits-Oliveira-Wigderson], [Ivanyos-Q-Subrahmanyam], [Hadama-Hirai]

\[S_{k_3} = \text{span}\{\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}\} \]
Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for NC-RIT:
 - A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
 - A “regularity lemma” for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:

\[G = (L \cup R, E), \ M \subseteq E \text{ is a given matching}, \ U = E \setminus M : \text{edges not in } M \]

- \(S_0 \subseteq L : \text{unmatched vertices} \)
- \(T_1 \subseteq R : \text{neighbours of } S_0 \text{ via unmatched edges} \)
 - if \(T_1 \) contains an unmatched vertex, an augmenting path is found
 - otherwise ...
Review of alternating paths on bipartite graphs

* $G = (L U R, E)$, $M \subseteq E$ is a given matching, $U = E \setminus M$: edges not in M

$S_0 \subseteq L$: unmatched vertices

$T_i \subseteq R$: neighbours of S_0 via unmatched edges

$S_1 \subseteq L$: n.b. of T_i via matched edges
Review of alternating paths on bipartite graphs

\[G = (L \cup R, E), \ M \subseteq E \text{ is a given matching}, \ U = E \setminus M : \text{edges not in } M \]

- \(S_0 \subseteq L : \text{unmatched vertices} \)
- \(S_1 \subseteq L : \text{n.b. of } T_1 \text{ via matched edges} \)
- \(T_1 \subseteq R : \text{neighbours of } S_0 \text{ via unmatched edges} \)
- \(T_2 \subseteq R : \text{n.b. of } S_1 \text{ via unmatched edges} \)
- Check if \(T_2 \) contains an unmatched vertex
 - Yes: augmenting path. No: continue
Review of alternating paths on bipartite graphs

* \(G = (L \cup R, E), M \subseteq E\) is a given matching, \(U = E \setminus M\) : edges not in \(M\)

\(S_0 \subseteq L\) : unmatched vertices

\(S_1 \subseteq L\) : n.b. of \(T_1\) via matched edges

\(T_1 \subseteq R\) : neighbours of \(S_0\) via unmatched edges

\(T_2 \subseteq R\) : n.b. of \(S_1\) via unmatched edges

- Check if \(T_2\) contains an unmatched vertex
- Yes : augmenting path. No : continue

STOP if \(T_i\) consists of matched vertices and \(T_i \subseteq T_1 U T_2 U \ldots U T_{i-1}\)
Linear algebraic alternating path method

* \(B = \text{span}\{ B_1, \ldots, B_m \} \subseteq M(n, F) \). \(C \in B \)

\(S_0 = \ker(C) \subseteq F^n \)

"unmatched vertices"
Linear algebraic alternating path method

* \(\mathcal{B} = \text{span}\{ B_1, \ldots, B_m \} \subseteq M(n, F) \). \(C \in \mathcal{B} \)

\(S_0 = \ker(C) \subseteq F^n \) \(\xrightarrow{\mathcal{B}} \) \(T_1 = \mathcal{B}(S_0) := \text{span}\{ B_1(S_0) U \ldots U B_m(S_0) \} \subseteq F^n \)

"neighbors of \(S_0 \) via unmatched edges"
Linear algebraic alternating path method

\[B = \text{span}\{B_1, \ldots, B_m\} \subseteq M(n, F), \quad C \in B \]

\[S_0 = \ker(C) \subseteq F^n \]

\[T_i = B(S_0) := \text{span}\{B_1(S_0), \ldots, B_m(S_0)\} \subseteq F^n \]

- If \(T_i \not\subseteq \text{im}(C) \), can compute \(D \in B \) of larger rank
- Otherwise...

"\(T_i \) contains an unmatched vector"
Linear algebraic alternating path method

* \(\mathcal{B} = \text{span}\{ B_1, \ldots, B_m \} \subseteq \text{M}(n, F), \quad C \in \mathcal{B} \)

\[S_0 = \ker(C) \subseteq F^n \quad \xrightarrow{B} \quad T_1 = \mathcal{B}(S_0) := \text{span}\{ B_1(S_0) \cup \ldots \cup B_m(S_0) \} \subseteq \text{Im}(C) \]

\[S_1 = C^{-1}(T_1) := \{ v \in F^n \mid C(v) \in T_1 \} \]
Linear algebraic alternating path method

\[\mathcal{B} = \text{span} \{ B_1, \ldots, B_m \} \subseteq M(n, F), \quad C \in \mathcal{B} \]

\[S_0 = \ker(C) \subseteq F^n \quad \Rightarrow \quad T_1 = \mathcal{B}(S_0) := \text{span} \{ B_1(S_0) U \ldots U B_m(S_0) \} \subseteq \text{Im}(C) \]

\[S_1 = C^{-1}(T_1) := \{ v \in F^n \mid C(v) \in T_1 \} \]

\[T_2 = \mathcal{B}(S_1) \]

- Check if \(T_2 \notin \text{im}(C) \).
- Yes: cannot find \(D \) of larger rank in \(\mathcal{B} \) but "do so in \(\mathcal{B} \otimes M(n, F) \)
- No: continue
Linear algebraic alternating path method

* \(\mathcal{B} = \text{span}\{B_1, \ldots, B_m\} \subseteq M(n, F). \quad C \in \mathcal{B} \)

\[S_0 = \ker(C) \subseteq F^n \]

\[T_1 = \mathcal{B}(S_0) := \text{span}\{B_1(S_0) \cup \ldots \cup B_m(S_0)\} \subseteq F^n \]

\[S_1 = C^{-1}(T_1) := \{ u \in F^n \mid C(u) \in T_1 \} \]

\[T_2 = \mathcal{B}(S_1) \]

STOP if \(T_{i+1} = T_i \leq \text{im}(C) \)

Lemma [Ivanyos-Karpinski-Q-Santha] \(\mathcal{B} \) has a shrunk subspace of gap corank\(C\) iff \(\exists i, \ T_{i+1} = T_i \leq \text{im}(C) \)
Recap for the NC-RIT story

* Start with “G has property P iff B_G has property Q”

* Go on to examine the problem of testing “B has property Q”

N.B. This is just one way of arriving at NC-RIT
Recap for the NC-RIT story

* Start with “G has property P iff B_G has property Q”

* Go on to examine the problem of testing “B has property Q”

* Inspired by techniques for solving the problem of testing “G has property P”

 2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
 3. [Hamada-Hirai] submodular optimisation
Recap for the NC-RIT story

* Start with “G has property P iff B_G has property Q”

* Go on to examine the problem of testing “B has property Q”

* Inspired by techniques for solving the problem of testing “G has property P”
 2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
 3. [Hamada-Hirai] submodular optimisation

* The situation is usually more complicated for testing “B has property Q”
 - The discrepancy between “full-rank matrices” and “shrunk subspaces”
Graph isomorphism versus matrix space equivalence

Def. $G_1 = (LUR, F_1)$ and $G_2 = (LUR, F_2)$, $L = R = [n]$, $F_1, F_2 \subseteq L \times R$

are isomorphic, if $\exists \sigma, \pi \in S_n$, such that $(i, j) \in F_1 \iff (\sigma(i), \pi(j)) \in F_2$

* Bipartite graph iso is as hard as general graph iso
Graph isomorphism versus matrix space equivalence

Def. $G_1 = (LUR, F_1)$ and $G_2 = (LUR, F_2)$, $L = R = [n]$, $F_1, F_2 \subseteq L \times R$ are isomorphic, if $\exists \sigma, \pi \in S_n$, such that $(i, j) \in F_1 \iff (\sigma(i), \pi(j)) \in F_2$

* $A_1, A_2 \in M(n, F)$ are equivalent, if $\exists L, R \in GL(n, F)$, $A_1 = LA_2 R$

Def. Matrix spaces $B_1, B_2 \subseteq M(n, F)$ are equivalent, if $\exists L, R \in GL(n, F)$ such that $B_1 = LB_2 R := \{LBR | B \in B_2\}$
Graph isomorphism versus matrix space equivalence

Def. \(G_1 = (LUR, F_1) \) and \(G_2 = (LUR, F_2) \), \(L = R = [n] \), \(F_1, F_2 \subseteq L \times R \) are isomorphic, if \(\exists \sigma, \pi \in S_n \), such that \((i, j) \in F_1 \iff (\sigma(i), \pi(j)) \in F_2 \).

* \(A_1, A_2 \in M(n, F) \) are equivalent, if \(\exists L, R \in GL(n, F) \), \(A_1 = L A_2 R \).

Def. Matrix spaces \(B_1, B_2 \subseteq M(n, F) \) are equivalent, if \(\exists L, R \in GL(n, F) \) such that \(B_1 = LB_2 R := \{ LBR \mid B \in B_2 \} \).

Prop. [Li-Q-Wigderson-Wigderson-Zhang] (N.B. adapted from Prop 6.2) there

\(G \) and \(H \) are isomorphic \(\iff \) \(B_G \) and \(B_H \) are equivalent.
Matrix space equivalence

Prop. [Li-Q-Wigderson-Wigderson-Zhang] N.B. This gives a poly-time reduction from \text{GraphIso} to \text{TensorIso}

\[G \text{ and } H \text{ are isomorphic } \iff \mathcal{B}_G \text{ and } \mathcal{B}_H \text{ are equivalent} \]

* Matrix space equivalence as a proper generalisation of graph isomorphism

* Next step: matrix space equivalence for \textit{general} matrix spaces
Matrix space equivalence

Prop. [Li-Q-Wigderson-Wigderson-Zhang]

G and H are isomorphic $\iff B_G$ and B_H are equivalent

* Matrix space equivalence as a proper generalisation of graph isomorphism

* Next step: matrix space equivalence for general matrix spaces

* Results inspired by the study of graph isomorphism?
 - [Li-Q]: individualisation and refinement as used in [Babai-Erdős-Selkow]

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with GI
 - A gadget design in analogy with some method from colored graph isomorphism
Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called **Tensor Isomorphism** (TI) in analogy with GI

* \(\mathcal{B} = \text{span}\{B_1, \ldots, B_m\} \subseteq M(n, \mathbb{F}) \)

\[
\mathcal{T}_\mathcal{B} = T_{B_1} \otimes \cdots \otimes T_{B_m} \in \mathbb{F}^n \otimes \mathbb{F}^n \otimes \cdots \otimes \mathbb{F}^m
\]
Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called **Tensor Isomorphism (TI)** in analogy with GI

\[\mathcal{B} = \text{span}\{B_1, \ldots, B_m\} \subseteq M(n, F) \]

\[B, B' \subseteq M(n, F) \text{ are equivalent} \]

\[T_B = \begin{pmatrix} B_1 & \cdots & B_m \end{pmatrix} \in F^n \otimes F^n \otimes F^m \]

\[T_B, T_{B'} \text{ are isomorphic, i.e.} \]

\[\text{in the same orbit under} \]

\[\text{GL}(n, F) \times \text{GL}(n, F) \times \text{GL}(m, F). \]
Matrix space equivalence as tensor isomorphism

* $\mathcal{B} = \text{span}\{B_1, \ldots, B_m\} \subseteq M(n, F)$

$B, C \subseteq M(n, F)$ are equivalent

$T_B = \begin{array}{cccc} B_1 & \cdots & B_m \\ n & \vdots & \vdots \\ n & \end{array} \in F^n \otimes F^n \otimes F^m

T_{B, C}$ are isomorphic, i.e. in the same orbit under $GL(n, F) \times GL(n, F) \times GL(m, F)$.

Def. [Grochow-Q] The complexity class TI consists of problems polynomial-time reducible to the matrix space equivalence $= 3$-tensor isomorphism problem.

* Wishful thinking: just as GI captures isomorphism problems for combinatorial structures, TI captures isomorphism problems for algebraic structures.
Actions on 3-way arrays

* $R, S, T \in \text{GL}(n, \mathbb{F})$

$A = (a_{i,j,k})_{i,j,k \in \{1, \ldots, n\}}$
Actions on 3-way arrays

* $R, S, T \in \text{GL}(n, \mathbb{F})$

$A = (a_{i,j,k}) \quad i, j, k \in \{1, \ldots, n\}$

$\star U, V, W \cong \mathbb{F}^n$

$T, R \text{ Tensor}$

$t : U \times V \times W \to \mathbb{F}$

$T, R \text{ Bilinear map}$

$f : U \times U \to W$

$R, R^{-1} \text{ Algebra}$

$a : U \times U \to U$

$R \text{ Trilinear Form}$

$c : U \times U \times U \to \mathbb{F}$
3-way arrays are versatile

* Under different actions, 3-way arrays encode tensors, bilinear maps, algebras, and trilinear forms

* Putting some structural restrictions we get more

1. **Symmetric** bilinear maps $f: U \times U \to V$: systems of quadratic forms

2. **Skew-symmetric** bilinear maps over $\text{GF}(p)$: p-groups of class 2 and exponent p

3. **Symmetric** trilinear forms over F, char(F) not 2 or 3: cubic forms

4. **Associativity, Jacobi** conditions...: associative algebras or Lie algebras
Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q]
The following problems are TI-complete:
- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras
TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q]
The following problems are TI-complete:
- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras

* How about d-tensors for $d>3$? Note that 2-tensor isomorphism (matrix equivalence) is easy.

Theorem. [Grochow-Q] k-tensor isomorphism reduces to 3-tensor isomorphism.

* In the spirit that 3SAT is NP-complete, and 2SAT is in P.
Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism
Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

- Star gadgets:
 Degrees of red vertices are large enough so blue vertices cannot be mapped to them
One example of the reductions

Goal. Given $f, g : U \times V \times W \to \mathbb{F}$, construct $\hat{f}, \hat{g} : S \times S \to T$, skew-symmetric such that $f \sim g$ under $GL(U) \times GL(V) \times GL(W)$ iff $\hat{f} \sim \hat{g}$ under $GL(S) \times GL(T)$

Construction.

- $\dim(U) = e$
- $\dim(V) = n$
- $\dim(W) = m$

$S = U \oplus V$

$T = W$

(Entries outside the orange region are 0.)
From tensors to bilinear maps

Construction

\[
\begin{align*}
\dim(U) &= l \\
\dim(V) &= n \\
\dim(W) &= m
\end{align*}
\]

\[S = U \oplus V\]
\[T = W\]

(Entries outside the orange region are 0.)

* This construction does not work because \(\text{GL}(S)\) may mix \(U\) with \(V\). So we need:
From tensors to bilinear maps

Construction

* This construction does not work because GL(S) may mix U with V. So we need:

\[
\dim(U) = e
\]

\[
\dim(V) = n
\]

\[
\dim(W) = m
\]

\[\downarrow\]

\[S = U \oplus V\]

\[T = W\]

(Entries outside the orange region are 0.)
More correspondences, more questions

* A directed graph $G = (V, F) \Rightarrow B_G = \text{span}\{E_{i,j} \mid (i, j) \in F\} \subseteq M(n, F)$.

$V = [n]$, $F \subseteq V \times V$

Prop. [Li-Q-Wigderson-Wigderson-Zhang]
G is acyclic $\iff B_G$ contains only nilpotent matrices

* Not so surprising, but...
More correspondences, more questions

* A directed graph $G = (V, F) \Rightarrow B_G = \text{span}\{E_{i,j} | (i,j) \in F\} \subseteq M(n, F)$.
 $V = \{1, \ldots, n\}, \ F \subseteq V \times V$

Prop. [Li-Q-Wigderson-Wigderson-Zhang]

G is acyclic $\iff B_G$ contains only nilpotent matrices

Prop. [ibid.] Max size over acyclic subgraphs in G

= Max dim over nilpotent subspaces in B_G

* Generalise Gerstenhaber’s result:

 $\text{max dim of nilpotent matrix spaces in } M(n, F) = \binom{n}{2}$
Matrix space nilpotency testing

Def. (Matrix space nilpotency testing) Given a linear basis of a matrix space B, decide if B contains only nilpotent matrices.

* Given a **symbolic matrix** S of size n, decide if S^n is the zero matrix.

* Reduces to SDIT, which is equivalent to asking whether the $(1, 1)$ entry of S^n is 0.

* The naturally associated group action is matrix conjugation (instead of left-right) on matrix tuples. The nullcone problem, rank-1 spanned setting, etc. are easier.

* SDIT reduces to computing the nilpotency index [Li-Q-Wigderson-Wigderson-Zhang]
Brief summary

* A pattern of the stories:
 1. Start with “G has property P iff B_G has property Q”
 2. Ask the question “B has property Q”
 3. Devise linear algebraic analogues of graph-theoretic methods

* Shrunk subset vs shrunk subspace, graph isomorphism vs tensor isomorphism

* Alternating paths vs Wong sequences, graph coloring gadgets vs rank gadgets

* Will matrix space nilpotency test be the next target?
Thank you!

And questions please :)