
Copyright © 2005 C.J. Date and Hugh Darwen page 4.1

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Chapter 4

T h e T h i r d M a n i f e s t o

┌──────────────────────────────┐
│ RM Prescriptions │
│ RM Proscriptions │
│ OO Prescriptions │
│ OO Proscriptions │
│ RM Very Strong Suggestions │
│ OO Very Strong Suggestions │
│ Recent Manifesto changes │
└──────────────────────────────┘

RM PRESCRIPTIONS

1. A scalar data type (scalar type for short) is a named, finite
set of scalar values (scalars for short). Given an arbitrary
pair of distinct scalar types named T1 and T2, respectively,
with corresponding sets of scalar values S1 and S2,
respectively, the names T1 and T2 shall be distinct and the
sets S1 and S2 shall be disjoint; in other words, two scalar
types shall be equal──i.e., the same type──if and only if they
have the same name (and therefore the same set of values). D
shall provide facilities for users to define their own scalar
types (user-defined scalar types); other scalar types shall be
provided by the system (built-in or system-defined scalar
types). D shall also provide facilities for users to destroy
user-defined scalar types. The system-defined scalar types
shall include type boolean (containing just two values, here
denoted TRUE and FALSE), and D shall support all four monadic
and 16 dyadic logical operators, directly or indirectly, for
this type.

2. All scalar values shall be typed──i.e., such values shall
always carry with them, at least conceptually, some
identification of the type to which they belong.

3. A scalar operator is an operator that, when invoked, returns a
scalar value (the result of that invocation). D shall provide
facilities for users to define and destroy their own scalar
operators (user-defined scalar operators). Other scalar
operators shall be provided by the system (built-in or system-
defined scalar operators). Let Op be a scalar operator. Then:

a. Op shall be read-only, in the sense that invoking it shall
cause no variables to be updated other than ones that are
purely local to Op.

b. Every invocation of Op shall denote a value ("produce a
result") of the same type, the result type──also called the
declared type──of Op. The definition of Op shall include a

Copyright © 2005 C.J. Date and Hugh Darwen page 4.2

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

specification of the declared type of Op. That type shall
be nonempty.

c. The definition of Op shall include a specification of the
type of each parameter to Op, the declared type of that
parameter. That type shall be nonempty. If parameter P is
of declared type T, then, in every invocation of Op, the
argument A that corresponds to P in that invocation shall
also be of type T, and that argument A shall be effectively
assigned to P. Note: The prescriptions of this paragraph
c. shall also apply if Op is an update operator instead of a
read-only operator (see below).

It is convenient to deal with update operators here as well,
despite the fact that such operators are not scalar (nor are
they nonscalar──in fact, they are not typed at all). An update
operator is an operator that, when invoked, is allowed to
update at least one variable that is not purely local to that
operator. Let V be such a variable. If the operator accesses
V via some parameter P, then that parameter P is subject to
update. D shall provide facilities for users to define and
destroy their own update operators (user-defined update
operators). Other update operators shall be provided by the
system (built-in or system-defined update operators). Let Op
be an update operator. Then:

d. No invocation of Op shall denote a value ("produce a
result").

e. The definition of Op shall include a specification of which
parameters to Op are subject to update. If parameter P is
subject to update, then, in every invocation of Op, the
argument A that corresponds to P in that invocation shall be
a variable specifically, and, on completion of the execution
of Op caused by that invocation, the final value assigned to
P during that execution shall be effectively assigned to A.

4. Let T be a nonempty scalar type, and let v be an appearance in
some context of some value of type T. By definition, v has
exactly one physical representation and one or more possible
representations (at least one, because there is obviously
always one that is the same as the physical representation).
Physical representations for values of type T shall be
specified by means of some kind of storage structure definition
language and shall not be visible in D. As for possible
representations:

a. If T is user-defined, then at least one possible
representation for values of type T shall be declared and
thus made visible in D. For each possible representation PR
for values of type T that is visible in D, a selector
operator S, of declared type T, shall be provided with the
following properties:

Copyright © 2005 C.J. Date and Hugh Darwen page 4.3

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

1. There shall be a one-to-one correspondence between the
parameters of S and the components of PR (see RM
Prescription 5). For definiteness, assume the parameters
of S and the components of PR each constitute an ordered
list of n elements (n ≥ 0), such that the ith element in
the list of parameters corresponds to the ith element in
the list of components; then the declared types of the
ith elements in the two lists shall be the same (i = 1,
2, ..., n).

2. Every value of type T shall be produced by some
invocation of S in which every argument is a literal.

3. Every successful invocation of S shall produce some value
of type T.

b. If T is system-defined, then zero or more possible
representations for values of type T shall be declared and
thus made visible in D. A possible representation PR for
values of type T that is visible in D shall behave in all
respects as if T were user-defined and PR were a declared
possible representation for values of type T. If no
possible representation for values of type T is visible in
D, then at least one selector operator S, of declared type
T, shall be provided with the following properties:

1. Every argument to every invocation of S shall be a
literal.

2. Every value of type T shall be produced by some
invocation of S.

3. Every successful invocation of S shall produce some value
of type T.

5. Let some declared possible representation PR for values of
scalar type T be defined in terms of components C1, C2, ..., Cn
(n ≥ 0), each of which has a name and a declared type. Let v
be a value of type T, and let PR(v) denote the possible
representation corresponding to PR for that value v. Then
PR(v) shall be exposed──i.e., a set of read-only and update
operators shall be provided such that:

a. For all such values v and for all i (i = 1, 2, ..., n), it
shall be possible to "retrieve" (i.e., read the value of)
the Ci component of PR(v). The read-only operator that
provides this functionality shall have declared type the
same as that of Ci.

b. For all variables V of declared type T and for all i (i = 1,
2, ..., n), it shall be possible to update V in such a way
that if the values of V before and after the update are v
and v' respectively, then the possible representations

Copyright © 2005 C.J. Date and Hugh Darwen page 4.4

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

corresponding to PR for v and v' (i.e., PR(v) and PR(v'),
respectively) differ in their Ci components.

Such a set of operators shall be provided for each possible
representation declared for values of type T.

6. D shall support the TUPLE type generator. That is, given some
heading {H} (see RM Prescription 9), D shall support use of the
generated type TUPLE{H} as a basis for defining (or, in the
case of values, selecting):

a. Values of that type (see RM Prescription 9)

b. Variables of that type (see RM Prescription 12)

c. Attributes of that type (see RM Prescriptions 9 and 10)

d. Components of that type within declared possible
representations (see RM Prescription 5)

e. Read-only operators of that type (see RM Prescription 20)

f. Parameters of that type to user-defined operators (see RM
Prescriptions 3 and 20)

The generated type TUPLE{H} shall be referred to as a tuple
type, and the name of that type shall be, precisely, TUPLE{H}.
The terminology of degree, attributes, and heading introduced
in RM Prescription 9 shall apply, mutatis mutandis, to that
type, as well as to values and variables of that type (see RM
Prescription 12). Tuple types TUPLE{H1} and TUPLE{H2} shall be
equal if and only if {H1} = {H2}. The applicable operators
shall include operators analogous to the RENAME, project,
EXTEND, and JOIN operators of the relational algebra (see RM
Prescription 18), together with tuple assignment (see RM
Prescription 21) and tuple comparisons (see RM Prescription
22); they shall also include (a) a tuple selector operator (see
RM Prescription 9), (b) an operator for extracting a specified
attribute value from a specified tuple (the tuple in question
might be required to be of degree one──see RM Prescription 9),
and (c) operators for performing tuple "nesting" and
"unnesting."

7. D shall support the RELATION type generator. That is, given
some heading {H} (see RM Prescription 9), D shall support use
of the generated type RELATION{H} as the basis for defining
(or, in the case of values, selecting):

a. Values of that type (see RM Prescription 10)

b. Variables of that type (see RM Prescription 13)

c. Attributes of that type (see RM Prescriptions 9 and 10)

d. Components of that type within declared possible
representations (see RM Prescription 5)

e. Read-only operators of that type (see RM Prescription 20)

Copyright © 2005 C.J. Date and Hugh Darwen page 4.5

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

f. Parameters of that type to user-defined operators (see RM
Prescriptions 3 and 20)

The generated type RELATION{H} shall be referred to as a
relation type, and the name of that type shall be, precisely,
RELATION{H}. The terminology of degree, attributes, and
heading introduced in RM Prescription 9 shall apply, mutatis
mutandis, to that type, as well as to values and variables of
that type (see RM Prescription 13). Relation types
RELATION{H1} and RELATION{H2} shall be equal if and only if
{H1} = {H2}. The applicable operators shall include the usual
operators of the relational algebra (see RM Prescription 18),
together with relational assignment (see RM Prescription 21)
and relational comparisons (see RM Prescription 22); they shall
also include (a) a relation selector operator (see RM
Prescription 10), (b) an operator for extracting the sole tuple
from a specified relation of cardinality one (see RM
Prescription 10), and (c) operators for performing relational
"nesting" and "unnesting."

8. D shall support the equality comparison operator "=" for every
type T. Let Op be an operator with a parameter P, let P be
such that the argument corresponding to P in some invocation of
Op is allowed to be of type T, and let v1 and v2 be values of
type T. Then v1 = v2 shall evaluate to TRUE if and only if,
for all such operators Op, two successful invocations of Op
that are identical in all respects except that the argument
corresponding to P is v1 in one invocation and v2 in the other
are indistinguishable in their effect.

9. A heading {H} is a set of ordered pairs or attributes of the
form <A,T>, where:

a. A is the name of an attribute of {H}. No two distinct pairs
in {H} shall have the same attribute name.

b. T is the name of the declared type of attribute A of {H}.

The number of pairs in {H}──equivalently, the number of
attributes of {H}──is the degree of {H}.

Now let t be a set of ordered triples <A,T,v>, obtained from
{H} by extending each ordered pair <A,T> to include an
arbitrary value v of type T, called the attribute value for
attribute A of t. Then t is a tuple value (tuple for short)
that conforms to heading {H}; equivalently, t is of the
corresponding tuple type (see RM Prescription 6). The degree
of that heading {H} shall be the degree of t, and the
attributes and corresponding types of that heading {H} shall be
the attributes and corresponding declared attribute types of t.
Given a heading {H}, a selector operator, of type TUPLE{H},
shall be available for selecting an arbitrary tuple conforming
to {H}; every such tuple shall be produced by some invocation

Copyright © 2005 C.J. Date and Hugh Darwen page 4.6

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

of that selector in which every argument is a literal, and
every successful invocation of that selector shall produce some
such tuple.

10. A relation value r (relation for short) consists of a heading
and a body, where:

a. The heading of r shall be a heading {H} as defined in RM
Prescription 9; r conforms to that heading (equivalently, r
is of the corresponding relation type──see RM Prescription
7). The degree of that heading {H} shall be the degree of
r, and the attributes and corresponding types of that
heading {H} shall be the attributes and corresponding
declared attribute types of r.

b. The body of r shall be a set B of tuples, all having that
same heading {H}. The cardinality of that body shall be the
cardinality of r.

Given a heading {H}, a selector operator, of type
RELATION{H}, shall be available for selecting an arbitrary
relation conforming to {H}; every such relation shall be
produced by some invocation of that selector in which every
argument is a literal, and every successful invocation of that
selector shall produce some such relation.

11. D shall provide facilities for users to define scalar
variables. Each scalar variable shall be named and shall have
a specified nonempty (scalar) declared type. Let scalar
variable V be of declared type T; for so long as variable V
exists, it shall have a value that is of type T. Defining V
shall have the effect of initializing V to some value──either a
value specified explicitly as part of the operation that
defines V, or some implementation-defined value if no such
explicit value is specified.

12. D shall provide facilities for users to define tuple variables.
Each tuple variable shall be named and shall have a specified
nonempty declared type of the form TUPLE{H} for some heading
{H}. Let variable V be of declared type TUPLE{H}; then the
degree of that heading {H} shall be the degree of V, and the
attributes and corresponding types of that heading {H} shall be
the attributes and corresponding declared attribute types of V.
For so long as variable V exists, it shall have a value that is
of type TUPLE{H}. Defining V shall have the effect of
initializing V to some value──either a value specified
explicitly as part of the operation that defines V, or some
implementation-defined value if no such explicit value is
specified.

13. D shall provide facilities for users to define relation
variables (relvars for short)──both database relvars (i.e.,
relvars that are part of some database) and application relvars

Copyright © 2005 C.J. Date and Hugh Darwen page 4.7

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

(i.e., relvars that are local to some application). D shall
also provide facilities for users to destroy database relvars.
Each relvar shall be named and shall have a specified declared
type of the form RELATION{H} for some heading {H}. Let
variable V be of declared type RELATION{H}; then the degree of
that heading {H} shall be the degree of V, and the attributes
and corresponding types of that heading {H} shall be the
attributes and corresponding declared attribute types of V.
For so long as variable V exists, it shall have a value that is
of type RELATION{H}.

14. Database relvars shall be either real or virtual. A virtual
relvar V shall be a database relvar whose value at any given
time is the result of evaluating a certain relational
expression at that time; the relational expression in question
shall be specified when V is defined and shall mention at least
one database relvar. A real relvar shall be a database relvar
that is not virtual. Defining a real relvar V shall have the
effect of initializing V to some value──either a value
specified explicitly as part of the operation that defines V,
or an empty relation if no such explicit value is specified.

Application relvars shall be either public or private. A
public relvar shall be an application relvar that constitutes
the perception of the application in question of some portion
of some database. A private relvar shall be an application
relvar that is completely private to the application in
question and is not part of any database. Defining a private
relvar V shall have the effect of initializing V to some
value──either a value specified explicitly as part of the
operation that defines V, or an empty relation if no such
explicit value is specified.

15. By definition, every relvar shall have at least one candidate
key. At least one such key shall be defined, either explicitly
or implicitly, at the time the relvar in question is defined,
and it shall not be possible to destroy all of the candidate
keys of a given relvar (other than by destroying the relvar
itself).

16. A database shall be a named container for relvars; the content
of a given database at any given time shall be a set of
database relvars. The necessary operators for defining and
destroying databases shall not be part of D (in other words,
defining and destroying databases shall be done "outside the D
environment").

17. Each transaction shall interact with exactly one database.
However, distinct transactions shall be able to interact with
distinct databases, and distinct databases shall not
necessarily be disjoint. Also, D shall provide facilities for

Copyright © 2005 C.J. Date and Hugh Darwen page 4.8

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

a transaction to define new relvars, or destroy existing ones,
within its associated database (see RM Prescription 13).

18. D shall support the usual operators of the relational algebra
(or some logical equivalent thereof). Specifically, it shall
support, directly or indirectly, at least the operators RENAME,
restrict (WHERE), project, JOIN, UNION, INTERSECT, MINUS,
DIVIDEBY, EXTEND, SUMMARIZE, GROUP, and UNGROUP. All such
operators shall be expressible without excessive
circumlocution. D shall support type inference for relation
types, whereby the type of the result of evaluating an
arbitrary relational expression shall be well defined and known
to both the system and the user.

19. Relvar names and relation selector invocations shall both be
valid relational expressions. Recursion shall be permitted in
relational expressions.

20. D shall provide facilities for users to define and destroy
their own tuple operators (user-defined tuple operators) and
relational operators (user-defined relational operators).
Paragraphs a.-c. from RM Prescription 3 shall apply, mutatis
mutandis.

21. D shall support the assignment operator ":=" for every type T.
The assignment shall be referred to as a scalar, tuple, or
relation (or relational) assignment according as T is a scalar,
tuple, or relation type. Let V and v be a variable and a
value, respectively, of the same type. After assignment of v
to V, the equality comparison V = v shall evaluate to TRUE (see
RM Prescription 8). Furthermore, all variables other than V
shall remain unchanged, apart possibly from variables defined
in terms of V or variables in terms of which V is defined or
both.

D shall also support a multiple form of assignment, in which
several individual assignments shall be performed as a single
operation. Let MA be the multiple assignment

A1 , A2 , ... , An ;

(where A1, A2, ..., An are individual assignments, each
assigning to exactly one target variable, and the semicolon
marks the overall end of the operation). Then the semantics of
MA shall be defined by the following pseudocode (Steps a.-d.):

a. For i := 1 to n, expand any syntactic shorthands involved in
Ai. After all such expansions, let MA take the form

V1 := X1 , V2 := X2 , ... , Vz := Xz ;

for some z ≥ n, where Vi is the name of some variable not
defined in terms of any others and Xi is an expression of
declared type the same as that of Vi.

Copyright © 2005 C.J. Date and Hugh Darwen page 4.9

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

b. Let p and q (1 ≤ p < q ≤ z) be such that Vp and Vq are
identical and there is no r (r < p or p < r < q) such that
Vp and Vr are identical. Replace Aq in MA by an assignment
of the form

Vq := WITH Xp AS Vq : Xq

and remove Ap from MA. Repeat this process until no such
pair p and q remains. Let MA now consist of the sequence

U1 := Y1 , U2 := Y2 , ... , Um := Ym ;

where each Ui is some Vj (1 ≤ i ≤ j ≤ m ≤ z).

c. For i := 1 to m, evaluate Yi. Let the result be yi.

d. For i := 1 to m, assign yi to Ui.

Note: Step b. of the foregoing pseudocode makes use of the
WITH construct of Tutorial D. For further explanation, see
Chapter 5.

22. D shall support certain comparison operators, as follows:

a. The operators for comparing scalars shall include "=", "g",
and (for ordinal types) "<", ">", etc.

b. The operators for comparing tuples shall include "=" and "g"
and shall not include "<", ">", etc.

c. The operators for comparing relations shall include "=",
"g", "`" ("is a subset of"), and "r" ("is a superset of")
and shall not include "<", ">", etc.

d. The operator "∈ " for testing membership of a tuple in a
relation shall be supported.

In every case mentioned except "∈ " the comparands shall be of
the same type; in the case of "∈ " they shall have the same
heading. Note: Support for "=" for every type is in fact
required by RM Prescription 8.

23. D shall provide facilities for defining and destroying
integrity constraints (constraints for short). Let C be a
constraint; C can be thought of as a boolean expression (though
it might not be explicitly formulated as such), and it shall be
satisfied if and only if that boolean expression evaluates to
TRUE. No user shall ever see a state of affairs in which C is
not satisfied. There shall be two kinds of constraints:

a. A type constraint shall specify the set of values that
constitute a given type.

b. A database constraint shall specify that values of a given
set of database relvars taken in combination shall be such
that a given boolean expression (which shall mention no
variables other than the database relvars in question)

Copyright © 2005 C.J. Date and Hugh Darwen page 4.10

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

evaluates to TRUE. Insofar as feasible, D shall support
constraint inference for database constraints, whereby the
constraints that apply to the result of evaluating an
arbitrary relational expression shall be well defined and
known to both the system and the user.

24. Let DB be a database, let DBC1, DBC2, ..., DBCn be all of the
database constraints defined for DB (see RM Prescription 23),
and let DBC be any boolean expression that is logically
equivalent to

(DBC1) AND (DBC2) AND ... AND (DBCn) AND TRUE

Then DBC is the total database constraint for DB.

25. Every database shall include a set of database relvars that
constitute the catalog for that database. D shall provide
facilities for assigning to relvars in the catalog.

26. D shall be constructed according to well-established principles
of good language design.

RM PROSCRIPTIONS

1. D shall include no concept of a "relation" whose attributes are
distinguishable by ordinal position. Instead, for every
relation r expressible in D, the attributes of r shall be
distinguishable by name.

2. D shall include no concept of a "relation" whose tuples are
distinguishable by ordinal position. Instead, for every
relation r expressible in D, the tuples of r shall be
distinguishable by value.

3. D shall include no concept of a "relation" containing two
distinct tuples t1 and t2 such that the comparison "t1 = t2"
evaluates to TRUE. It follows that (as already stated in RM
Proscription 2), for every relation r expressible in D, the
tuples of r shall be distinguishable by value.

4. D shall include no concept of a "relation" in which some
"tuple" includes some "attribute" that does not have a value.

5. D shall not forget that relations with no attributes are
respectable and interesting, nor that candidate keys with no
components are likewise respectable and interesting.

6. D shall include no constructs that relate to, or are logically
affected by, the "physical" or "storage" or "internal" levels
of the system.

7. D shall support no tuple-at-a-time operations on relvars or
relations.

8. D shall not include any specific support for "composite" or
"compound" attributes, since such functionality can more

Copyright © 2005 C.J. Date and Hugh Darwen page 4.11

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

cleanly be achieved, if desired, through the type support
already prescribed.

9. D shall include no "domain check override" operators, since
such operators are both ad hoc and unnecessary.

10. D shall not be called SQL.

OO PRESCRIPTIONS

1. D shall permit compile-time type checking.

2. If D supports type inheritance, then such support shall conform
to the inheritance model defined in Part IV of this book.

3. D shall be computationally complete. That is, D may support,
but shall not require, invocation from so-called "host
programs" written in languages other than D. Similarly, D may
support, but shall not require, the use of other languages for
implementation of user-defined operators.

4. Transaction initiation shall be performed only by means of an
explicit "begin transaction" operator. Transaction termination
shall be performed only by means of a "commit" or "rollback"
operator; commit must always be explicit, but rollback can be
implicit (if and only if the transaction fails through no fault
of its own). If transaction TX terminates with commit ("normal
termination"), changes made by TX to the applicable database
shall be committed. If transaction TX terminates with rollback
("abnormal termination"), changes made by TX to the applicable
database shall be rolled back.

5. D shall support nested transactions──i.e., it shall permit a
parent transaction TX to initiate a child transaction TX'
before TX itself has terminated, in which case:

a. TX and TX' shall interact with the same database (as is in
fact required by RM Prescription 17).

b. Whether TX shall be required to suspend execution while TX'
executes shall be implementation-defined. However, TX shall
not be allowed to terminate before TX' terminates; in other
words, TX' shall be wholly contained within TX.

c. Rollback of TX shall include the rolling back of TX' even if
TX' has terminated with commit. In other words, "commit" is
always interpreted within the parent context (if such
exists) and is subject to override by the parent transaction
(again, if such exists).

6. Let AggOp be an aggregate operator, such as SUM. If the
argument to AggOp happens to be empty, then:

a. If AggOp is essentially just shorthand for some iterated
scalar dyadic operator Op (the dyadic operator is "+" in the
case of SUM), and if an identity value exists for Op (the

Copyright © 2005 C.J. Date and Hugh Darwen page 4.12

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

identity value is 0 in the case of "+"), then the result of
that invocation of AggOp shall be that identity value.

b. Otherwise, the result of that invocation of AggOp shall be
undefined.

OO PROSCRIPTIONS

1. Relvars are not domains.

2. No database relvar shall include an attribute of type pointer.

RM VERY STRONG SUGGESTIONS

1. D should provide a mechanism according to which values of some
specified candidate key (or certain components thereof) for
some specified relvar are supplied by the system. It should
also provide a mechanism according to which an arbitrary
relation can be extended to include an attribute whose values
(a) are unique within that relation (or within certain
partitions of that relation), and (b) are once again supplied
by the system.

2. D should include some declarative shorthand for expressing
referential constraints (also known as foreign key
constraints).

3. Let RX be a relational expression. By definition, RX can be
thought of as designating a relvar, R say──either a user-
defined relvar (if RX is just a relvar name) or a system-
defined relvar (otherwise). It is desirable, though not always
entirely feasible, for the system to be able to infer the
candidate keys of R, such that (among other things):

a. If RX constitutes the defining expression for some virtual
relvar R', then those inferred candidate keys can be checked
for consistency with the candidate keys explicitly defined
for R' and──assuming no conflict──become candidate keys for
R'.

b. Those inferred candidate keys can be included in the
information about R that is made available (in response to a
"metaquery") to a user of D.

D should provide such functionality, but without any guarantee
(a) that such inferred candidate keys are not proper supersets
of actual candidate keys, or (b) that such an inferred
candidate key is discovered for every actual candidate key.

4. D should support transition constraints──i.e., constraints on
the transitions that a given database can make from one value
to another.

Copyright © 2005 C.J. Date and Hugh Darwen page 4.13

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

5. D should provide some shorthand for expressing quota queries.
It should not be necessary to convert the relation concerned
into (e.g.) an array in order to formulate such a query.

6. D should provide some shorthand for expressing the generalized
transitive closure operation, including the ability to specify
generalized concatenate and aggregate operations.

7. D should provide some means for users to define their own
generic operators, including in particular generic relational
operators.

8. SQL should be implementable in D──not because such
implementation is desirable in itself, but so that a painless
migration route might be available for current SQL users. To
this same end, existing SQL databases should be convertible to
a form that D programs can operate on without error.

OO VERY STRONG SUGGESTIONS

1. Some level of type inheritance should be supported (in which
case, see OO Prescription 2).

2. Operator definitions should be logically distinct from the
definitions of the types of their parameters and results, not
"bundled in" with those latter definitions (though the
operators required by RM Prescriptions 4, 5, 8, and 21 might be
exceptions in this regard).

3. D should support the concept of single-level storage.

RECENT MANIFESTO CHANGES

There are a number of differences between the Manifesto as defined
in the present chapter and the version documented in this book's
predecessor (reference [83]). For the benefit of readers who might
be familiar with that earlier version, we summarize the main
differences here.

• RM Prescription 1 has been simplified and corrected. In
particular, (a) the requirement that values and variables of
type T be operable upon solely by means of operators defined
for type T has been deleted, since it was tautologous; (b) the
references to RM Prescriptions 4 and 5 have been deleted, since
they were redundant.

• Type truth value has been renamed type boolean, and the truth
values true and false have been renamed TRUE and FALSE,
respectively.

• RM Prescription 3 has been restructured to make it clear that
scalar operators are read-only by definition, while update
operators have no type at all but can update variables
(arguments in particular) of any type. Paragraph a. outlaws

Copyright © 2005 C.J. Date and Hugh Darwen page 4.14

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

side effects on the part of read-only operators. Paragraph b.
requires result types to be nonempty. Paragraph c. requires
parameter types to be nonempty. Paragraph e. explains the
semantics of parameters that are subject to update in terms of
effective assignment instead of (as previously) in terms of
passing by reference vs. passing by value.

• RM Prescription 4 now refers explicitly to nonempty types. It
allows empty possreps. Also, "actual" representations are now
called physical representations, and the requirement that
declared possreps be defined as part of the pertinent type
definition (instead of, possibly, elsewhere) has been deleted.

• Several omissions to do with selectors have been rectified:
Result types (and in fact the complete semantics) of tuple and
relation selectors are specified; scalar selector parameters
are explained; and possreps and selectors for system-defined
scalar types are specified. Also, result types are specified
for the read-only operators that access possrep components.

• The phrase "at most only" has been deleted from paragraph b. of
RM Prescription 5. (As it stood, that phrase rendered the
paragraph vacuous, while deleting "at most" but keeping "only"
would result in a prescription that could be awkward to
satisfy.)

• RM Prescriptions 6 and 7 have been extended to include tuple
and relation types as possible declared types for parameters
and read-only operators.

• RM Prescription 11 now defines tuples in terms of tuple types
instead of vice versa.

• Headings are now denoted {H} instead of H.

• The fact that (except for relvars) variables must have a
nonempty declared type is now stated explicitly, as is the fact
that they always have a value (there is no such thing as an
unitialized variable). Real relvars can now be explicitly
initialized.

• RM Prescription 14 has been expanded to include details of
application relvars.

• Candidate key specifications can now be implicit (for virtual
relvars in particular; previously we required them always to be
explicit, but that was just an oversight).

• RM Prescription 18 now mentions GROUP and UNGROUP.

• RM Prescription 20 has been generalized.

• RM Prescription 21 has been clarified (and, in the case of
multiple assignment, corrected).

Copyright © 2005 C.J. Date and Hugh Darwen page 4.15

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

• RM Prescription 23 now explicitly spells out the semantics of
type and database constraints (attribute and relvar constraints
as such are no longer mentioned).

• RM Prescription 24 has been revised and simplified.

• RM Very Strong Suggestion 8 has been deleted (and RM Very
Strong Suggestion 9 has been renumbered accordingly); very
strongly suggesting the "special values" approach to missing
information is (we now feel) to promote that approach more than
it merits.

• OO Very Strong Suggestion 1 has been abbreviated.

• OO Very Strong Suggestions 3 and 4 have been deleted (and OO
Very Strong Suggestion 5 has been renumbered accordingly); we
no longer believe there are any strong arguments in favor of
supporting additional "collection" type generators, over and
above RELATION.

In addition to all of the foregoing, almost all of the
prescriptions, proscriptions, and very strong suggestions have been
reworded (in some cases extensively). However, those revisions in
themselves are not intended to induce any changes in what is being
described.

*** End of Chapter 4 ***

