
311

Chapter 19

T h e I n h e r i t a n c e M o d e l

Ruinous inheritance
—Gaius: The Institutes

This chapter provides a precise and succinct definition of our model of type inheritance. It consists of a heavily
revised version of Chapter 13 from our book Databases, Types, and the Relational Model: The Third Manifesto,
3rd edition, Addison-Wesley, 2006 (“the Manifesto book” for short). Like that chapter, it mostly just states the
various Inheritance Model Prescriptions (IM Prescriptions) that go to make up that model; in other words, it
gives very little by way of discussion or further explanation. (It does give some, though—more than would be
required if we were aiming at nothing more than an abstract definition.) Note: In most respects, our inheritance
model is essentially just a logical consequence of our type theory (and that theory in turn is defined in The Third
Manifesto itself). It follows that support for The Third Manifesto, if it’s to be complete, must necessarily include
support for the inheritance model in particular.

It should be emphasized that there are significant differences between the version of the model defined
herein and the version defined in the Manifesto book. Reasons for those differences are explained in detail in
Chapter 20. Chapter 21 contains a set of proposals, partly but not wholly repeated from the Manifesto book, for
extending Tutorial D to support the model as defined herein.

Terminology: Throughout what follows, we use the symbols T and T' generically to refer to a pair of types
such that T' is a subtype of T (equivalently, such that T is a supertype of T'). Keep in mind that types T and T'
aren’t limited to being scalar types specifically, barring explicit statements to the contrary. Note too that distinct
types have distinct names; in particular, if T' is a proper subtype of T (see IM Prescription 4), then their names
will be distinct, even if that proper subtype T' of T isn’t a proper subset of T (see IM Prescription 2). Also, we
assume that all of the types under discussion, including the maximal and minimal types discussed in IM
Prescriptions 20 and 24, are members of some given set of types GST; in particular, the definitions of the terms
root type and leaf type in IM Prescription 6 are to be understood in the context of that set GST (though the only
explicit mention of that set is in IM Prescription 20, q.v.).

Wherever there’s a discrepancy between the present chapter and Chapter 13 of the Manifesto book, the
present chapter should be taken as superseding.

IM PRESCRIPTIONS

1. T and T' shall indeed both be types; i.e., each shall be a named, finite set of values.

2. Every value in T' shall be a value in T; i.e., the set of values constituting T' shall be a subset of the set of
values constituting T (in other words, if a value is of type T', it shall also be of type T). Note: In the case
of scalar types, at least, we would normally expect proper subtypes to be proper subsets (see IM
Prescription 4); in other words, we would normally expect there to exist, so long as T and T' are distinct, at
least one value of type T that is not of type T'. Certain of the prescriptions that follow have been designed
on the basis of this expectation; however, they do not formally depend on it.

3. T and T' shall not necessarily be distinct; i.e., every type shall be both a subtype and a supertype of itself.

4. If and only if types T and T' are distinct, T' shall be a proper subtype of T, and T shall be a proper
supertype of T'.

5. Every subtype of T' shall be a subtype of T. Every supertype of T shall be a supertype of T'.

312 Part III / Type Inheritance

6. If and only if T' is a proper subtype of T and there is no type that is both a proper supertype of T' and a
proper subtype of T, then T' shall be an immediate subtype of T, and T shall be an immediate supertype of
T'. A type that has some maximal type—see IM Prescriptions 20 and 24—as its sole immediate supertype
shall be a root type; a type that has some minimal type—again, see IM Prescriptions 20 and 24—as its sole
immediate subtype shall be a leaf type.

7. Types T1 and T2 shall be disjoint if and only if no value is of both type T1 and type T2. Types T1 and T2
shall overlap if and only if they are the same type or there exists at least one value that is common to both.
Distinct root types shall be disjoint.

8. Let T1, T2, ..., Tm (m 0), T, and T' be scalar types. Then:

a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, whenever a
given value is of at least one of types T1, T2, ..., Tm, it is also of type T. Further, that type T shall
be the most specific common supertype for T1, T2, ..., Tm if and only if no proper subtype of T is
also a common supertype for those types.

b. Type T' shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, whenever a given
value is of type T', it is also of each of types T1, T2, ..., Tm. Further, that type T' shall be the least
specific common subtype—also known as the intersection type or intersection subtype—for T1,
T2, ..., Tm if and only if no proper supertype of T' is also a common subtype for those types.

Note: Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to IM
Prescription 20) that a unique most specific common supertype T and a unique least specific common
subtype T' always exist. In the case of that particular common subtype T', moreover, it can also be shown
that whenever a given value is of each of types T1, T2, ..., Tm, it is also of type T' (hence the alternative
term intersection type). And it can further be shown that every scalar value has both a unique least specific
type and a unique most specific type (regarding the latter, see also IM Prescription 9).

9. Let scalar variable V be of declared type T. Because of value substitutability (see IM Prescription 16), the
value v assigned to V at any given time can have any nonempty subtype T' of type T as its most specific
type. We can therefore model V as a named ordered triple of the form <DT,MST,v>, where:

a. The name of the triple is the name of the variable, V.

b. DT is the name of the declared type for variable V.

c. MST is the name of the most specific type—also known as the current most specific type—for, or
of, variable V.

d. v is a value of most specific type MST—the current value for, or of, variable V.

We use the notation DT(V), MST(V), v(V) to refer to the DT, MST, v components, respectively, of this
model of scalar variable V. Note: Since v(V) uniquely determines MST(V)—see IM Prescription 8—the
MST component of V is strictly redundant. We include it for convenience.

Now let X be a scalar expression. By definition, X represents an invocation of some scalar operator
Op. Thus, the notation DT(V), MST(V), v(V) just introduced can be extended in an obvious way to refer to
the declared type DT(X), the current most specific type MST(X), and the current value v(X), respectively, of
X—where DT(X) is the declared type of the invocation of Op in question (see IM Prescription 17) and is
known at compile time, and MST(X) and v(X) refer to the result of evaluating X and are therefore not
known until run time (in general).

10. Let T be a regular type (see IM Prescription 20) and hence, necessarily, a scalar type, and let T' be a

Chapter 19 / The Inheritance Model 313

nonempty immediate subtype of T. Then the definition of T' shall specify a specialization constraint SC,
formulated in terms of T, such that a value shall be of type T' if and only if it is of type T and it satisfies
constraint SC. Note: We would normally expect there to exist at least one value of type T that does not
satisfy constraint SC (see IM Prescription 2).

11. Consider the assignment

V := X

(where V is a variable reference and X is an expression). DT(X) shall be a subtype of DT(V). The
assignment shall set v(V) equal to v(X), and hence MST(V) equal to MST(X) also.

12. Consider the equality comparison

Y = X

(where Y and X are expressions). DT(Y) and DT(X) shall overlap. The comparison shall return TRUE if
v(Y) is equal to v(X) (and hence if MST(Y) is equal to MST(X) also), and FALSE otherwise.

13. Attributes <Ax,DTx> of relation rx and <Ay,DTy> of relation ry shall correspond if and only if their
names Ax and Ay are the same, A say, and their declared types DTx and DTy have a common supertype.
Then:

a. It shall be possible to form the union of rx and ry if and only if each attribute of rx corresponds to
some attribute of ry and vice versa. For each pair of corresponding attributes <A,DTx> and
<A,DTy>, the declared type of the corresponding attribute in the result of the union shall be the
most specific common supertype of DTx and DTy. Note: In practice, the implementation might
want to outlaw, or at least flag, any attempt to form such a union if DTx and DTy are not subtypes
of the same root type.

b. It shall be possible to form the intersection of rx and ry if and only if each attribute of rx
corresponds to some attribute of ry and vice versa. For each pair of corresponding attributes
<A,DTx> and <A,DTy>, the declared type of the corresponding attribute in the result of the union
shall be the least specific common subtype of DTx and DTy. Note: In practice, the implementation
might want to outlaw, or at least flag, any attempt to form such an intersection if DTx and DTy are
not supertypes of the same leaf type. Also, intersection is a special case of join; given the
prescriptions of paragraph d. below, therefore, the present paragraph is strictly redundant. We
include it for convenience.

c. It shall be possible to form the difference between rx and ry, in that order, if and only if every
attribute of rx corresponds to some attribute of ry and vice versa. For each pair of corresponding
attributes <A,DTx> and <A,DTy>, the declared type of the corresponding attribute in the result of
the difference shall be DTx. Note: In practice, the implementation might want to outlaw, or at least
flag, any attempt to form such a difference if DTx and DTy are not subtypes of the same root type,
and possibly also if DTx and DTy are not supertypes of the same leaf type.

d. It shall be possible to form the join of rx and ry if and only if no attribute of rx that fails to
correspond to an attribute of ry has the same name as any attribute of ry and vice versa. For each
pair of corresponding attributes <A,DTx> and <A,DTy>, the declared type of the corresponding
attribute in the result of the join shall be the least specific common subtype of DTx and DTy. Note:
In practice, the implementation might want to outlaw, or at least flag, any attempt to form such a
join if DTx and DTy are not supertypes of the same leaf type. Also, intersection is a special case of
join; thus, the prescriptions of the present paragraph degenerate to those for intersection in the case

314 Part III / Type Inheritance

where every attribute of rx corresponds to some attribute of ry and vice versa.

14. Let X be an expression, let T be a type, and let DT(X) and T overlap. Then an operator of the form

TREAT_AS_T (X)

(or logical equivalent thereof) shall be supported. We refer to such operators generically as “TREAT” or
“TREAT AS” operators; their semantics are as follows. First, if v(X) is not of type T, then a type error
shall occur. Otherwise:

a. If the TREAT invocation appears in a “source” position—in particular, on the right side of an
assignment—then the declared type of that invocation shall be T, and the invocation shall yield a
result, r say, with v(r) equal to v(X) (and hence MST(r) equal to MST(X) also).

b. If the TREAT invocation appears in a “target” position—in particular, on the left side of an
assignment—then that invocation shall act as a pseudovariable reference, which means it shall
designate a pseudovariable X' with DT(X') equal to T, v(X') equal to v(X), and MST(X') equal to
MST(X).

15. Let X be an expression, let T be a type, and let DT(X) and T overlap. Then an operator of the form

IS_T (X)

(or logical equivalent thereof) shall be supported. The operator shall return TRUE if v(X) is of type T,
FALSE otherwise.

16. Let Op be a read-only operator, let P be a parameter to Op, and let T be the declared type of P. Then the
declared type of the argument expression (and therefore, necessarily, the most specific type of the
argument as such) corresponding to P in an invocation of Op shall be allowed to be any subtype T' of T.
In other words, the read-only operator Op applies to values of type T and therefore, necessarily, to values
of type T'—The Principle of (Read-Only) Operator Inheritance. It follows that such operators are
polymorphic, since they apply to values of several different types—The Principle of (Read-Only) Operator
Polymorphism. It further follows that wherever a value of type T is permitted, a value of any subtype of T
shall also be permitted—The Principle of (Value) Substitutability.

17. Let Op be a read-only operator. Then Op shall have exactly one specification signature, denoting that
operator as perceived by potential users. The specification signature for Op shall consist of the operator
name and a nonempty set of invocation signatures. For definiteness, assume the parameters of Op and the
argument expressions involved in any given invocation of Op each constitute an ordered list of n elements
(n 0), such that the jth argument expression corresponds to the jth parameter (j = 1, 2, ..., n). Further, let
PDT = <DT1, DT2, ..., DTn> be the declared types, in sequence, of those n parameters, and let PDT' =
<DT1', DT2', ..., DTn'> be a sequence of types such that DTj' is a nonempty subtype of DTj (j = 1, 2, ..., n).
For each such sequence PDT', there shall exist an invocation signature consisting of the operator name
and a specification of the declared type of the result of an invocation of Op with argument expressions of
declared types as specified by PDT' (the declared type for, or of, such an invocation).

18. Let Op be an update operator and let P be a parameter to Op that is not subject to update. Then Op shall
behave as a read-only operator as far as P is concerned, and all relevant aspects of IM Prescription 16 shall
apply, mutatis mutandis.

19. Let Op be an update operator, let P be a parameter to Op that is subject to update, and let T be the declared
type of P. Then it might or might not be the case that the declared type of the argument expression (and
therefore, necessarily, the most specific type of the argument as such) corresponding to P in an invocation

Chapter 19 / The Inheritance Model 315

of Op shall be allowed to be some proper subtype T' of type T. It follows that for each such update
operator Op and for each parameter P to Op that is subject to update, it shall be necessary to state explicitly
for which proper subtypes T' of the declared type T of parameter P operator Op shall be inherited—The
Principle of (Update) Operator Inheritance. (And if update operator Op is not inherited in this way by
type T', it shall not be inherited by any proper subtype of type T' either.) Update operators shall thus be
only conditionally polymorphic—The Principle of (Update) Operator Polymorphism. If Op is an update
operator and P is a parameter to Op that is subject to update and T' is a proper subtype of the declared type
T of P for which Op is inherited, then by definition it shall be possible to invoke Op with an argument
expression corresponding to parameter P that is of declared type T'—The Principle of (Variable)
Substitutability.

20. Type T shall be a union type if and only if it is a scalar type and there exists no value that is of type T and
not of some immediate subtype of T (i.e., there is no value v such that MST(v) is T). Moreover:

a. A type shall be a dummy type if and only if either of the following is true:

1. It is one of the types alpha and omega (see below).

2. It is a union type, has no declared representation (and hence no selector), and no regular
supertype. Note: Type alpha in fact satisfies all three of these conditions; type omega
satisfies the first two only.

A type shall be a regular type if and only if it is a scalar type and not a dummy type.

b. Conceptually, there shall be a system defined scalar type called alpha, the maximal type with
respect to every scalar type. That type shall have all of the following properties:

1. It shall contain all scalar values.

2. It shall have no immediate supertypes.

3. It shall be an immediate supertype for every scalar root type in the given set of types GST.

No other scalar type shall have any of these properties (unless the given set of types GST contains
just one regular type—necessarily type boolean—in which unlikely case that type will of course
satisfy the first property).

c. Conceptually, there shall be a system defined scalar type called omega, the minimal type with
respect to every scalar type. That type shall have all of the following properties:

1. It shall contain no values at all. (It follows that, as RM Prescription 1 in fact states, it shall
have no example value in particular.)

2. It shall have no immediate subtypes.

3. It shall be an immediate subtype for every scalar leaf type in the given set of types GST.

No other scalar type shall have any of these properties.

21. Type T shall be an empty type if and only if it is either an empty scalar type or an empty tuple type.
Scalar type T shall be empty if and only if T is type omega. Tuple type T shall be empty if and only if T
has at least one attribute that is of some empty type. An empty type shall be permitted as the declared type
of (a) an attribute of a tuple type or relation type; (b) nothing else.

22. Let T and T' be both tuple types or both relation types. Then type T' shall be a subtype of type T, and type

316 Part III / Type Inheritance

T shall be a supertype of type T', if and only if (a) T and T' have the same attribute names A1, A2, ..., An
and (b) for all j (j = 1, 2, ..., n), the type of attribute Aj of T' is a subtype of the type of attribute Aj of T.
Tuple t shall be of some subtype of tuple type T if and only if the heading of t is that of some subtype of T.
Relation r shall be of some subtype of relation type T if and only if the heading of r is that of some subtype
of T (in which case every tuple in the body of r shall necessarily also have a heading that is that of some
subtype of T).

23. Let T1, T2, ..., Tm (m 0), T, and T' be all tuple types or all relation types, with headings

{ <A1,T11> , <A2,T12> , ... , <An,T1n> }

{ <A1,T21> , <A2,T22> , ... , <An,T2n> }

......................................

{ <A1,Tm1> , <A2,Tm2> , ... , <An,Tmn> }

{ <A1,T01> , <A2,T02> , ... , <An,T0n> }

{ <A1,T01'> , <A2,T02'> , ... , <An,T0n'> }

respectively. Further, for all j (j = 1, 2, ..., n), let types T1j, T2j, ..., Tmj have a common subtype (and
hence a common supertype also). Then:

a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, for all j (j = 1,
2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., Tmj. Further, that type T shall be
the most specific common supertype for T1, T2, ..., Tm if and only if no proper subtype of T is also
a common supertype for those types.

b. Type T' shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, for all j (j = 1, 2,
..., n), type T0j' is a common subtype for types T1j, T2j, ..., Tmj. Further, that type T' shall be the
least specific common subtype—also known as the intersection type or intersection subtype—for
T1, T2, ..., Tm if and only if no proper supertype of T' is also a common subtype for those types.

Note: Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to IM
Prescription 24) that a unique most specific common supertype T and a unique least specific common
subtype T' always exist. In the case of that particular common subtype T', moreover, it can also be shown
that whenever a given value is of each of types T1, T2, ..., Tm, it is also of type T' (hence the alternative
term intersection type)—in which case, for all j (j = 1, 2, ..., n), type T0j' is the intersection type for types
T1j, T2j, ..., Tmj. And it can further be shown that every tuple value and every relation value has both a
unique least specific type and a unique most specific type (regarding the latter, see also IM Prescription
25).

24. Let T, T_alpha, and T_omega be all tuple types or all relation types, with headings

{ <A1,T1> , <A2,T2> , ... , <An,Tn> }

{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }

{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }

respectively. Then types T_alpha and T_omega shall be the maximal type with respect to type T and the
minimal type with respect to type T, respectively, if and only if, for all j (j = 1, 2, ..., n), type Tj_alpha is
the maximal type with respect to type Tj and type Tj_omega is the minimal type with respect to type Tj.

25. Let {H} be a heading defined as follows:

Chapter 19 / The Inheritance Model 317

{ <A1,T1> , <A2,T2> , ... , <An,Tn> }

Then:

a. If t is a tuple of type some subtype of TUPLE {H}—meaning t is of the form

{ <A1,T1',v1> , <A2,T2',v2> , ... , <An,Tn',vn> }

where, for all j (j = 1, 2, ..., n), type Tj' is a subtype of type Tj and vj is a value of type Tj'—then the
most specific type of t shall be

TUPLE { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }

where, for all j (j = 1, 2, ..., n), type MSTj is the most specific type of value vj.

b. If r is a relation of type some subtype of RELATION {H}—meaning each tuple in the body of r
can be regarded without loss of generality as being of the form

{ <A1,T1',v1> , <A2,T2',v2> , ... , <An,Tn',vn> }

where, for all j (j = 1, 2, ..., n), type Tj' is a subtype of type Tj and is the most specific type of value
vj (note that distinct tuples in the body of r will be of distinct most specific types, in general; thus,
type Tj' varies over the tuples in the body of r)—then the most specific type of r shall be

RELATION { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }

where, for all j (j = 1, 2, ..., n), type MSTj is the most specific common supertype of those most
specific types Tj', taken over all tuples in the body of r.

26. Let V be a tuple variable or relation variable of declared type T, and let the heading of T have attributes A1,
A2, ..., An. Then we can model V as a named set of named ordered triples of the form <DTj,MSTj,vj> (j =
1, 2, ..., n), where:

a. The name of the set is the name of the variable, V.

b. The name of each triple is the name of the corresponding attribute.

c. DTj is the name of the declared type of attribute Aj.

d. MSTj is the name of the most specific type—also known as the current most specific type—for, or
of, attribute Aj. (If V is a relation variable, then the most specific type of Aj is the most specific
common supertype of the most specific types of the m values in vj—see the explanation of vj
below.)

e. If V is a tuple variable, vj is a value of most specific type MSTj—the current value for, or of,
attribute Aj. If V is a relation variable, then let the body of the current value of V consist of m tuples
(m 0); label those tuples (in some arbitrary sequence) “tuple 1,” “tuple 2,” ..., “tuple m”; then vj is
a sequence of m values (not necessarily all distinct), being the Aj values from tuple 1, tuple 2, ...,
tuple m (in that order). Note that those Aj values are all of type MSTj.

We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components, respectively, of
attribute Aj of this model of tuple variable or relation variable V. We also use the notation DT(V), MST(V),
v(V) to refer to the overall declared type, overall current most specific type, and overall current value,
respectively, of this model of tuple variable or relation variable V.

Now let X be a tuple expression or relation expression. By definition, X specifies an invocation of
some tuple operator or relation operator Op. Thus, the notation DTj(V), MSTj(V), vj(V) just introduced can

318 Part III / Type Inheritance

be extended in an obvious way to refer to the declared type DTj(X), the current most specific type
MSTj(X), and the current value vj(X), respectively, of the DTj, MSTj, vj components, respectively, of
attribute Aj of tuple expression or relation expression X—where DTj(X) is the declared type of Aj for the
invocation of Op in question (see IM Prescription 17) and is known at compile time, and MSTj(X) and
vj(X) refer to the result of evaluating X and are therefore not known until run time (in general).

319

