
Database Constraints - A Woeful State of Affairs

For UKOUG, 02 December 2008 1

1

Database Constraints – A
Woeful State of Affairs

Hugh Darwen

hugh@thethirdmanifesto.com

www.thethirdmanifesto.com

Last updated: 02 December, 2008 (!)

UKOUG
02 December, 2008

2

Background

• Database design exercises set to 2nd-year undergrads for their assessed
coursework

• Devised by HD – fairly realistic, based on his on-line bank statement

• Exercise 1: Do a 5NF design in Tutorial D, using Rel (note: NULL therefore
not available)

• Exercise 2: Do the design again in SQL, using Oracle 10 (and NULL, to
heart’s content). Justify any deviations from 5NF!

• Honestly, no deliberate attempt, at outset, to expose SQL/Oracle deficiencies!

• But many more came to light than had been expected

3

The Scenario

• The bank has customers

• Customers have contact info

• Every customer has at least one account

• Accounts have transactions -
- payments in
- payments out by cheque
- payments out by direct debit
- payments out by debit card

• Accounts have transactions -

- payments out by cheque
- payments in

- payments out by debit card

• Accounts have transactions -

- payments out by cheque
- payments out by direct debit

- payments in

- payments out by debit card

• Accounts have transactions -

- payments out by cheque

4

Customers’ Contact Info

• Every customer has a name and address

• Some have an email address (just one)

• Some have phone numbers -

- home
- work
- cell

5

Name, Address, Email

VAR Customer BASE RELATION {
Customer# CHAR,
Name CHAR,
Address CHAR }

KEY { Customer# } ;

Tutorial D:

SQL:

CREATE TABLE Customer (
Customer# CHAR(5) PRIMARY KEY,
Name VARCHAR(50) NOT NULL,
Address VARCHAR(100) NOT NULL,
EmailAddress VARCHAR(50) DEFAULT NULL) ;

VAR Email BASE RELATION {
Customer# CHAR,
EmailAddress CHAR }

KEY { Customer# } ;

CONSTRAINT Customer_having_email_must_be_a_customer
IS_EMPTY (Email NOT MATCHING Customer) ;

(so far, so good)

6

Phone Numbers in Tutorial D

VAR Phone BASE RELATION {
Phone# CHAR,
Type CHAR }

KEY { Phone# } ;

Tutorial D solution in 5NF:

VAR CustPhone BASE RELATION {
Customer# CHAR,
Phone# CHAR }

KEY { Customer#, Phone# } ;

Assumption: Phones can be shared but same phone always of same type.

CONSTRAINT No_more_than_one_phone_per_cust_per_type
IS_EMPTY (
((CustPhone JOIN Phone) RENAME (Phone# AS PN1)
JOIN
(CustPhone JOIN Phone) RENAME (Phone# AS PN2))

WHERE PN1 <> PN2) ;

In other words, { Customer# , Type } is a key for (CustPhone JOIN Phone)

Constraints: Customer# and Phone# in CustPhone are obvious foreign keys,
but we also need:

Database Constraints - A Woeful State of Affairs

For UKOUG, 02 December 2008 2

7

Phone Numbers in SQL

CREATE TABLE Phone (
Phone# VARCHAR(30) PRIMARY KEY,
Type CHAR(4) NOT NULL) ;

CREATE ASSERTION Key_for_CustPhone_JOIN_Phone
CHECK ((SELECT COUNT(*) FROM CustPhone NATURAL JOIN Phone) =

(SELECT COUNT DISTINCT (Customer#, Type)
FROM CustPhone NATURAL JOIN Phone)) ;

Try (doesn’t work):

But Oracle doesn’t have CREATE ASSERTION (and what if it did?)

CREATE TABLE CustPhone (
Customer# CHAR(5),
Phone# VARCHAR(30),
PRIMARY KEY (Customer#, Phone#),
FOREIGN KEY (Customer#) REFERENCES Customer,
FOREIGN KEY (Phone#) REFERENCES Phone) ;

8

Phone Numbers in SQL

CREATE TABLE Phone (
Phone# VARCHAR(30) PRIMARY KEY,
Type CHAR(4) NOT NULL ,
UNIQUE (Phone#, Type)); -- redundant constraint!!

So, we resort to a hack, violating 5NF:

8 constraints instead of 6, and an utterly unobvious (though well publicised) solution

CREATE TABLE Phone (
Phone# VARCHAR(30) PRIMARY KEY,
Type CHAR(4) NOT NULL ,
UNIQUE (Phone#, Type)); -- redundant constraint!!

CREATE TABLE CustPhone (
Customer# CHAR(5),
Phone# VARCHAR(30),
Type CHAR(4) NOT NULL ,
PRIMARY KEY (Customer#, Phone#),
FOREIGN KEY (Customer#) REFERENCES Customer,
FOREIGN KEY (Phone#, Type) -- thanks to that redundant constraint,

REFERENCES Phone (Phone#, Type) , -- to address 5NF violation
UNIQUE (Customer#, Type)) ; -- instead of key for a join!

9

Requirements Arising

1. A foreign key should be allowed to reference a proper
superkey, such as (Phone#, Type)

2. It should be possible to declare a key for a derived table,
especially a simple join such as CustPhone with Phone …

4. In any case, support CREATE ASSERTION
(it’s been in the ISO SQL standard since 1992)

3. … and for a foreign key to reference that key

10

Customers’ Accounts

SQL try (doesn’t work):

CREATE TABLE Account (
Account# CHAR(8),
Customer# CHAR(5) NOT NULL,
Type VARCHAR(8) NOT NULL,
CHECK (Type IN ('current', 'savings', 'mortgage')),
DateOpened DATE NOT NULL,

PRIMARY KEY (Account#),
FOREIGN KEY (Customer#) REFERENCES Customer) ;

Recall: Every customer has at least one account

But foreign key in Customer can’t reference Customer# in Account (not a key),
and Oracle won’t let us do CREATE ASSERTION.

In any case, foreign keys in both directions make updating difficult (and deferred
constraint checking, if available, is deprecated)

11

Requirements Arising

1. A foreign key should be allowed to reference a nonkey,
such as Customer# in Account (though the term foreign key
then ceases to be appropriate—it becomes an inclusion
dependency)

2. It should be possible to do more than one update in a
single statement, as in Tutorial D:

INSERT Customer RELATION { … } , /* note the comma */
INSERT Account RELATION { … } ;

12

Transactions

Preferred solution has a separate table for each type,
avoiding use of NULL:

• They all have transaction number, date and time received, amount.

• Payments in have an account number and a source.

• Payments by cheque have an account number, cheque number, payee,
date written.

• Payments by direct debit have an account number and a payee.

• Payments by debit card have a card number (instead of account number)
and a payee.

Database Constraints - A Woeful State of Affairs

For UKOUG, 02 December 2008 3

13

Transaction Tables in SQL

CREATE TABLE PaymentIn (
Transaction# INTEGER,
Account# CHAR(8),
DateRcvd DATE NOT NULL,
TimeRcvd TIME NOT NULL,
Amount DECIMAL(9,2) NOT NULL,
Source VARCHAR(100) NOT NULL,

PRIMARY KEY (Transaction#, Account#),
FOREIGN KEY Account# REFERENCES Account,
CHECK (DateRcvd >=

(SELECT DateOpened
FROM Account
WHERE Account.Account# = PaymentIn.Account#)));

1. Payments in:

Problem 1: Oracle doesn’t allow subqueries in constraints.
14

Transaction Tables in SQL

CREATE TABLE PaymentByCheque (
Transaction# INTEGER,
Account# CHAR(8),
DateRcvd DATE NOT NULL,
TimeRcvd TIME NOT NULL,
Amount DECIMAL(9,2) NOT NULL,
Cheque# CHAR(6) NOT NULL,
DateWritten DATE NOT NULL,
Payee VARCHAR(100) NOT NULL,

PRIMARY KEY (Transaction#, Account#),
FOREIGN KEY Account# REFERENCES Account,
CHECK (DateRcvd >= etc.),
CHECK ((Transaction#, Account#) NOT IN

(SELECT Transaction#, Account#
FROM PaymentIn)));

2. Payments by cheque:

Problem 2: Oracle still doesn’t allow subqueries in constraints.

15

Transaction Tables in SQL

CREATE TABLE PaymentByDD (
Transaction# INTEGER,
Account# CHAR(8),
DateRcvd DATE NOT NULL,
TimeRcvd TIME NOT NULL,
Amount DECIMAL(9,2) NOT NULL,
Payee VARCHAR(100) NOT NULL,

PRIMARY KEY (Transaction#, Account#),
FOREIGN KEY Account# REFERENCES Account,
CHECK (DateRcvd >= etc.),
CHECK ((Transaction#, Account#) NOT IN

(SELECT Transaction#, Account# FROM PaymentIn
UNION
SELECT Transaction#, Account# FROM PaymentByCheque)

)) ;

3. Payments by direct debit:

Problem 3: That NOT IN constraint is getting worse …
16

Transaction Tables in SQL

CREATE TABLE PaymentByCard (
Transaction# INTEGER,
Card# CHAR(8), -- account# implied by card#, see FK below
DateRcvd DATE NOT NULL,
TimeRcvd TIME NOT NULL,
Amount DECIMAL(9,2) NOT NULL,
Payee VARCHAR(100) NOT NULL,

PRIMARY KEY (Transaction#, Card#),
FOREIGN KEY Card# REFERENCES DebitCard,
CHECK (DateRcvd >= etc.) ;

4. Payments by debit card:

Problem 4: How, now, to make sure the same transaction
number hasn’t been used for some other transaction for the
same account? Needs a complicated CREATE ASSERTION!

17

Subtable Approach for Transactions?

Can Problem 4 be addressed by having a “parent” transaction
table for all the stuff common to all, and “subtables” for the
four transaction types?

Well, no, not according to the usual approach for subtables,
because each subtable is supposed to “inherit” the key of the
supertable, and PaymentByCard doesn’t have Account#.
Need to be able to have a joined table as a subtable?

But even support for subtables is inadequate. In our example,
we need a constraint to require each transaction to be of
exactly one of the special types (a “foreign distributed key”).
And then the cyclic constraint problem reappears!

18

Requirements Arising

1. Need to allow a key to span several tables, such that
no key value can appear in more than one of them
(so all transaction numbers for same account are unique
in our example).

2. A joined table to be allowed as one of the tables in such
a key, as already noted for regular keys (so payments by
debit card can be handled).

3. Special constructs to be supported for temporal
constraints (e.g., so a transaction can’t be received
before the account is open).

Database Constraints - A Woeful State of Affairs

For UKOUG, 02 December 2008 4

19

An Unanticipated Problem

Students were asked to use just one table for transactions,
using NULL for inapplicable column values (and some very
complicated constraints).

This table has PRIMARY KEY (Transaction#, Account#)
(accepting redundant Account# for payments by card, raising a problem similar to
the one we met with phone numbers)

Unfortunately, Oracle doesn’t conform to the ISO standard
definition of UNIQUE. Instead, two rows with same Account#
and NULL for Cheque# are deemed to violate the constraint!

But for payments by cheque we need UNIQUE (Cheque#,
Account#) too. Note that Cheque# is NULL for other kinds of
payment.

20

Requirement Arising

Remove all support for NULL

(sort of)(joke)

21

Research Needed

• New shorthands to be devised for commonly arising constraints

• Optimiser to be able to detect constraints, expressed in the general way,
for which efficient execution plans can be devised.

E.g. NOT EXISTS (SELECT * FROM T1
WHERE C1 IN (SELECT C1 FROM T2))

E.g. The “distributed key”, whose uniqueness scope is over several
tables, and the corresponding “foreign distributed key”.

or, once table comparison is permitted (as it should be):

SELECT DISTINCT C1 FROM T1 = SELECT DISTINCT C1 FROM T2

• Multiple assignment, new to the DBMS world, needs investigation too.

22

The End

