
File: How to Handle Missing Information Using S-by-C-review-draft.doc
Printed at: 12:06 on Tuesday, 5 August, 2008

How to Handle Missing Information Using S-by-C — Page 1 of 21

How to Handle Missing Information Using S-by-C

by Hugh Darwen and Erwin Smout

Review draft, 05 August 2008

1. Introduction

In an e-mail entitled How to handle missing information without using nulls, to the forum
that discusses reference [1] (ttm@thethirdmanifesto.com) on 20 February 2008 at 17:53,
Erwin Smout wrote:

The following idea crossed my mind yesterday:

For each and every type xxx, the system automatically provides a proper supertype, called e.g.
POSSIBLYMISSINGxxx. There is precisely one value that is of the supertype but not of the type itself,
and that value is the value 'MISSING' (yes, do let me consider it a value for the time being).

All the operators defined for the type do apply only to the type xxx itself, and thus not to type
POSSIBLYMISSINGxxx. The only operator that does apply to type POSSIBLYMISSINGxxx is,
optionally, an operator ISMISSING() or ISVALUE(), returning a boolean according to the obvious
semantics (having this operator is not strictly necessary because an equality test to the value MISSING
does the job too). Type checking thus prevents the invocation of, say, the + operator on expressions of
type POSSIBLYMISSINGxxx.

Relation attributes can be declared to be of type POSSIBLYMISSINGxxx, or of type xxx. In the case
an attribute is declared to be of type POSSIBLYMISSINGxxx, the programmer is forced to first invoke
the ISVALUE() test before invoking a TREAT_AS_xxx (if he wants to build stable, reliable programs
and avoid runtime errors, that is).

There would be one 'MISSING' for each "root" type (which, by the creation of the proper supertype, no
longer is a "genuine" root type, but that isn't much of a problem, I think). Let's say that type INTEGER
= {-32768 ... 32767}. A proper subtype of INTEGER is EVENINTEGER = {-32768, -32766, ...
32766}. POSSIBLYMISSINGINTEGER = {-32768 ... 32767} U {MISSINGINTEGER}, and
POSSIBLYMISSINGEVENINTEGER = {-32768, -32766, ... 32766} U {MISSINGINTEGER}.

Such that if types xxx and yyy do not have a common supertype (alpha notwithstanding), then neither
do the types POSSIBLYMISSINGxxx and POSSIBLYMISSINGyyy. Likewise, if yyy is a proper
sub/supertype of xxx, then POSSIBLYMISSINGyyy is a proper sub/supertype of
POSSIBLYMISSINGxxx.

The value MISSING of POSSIBLYMISSINGINTEGER is equal to the value MISSING of
POSSIBLYMISSINGEVENINTEGER, with the obvious consequences for join, duplicate elimination
in projections, etc. etc.

It looks to me like this is a relationally sound solution for the 'missing information' problem. Does it
look like a sensible idea to try and work this out in code?

The answer to Smout's final question struck Darwen as being "yes", at least if the method of
subtyping is one based on specialization by constraint (S-by-C), as proposed in [1].
Accordingly, he set to work on the geometrical examples (ellipses and circles, rectangles and
rhombuses) that are used in [1], to see how POSSIBLYMISSING counterparts of those type

Page 2 of 21 —How to Handle Missing Information Using S-by-C

schemas might be done in Tutorial D. The purpose of this paper is to present the results of
these case studies and comment on them.

2. The Case Studies

In what follows:

1. The abbreviations TTM and IM refer to Chapters 4 and 13 of reference [1],
respectively. (Certain "IM Prescriptions" mentioned in our text are given in IM, of
course.)

2. Smout's POSSIBLYMISSING is abbreviated to PM_. Thus, the "possibly missing"
counterpart of type INTEGER would be PM_INTEGER, of alpha PM_alpha, and so on.

2.1 Ellipses and Circles

Reference [1] uses the example of ellipses and circles to illustrate subtyping with single
inheritance only. Single inheritance applies when no type under consideration has more than
one immediate supertype. Some ellipses, but not all ellipses, are circles, and a circle has a
radius whereas an ellipse in general does not. Thus it is appropriate to define CIRCLE as a
proper subtype of type ELLIPSE. Additionally, when the discussion needs to probe a little
further, the type O_CIRCLE, for circles centred at the origin, is defined as an immediate
subtype of CIRCLE (and hence a proper subtype of both CIRCLE and ELLIPSE).

Here are Tutorial D definitions of these three types, assuming ELLIPSE to be a root type1

(one with no proper supertypes):

TYPE ELLIPSE POSSREP { A LENGTH, B LENGTH, CTR POINT } ;
TYPE CIRCLE IS { ELLIPSE

CONSTRAINT THE_A(ELLIPSE)= THE_B(ELLIPSE)
POSSREP { R = THE_A(ELLIPSE),

CTR = THE_CTR(ELLIPSE) } } ;
TYPE O_CIRCLE IS { CIRCLE

CONSTRAINT THE_CTR(CIRCLE)= POINT(0.0, 0.0)
POSSREP { R = THE_R(CIRCLE) } } ;

Example 1: Ellipses and Circles as in [1]

Under Smout's proposal we will add to the above schema PM_ counterparts of each of those
three types: PM_ELLIPSE for ellipses plus the value 'MISSING'

2, PM_CIRCLE for circles plus
'MISSING', and PM_O_CIRCLE for O-circles plus 'MISSING'.

Notice first of all that PM_ELLIPSE must be a proper supertype of ELLIPSEit contains all the
values of type ELLIPSE plus one value, 'MISSING', that is not a value of type ELLIPSE. And
the fact that PM_ELLIPSE has just one value that is not of type ELLIPSE clearly rules out the
possible existence of a type that is a proper supertype of ELLIPSE and a proper subtype of

1 In [1] ELLIPSE is a subtype of root type PLANE_FIGURE.
2 The term Smout used in his e-mail, but in fact we shall not need this term, as will be seen.

How to Handle Missing Information Using S-by-C — Page 3 of 21

PM_ELLIPSE. So ELLIPSE has to be an immediate subtype of PM_ELLIPSE. So we might
think that our revised schema has to start like this:

TYPE PM_ELLIPSE POSSREP { ??? } ;
TYPE ELLIPSE IS { PM_ELLIPSE

CONSTRAINT ISVALUE(PM_ELLIPSE) } ;

But this approach cannot work! If PM_ELLIPSE has possrep components, then it must support
operators implied by the definitions of those components, under RM Prescription 5 of TTM.
Fortunately, Tutorial D has a solution to this problem, in accordance with IM Prescription 20
of IM, concerning union types. A union type does not require to be defined with a possrep
because, by definition, every one of its values is a value of at least one of its immediate
subtypes. Accordingly, we can define a type M, containing just the value 'MISSING', and
make PM_ELLIPSE the union type for M and ELLIPSE:

TYPE PM_ELLIPSE UNION ;
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } } ;
TYPE M IS { PM_ELLIPSE POSSREP { } } ;

Example 2: Introducing types PM_ELLIPSE and M

Points to note:

1. Under this approach a separate "MISSING" type M must be defined in connection with
every root type that is to include 'MISSING', as mentioned by Smout. Perhaps the
definition of M, including its actual type name, can be implied by the type name prefix
PM_or, more likely, by some special key word given in the type definition of a PM_

type. Note, however, that if we accept alpha as the only root scalar type, then just one
M suffices. Moreover, that one M could be a built-in type, in which case alpha need
exist only conceptually.

2. The possrep for M is empty, this being the easiest way of defining a singleton type.
Thus, there are no THE_ operators for M and its single selector,3 also named M, has no
parameters. The value that Smout refers to as 'MISSING' is then denoted by the
selector invocation M(), and his ISMISSING operator becomes the IS_M required by
IM Prescription 15 of IM.

3. PM_ELLIPSE is not only a union type but also a dummy type, having no possrep. Thus,
a literal of type PM_ELLIPSE can be expressed only by invoking a selector for one of
its regular subtypes. M and ELLIPSE, having possreps, are both regular.

Now we must figure out how to incorporate the types PM_CIRCLE and CIRCLE into the
schema.

Clearly CIRCLE has to be an immediate subtype of PM_CIRCLE, but what about PM_CIRCLE
itself? Each of its values is either M() or a value of type ELLIPSE that has equal semiaxes.
Obviously it is not a subtype of M, but nor is it a subtype of ELLIPSE, because M() is not a

3 see RM Prescription 4 in TTM

Page 4 of 21 —How to Handle Missing Information Using S-by-C

value of type ELLIPSE. We have to conclude that it is an additional immediate subtype of
PM_ELLIPSE. But if it is an immediate subtype of PM_ELLIPSE, then M cannot also be an
immediate subtype, because M() is a value of type PM_CIRCLE. These considerations lead us
to

TYPE PM_ELLIPSE UNION ;
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } } ;
TYPE PM_CIRCLE UNION

IS { PM_ELLIPSE
CONSTRAINT ??? } ;

TYPE M IS { PM_CIRCLE POSSREP { } } ;

Example 3: Introducing type PM_CIRCLE

Once again we must avoid defining a possrep for the PM_ type, the reason being as with
PM_ELLIPSEunder Smout's proposal no THE_ operators must be defined for a PM_ type.
Therefore PM_CIRCLE must be a union type (of M, and the type CIRCLE to come later) and must
be defined by a constraint on the values of type PM_ELLIPSE. In Tutorial D, such a constraint
must be defined using operators defined for the supertype, in this case PM_ELLIPSE. We need
that constraint to admit M(), every value of type ELLIPSE that has equal A and B
components, and no other values. But to test for equal A and B components we need the
operators THE_A and THE_B, which are defined for type ELLIPSE but not for type PM_ELLIPSE.
Our next try, then, is this:

TYPE PM_ELLIPSE UNION ;
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } } ;
TYPE PM_CIRCLE UNION

IS { PM_ELLIPSE
CONSTRAINT IS_M(PM_ELLIPSE) OR

WITH TREAT_AS_ELLIPSE(PM_ELLIPSE) AS E :
THE_A(E) = THE_B(E) } ;

TYPE M IS { PM_CIRCLE POSSREP { } } ;

Example 4: Type constraint for PM_CIRCLE

Points to note:

1. WITH TREAT_AS_ELLIPSE(PM_ELLIPSE) AS E merely saves us having to repeat the
invocation TREAT_AS_ELLIPSE(PM_ELLIPSE). The expression E has declared type
ELLIPSE.

2. The definition relies on a left-to-right evaluation of expressions of the form a OR b,
such that the system will not attempt to evaluate the condition b unless condition a is
FALSE (TREAT_AS_ELLIPSE gives a run-time error when the operand is not a value of
type ELLIPSE). Such a mechanism is commonly found in computer languages but is

How to Handle Missing Information Using S-by-C — Page 5 of 21

frowned upon by some purists. We assume that some workaround4 is available in a
system that does not support this mechanism.

3. The immediate subtypes of PM_ELLIPSE are no longer disjoint. The examples of
union types given in [1] are all such that their immediate subtypes are disjoint, but the
definition of union type does not require this to be so. For example, type
PARALLELOGRAM could be defined as a union type with immediate subtypes
RECTANGLE, RHOMBUS, and NONSPECIAL for all the parallelograms that are neither
rectangles nor rhombuses. RECTANGLE and RHOMBUS are of course not disjoint.

4. Problem: the definitions of M and PM_CIRCLE reference each other: M is an immediate
subtype of PM_CIRCLE and PM_CIRCLE's type constraint invokes IS_M, an operator that
comes into existence with the definition of type M (see IM, IM Prescription 15).

A solution to the problem described in point 4 is for the language to support, and the IM to
require it to support, multiple type definitions in a single statement. A precedent for such an
approach has been set by TTM's requirement, and Tutorial D's support, for multiple
assignment, whereby several variables can be simultaneously updated in a single statement.
A multiple assignment is written as a sequence of individual assigns, with commas separating
them instead of semicolons. Clearly we can take the same approach with type definitions,
replacing the problematical example 4 by

TYPE PM_ELLIPSE UNION ,
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } } ,
TYPE PM_CIRCLE IS { PM_ELLIPSE

CONSTRAINT IS_M(PM_ELLIPSE) OR
WITH TREAT_AS_ELLIPSE(PM_ELLIPSE) AS E :
THE_A(E) = THE_B(E) } ,

TYPE M IS { PM_CIRCLE POSSREP { } } ;

Example 5: All types defined in one statement

note the commas.

Notice now that the values of type CIRCLE are precisely those values of type PM_CIRCLE that
are also values of type ELLIPSE. Therefore we add CIRCLE to the schema thus:

4 For example, CASE WHEN ISMISSING(PM_ELLIPSE) THEN TRUE ELSE WITH … etc. END CASE. Although
logically equivalent to the simpler expression using OR, most authorities accept the use of CASE, whose definition
relies on the ordering of the WHEN clauses, as being more acceptable.

Page 6 of 21 —How to Handle Missing Information Using S-by-C

TYPE PM_ELLIPSE UNION ,
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } ,
TYPE PM_CIRCLE UNION

IS { PM_ELLIPSE
CONSTRAINT IS_M(PM_ELLIPSE) OR

WITH TREAT_AS_ELLIPSE(PM_ELLIPSE) AS E :
THE_A(E) = THE_B(E) } ,

TYPE CIRCLE IS { PM_CIRCLE, ELLIPSE
POSSREP { R = THE_A(ELLIPSE),

CTR = THE_CTR(ELLIPSE) } } ,
TYPE M IS { PM_CIRCLE POSSREP { } } ;

Points to note:

1. As required under Smout's proposal, the operators THE_A, THE_B, and THE_CTR are
defined for type ELLIPSE but not for type PM_ELLIPSE; and THE_R is defined for
CIRCLE and not for PM_CIRCLE.

2. Our type schema is no longer a strict hierarchy, because we have used multiple
inheritance to derive type CIRCLE. It seems, then, that the PM_ counterpart of the
simplest possible case of S-by-C cannot be a hierarchy.

Now it is a simple matter to add the types PM_O_CIRCLE and O_CIRCLE in similar fashion to
PM_CIRCLE and CIRCLE:

TYPE PM_ELLIPSE UNION ,
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } ,
TYPE PM_CIRCLE UNION

IS { PM_ELLIPSE
CONSTRAINT IS_M(PM_ELLIPSE) OR

WITH TREAT_AS_ELLIPSE(PM_ELLIPSE) AS E :
THE_A(E) = THE_B(E) } ,

TYPE CIRCLE IS { PM_CIRCLE, ELLIPSE
POSSREP { R = THE_A(ELLIPSE),

CTR = THE_CTR(ELLIPSE) } } ,
TYPE PM_O_CIRCLE UNION

IS {PM_CIRCLE
CONSTRAINT IS_M(PM_CIRCLE) OR

THE_R(TREAT_AS_CIRCLE(PM_CIRCLE)) =
POINT(0.0, 0.0) } ,

TYPE O_CIRCLE IS { PM_O_CIRCLE, CIRCLE
POSSREP { R = THE_R(CIRCLE) } } ,

TYPE M IS { PM_O_CIRCLE POSSREP { } } ;

Figure 1 shows the type graph for this schema.

How to Handle Missing Information Using S-by-C — Page 7 of 21

2.2 Rectangles and Rhombuses

To illustrate multiple inheritance, reference [1] uses type SQUARE, noting that every square is
both a rectangle and a rhombus. Rectangles are special cases of parallelograms, as are
rhombuses. The type schema given in Chapter 15 of [1] is like this, with PARALLELOGRAM a
root type:

TYPE PARALLELOGRAM POSSREP { A POINT, B POINT, C POINT, D POINT
CONSTRAINT … } ;

TYPE RECTANGLE IS { PARALLELOGRAM CONSTRAINT … POSSREP … } ;
TYPE RHOMBUS IS { PARALLELOGRAM CONSTRAINT … POSSREP … } ;
TYPE SQUARE IS { RECTANGLE, RHOMBUS } ;

The constraints and possreps given in [1] for RECTANGLE and RHOMBUS, and the constraint for
PARALLELOGRAM, are omitted for convenience, being unimportant for present purposes.

To develop the type definition for PM_PARALLELOGRAM we follow the method used for

PM_ELLIPSE

TYPE PM_PARALLELOGRAM UNION ,
TYPE PARALLELOGRAM IS { PM_PARALLELOGRAM

POSSREP { A POINT, B POINT,
C POINT, D POINT } } ,

TYPE M IS { PM_PARALLELOGRAM POSSREP { } } ;

and we add both PM_RECTANGLE and PM_RHOMBUS along similar lines to those used for
PM_CIRCLE:

PM_ELLIPSE

PM_CIRCLE ELLIPSE

CIRCLEPM_O_CIRCLE

O_CIRCLE

Figure 1: Type graph for PM_ ellipses and circles

M

Page 8 of 21 —How to Handle Missing Information Using S-by-C

TYPE PM_PARALLELOGRAM UNION ,
TYPE PARALLELOGRAM IS { PM_PARALLELOGRAM

POSSREP { A POINT, B POINT,
C POINT, D POINT } } ,

TYPE PM_RECTANGLE UNION
IS { PM_PARALLELOGRAM

CONSTRAINT IS_M(PM_PARALLELOGRAM) OR
WITH TREAT_AS_PARALLELOGRAM(PM_PARALLELOGRAM)

AS P : … } ,
TYPE RECTANGLE IS { PM_RECTANGLE, PARALLELOGRAM

POSSREP … } ,
TYPE PM_RHOMBUS UNION

IS { PM_PARALLELOGRAM
CONSTRAINT IS_M(PM_PARALLELOGRAM) OR
WITH TREAT_AS_PARALLELOGRAM(PM_PARALLELOGRAM)

AS P : … } ,
TYPE RHOMBUS IS { PM_RHOMBUS, PARALLELOGRAM

POSSREP … } ,
TYPE M IS { PM_RECTANGLE, PM_RHOMBUS POSSREP { } } ;

The omitted portions, indicated by …, can be found in [1].

Type PM_SQUARE might appear to be more complicated, being an immediate subtype of both
PM_RECTANGLE and PM_RHOMBUS, but in fact the definition is simple:

TYPE PM_PARALLELOGRAM UNION ,
TYPE PARALLELOGRAM IS { PM_PARALLELOGRAM

POSSREP { A POINT, B POINT,
C POINT, D POINT } } ,

TYPE PM_RECTANGLE IS { PM_PARALLELOGRAM
CONSTRAINT IS_M(PM_PARALLELOGRAM) OR
WITH TREAT_AS_PARALLELOGRAM(PM_PARALLELOGRAM)

AS P : … } ,
TYPE RECTANGLE IS { PM_RECTANGLE, PARALLELOGRAM

POSSREP … } ,
TYPE PM_RHOMBUS IS { PM_PARALLELOGRAM

CONSTRAINT IS_M(PM_PARALLELOGRAM) OR
WITH TREAT_AS_PARALLELOGRAM(PM_PARALLELOGRAM)

AS P : … } ,
TYPE RHOMBUS IS { PM_RHOMBUS, PARALLELOGRAM

POSSREP … } ,
TYPE PM_SQUARE IS { PM_RECTANGLE, PM_RHOMBUS } ,
TYPE SQUARE IS { PM_SQUARE, RECTANGLE, RHOMBUS

POSSREP … } } ,
TYPE M IS { PM_SQUARE POSSREP { } } ;

Figure 2 shows the type graph for this schema.

How to Handle Missing Information Using S-by-C — Page 9 of 21

3. Comments

3.1 How many M types do we need?

The original idea explicitly proposes that there be "one M per root type" (making no
assumption concerning the existence of alpha, which, if supported, is the only scalar root
type of the system). Under that proposal, the M types of our ellipse and parallelogram
examples can be referred to as M_ELLIPSE and M_PARALLELOGRAM, respectively, as shown in
the following very slightly revised definitions:

PM_PARALLELOGRAM

PM_RECTANGLE PM_RHOMBUSPARALLELOGRAM

RECTANGLE RHOMBUS

SQUARE

PM_SQUARE

Figure 2: Type graph for PM_ rectangles and rhombuses

M

Page 10 of 21 —How to Handle Missing Information Using S-by-C

TYPE PM_ELLIPSE UNION ,
TYPE ELLIPSE IS { PM_ELLIPSE

POSSREP { A LENGTH, B LENGTH, CTR POINT } ,
TYPE PM_CIRCLE UNION

IS { PM_ELLIPSE
CONSTRAINT IS_M(PM_ELLIPSE) OR

WITH TREAT_AS_ELLIPSE(PM_ELLIPSE) AS E :
THE_A(E) = THE_B(E) } ,

TYPE CIRCLE IS { PM_CIRCLE, ELLIPSE
POSSREP { R = THE_A(ELLIPSE),

CTR = THE_CTR(ELLIPSE) } } ,
TYPE PM_O_CIRCLE UNION

IS {PM_CIRCLE
CONSTRAINT IS_M(PM_CIRCLE) OR

THE_R(TREAT_AS_CIRCLE(PM_CIRCLE)) =
POINT(0.0, 0.0) } ,

TYPE O_CIRCLE IS { PM_O_CIRCLE, CIRCLE
POSSREP { R = THE_R(CIRCLE) } } ,

TYPE M_ELLIPSE IS { PM_O_CIRCLE POSSREP { } } ;

TYPE PM_PARALLELOGRAM UNION ,
TYPE PARALLELOGRAM IS { PM_PARALLELOGRAM

POSSREP { A POINT, B POINT,
C POINT, D POINT } } ,

TYPE PM_RECTANGLE IS { PM_PARALLELOGRAM
CONSTRAINT IS_M(PM_PARALLELOGRAM) OR
WITH TREAT_AS_PARALLELOGRAM(PM_PARALLELOGRAM)

AS P : … } ,
TYPE RECTANGLE IS { PM_RECTANGLE, PARALLELOGRAM

POSSREP … } ,
TYPE PM_RHOMBUS IS { PM_PARALLELOGRAM

CONSTRAINT IS_M(PM_PARALLELOGRAM) OR
WITH TREAT_AS_PARALLELOGRAM(PM_PARALLELOGRAM)

AS P : … } ,
TYPE RHOMBUS IS { PM_RHOMBUS, PARALLELOGRAM

POSSREP … } ,
TYPE PM_SQUARE IS { PM_RECTANGLE, PM_RHOMBUS } ,
TYPE SQUARE IS { PM_SQUARE, RECTANGLE, RHOMBUS

POSSREP … } } ,
TYPE M_PARALLELOGRAM IS { PM_SQUARE POSSREP { } } ;

A problem now arises when we wish to add a new union type "over" these two existing root
types. Consider what might be needed to introduce types PLANE_FIGURE and
PM_PLANE_FIGURE, if PLANE_FIGURE is to be a subtype of PM_PLANE_FIGURE and a supertype
of both PARALLELOGRAM and ELLIPSE. PARALLELOGRAM and ELLIPSE have no possreps "in
common", so PLANE_FIGURE will be another union type (a dummy type, in fact), with
PARALLELOGRAM and ELLIPSE as immediate subtypes:

How to Handle Missing Information Using S-by-C — Page 11 of 21

TYPE PM_PLANE_FIGURE UNION ,
TYPE PLANE_FIGURE UNION ,
TYPE PM_PARALLELOGRAM UNION

IS { PM_PLANE_FIGURE } ,
TYPE PARALLELOGRAM IS { PM_PARALLELOGRAM, PLANE_FIGURE

POSSREP … } ,
… /* rectangles and rhombuses here */
TYPE PM_ELLIPSE UNION

IS { PM_PLANE_FIGURE } ,
TYPE ELLIPSE IS { PM_ELLIPSE, PLANE_FIGURE

POSSREP … } ,
… (circles here) ,
TYPE M_PLANE_FIGURE IS { PM_SQUARE, PM_O_CIRCLE

POSSREP { } } ;

This type schema has exactly one M type per root type, as proposed. But what has happened
to the previously defined M_PARALLELOGRAM and M_ELLIPSE types?

Their existence implies that two distinct values existed in the system, namely,
M_PARALLELOGRAM() and M_ELLIPSE(). These distinct values might appear as attribute
values in some relvars. The new definition of M_PLANE_FIGURE, however, requires both
M_PARALLELOGRAM() and M_ELLIPSE() to be the very same value: M_PLANE_FIGURE().
So, introducing type PLANE_FIGURE and its PM_ counterpart would make the existing
database, and programs using it, incompatible with the revised type schema. The conversion
tasks needed to address this situation are likely to be an unacceptable burden.

There seem to be two ways to cope with this problem:

 Ensure that there is only a single M() value, system-wide (strongly suggesting that this
value be defined "close to the omega level5", so to speak). This will ensure that all
existing appearances of M() in the database will be unaffected by the revised type
schema.

 Have a separate M type for each regular scalar type instead of just for each root scalar
type. An immediate consequence is that PM_T1 is not a proper supertype of PM_T2 even
when T1 is a proper supertype of T2, as can be seen from the following example
(irrelevant details omitted):

TYPE PM_ELLIPSE UNION,
TYPE ELLIPSE IS PM_ELLIPSE ...
TYPE M_ELLIPSE IS PM_ELLIPSE ...

TYPE PM_CIRCLE UNION,
TYPE CIRCLE IS { PM_CIRCLE, ELLIPSE } ...
TYPE M_CIRCLE IS PM_CIRCLE ...

Thus, a "missing circle" is no longer the same thing as a "missing ellipse" (and this
despite the fact that all circles are ellipses). That is at least somewhat counterintuitive.

5 The examples already given clearly show that the M types necessarily become a leaf type of their PM_
supertypes, thus "pushing them down" towards the omega level.

Page 12 of 21 —How to Handle Missing Information Using S-by-C

All this strongly suggests that there should be exactly one M type in the entire system, at least
as far as the scalars are concerned6. From now on, therefore, we assume that the M type is
indeed unique, and is a leaf subtype (ignoring omega) of every PM_ type. We will use the
name M (no italics) for it.

3.2 Alpha and Omega

IM explicitly defines the concepts of maximal supertypes and minimal subtypes. The
maximal supertype of type T is the single type that is both a root type and a supertype of T.
The minimal subtype of type T is the single type that is both a leaf type and a subtype of T. If
T is a scalar type, then its maximal supertype is the type, alpha, consisting of all scalar
values, and its minimal subtype is the empty scalar type, omega.

Although IM defines alpha and omega, it does not require them to be available as declared
types in an IM-conforming language. If alpha is not available, then it is still the case that
every scalar type has exactly one supertype that is a root type; however, if omega is not
defined, then a scalar type might have several leaf subtypes.

The questions now arise as to (a) whether the current proposal necessitates the admission,
conceptually at least, of types PM_alpha and PM_omega as well, and (b) if those types are
admitted, whether they must be available as declared types in the language.

The proposal expressed in the original e-mail intended the answer to question (a) to be 'no'.
The idea was to deal with the notion of 'missing' by using a value for it, and a scalar value in
particular. Therefore M() had to be considered a scalar value, implying that type M had to be
a proper subtype of alpha and a proper supertype of omega.

Nevertheless, it may be interesting to investigate in some more detail what happens if we do
define a type PM_alpha, along the lines of the method used before. Doing so would yield:

TYPE PM_alpha UNION ;
TYPE M IS { PM_t1, …, PM_tn, POSSREP { } } ;
TYPE alpha UNION ;

1. t1, …, tn are the names of the regular scalar types that are known to the system. A
relational system requires at least one such type (BOOLEAN), so that set of regular types
cannot possibly be empty. This implies in particular that whether or not alpha is
supported does not influence the definition of type M itself (M is always at least a subtype
of PM_BOOLEAN), so it (whether or not alpha is supported) only determines which union
types are available to the user.

2. alpha remains the union type for all the regular scalar types. The maximal type for scalar
values, however, is now PM_alpha.

3. PM_alpha must be available as a declared type, because IM requires that if two or more
types have a common, nonempty subtype, then they must also have a common supertype.
However, it does not follow that if PM_alpha is available as a declared type, then alpha,

6 Relation and tuple types will be investigated later.

How to Handle Missing Information Using S-by-C — Page 13 of 21

too, must be available. We remark merely that existence of alpha might be expected on
psychological groundsif every regular type t has a counterpart, PM_t, there is an
expectation that the existence of type PM_x conversely implies that of a type x. Moreover,
the consequent existence of an IS_alpha() operator, as a counterpart for IS_M(),
might be much appreciated7.

Doing a similar exercise for PM_omega yields :

TYPE PM_omega UNION ;
TYPE M IS { PM_omega POSSREP { } } ;
TYPE omega IS {PM_omega CONSTRAINT FALSE} ;

This shows that there is no value of type PM_omega that is not also a value of type M. But IM
states that if T' is a proper subtype of T, then there must be at least one value of type T that is
not of type T'. Therefore PM_omega and M cannot both exist.

3.3 Relation Types and Tuple Types

So far we have defined M in connection with scalar types specifically. Under that assumption,
there would be no PM_ counterparts of tuple types and relation types.

That seems undesirable, because the notion of 'missing' can equally well apply to information
that, if present, is represented by tuples or relations, and so not supporting the notion of
'missing' for tuple and relation types seems to lead to conceptual incompleteness.

It might be thought that, in the case of relation types, using the empty relation as the value to
indicate "missing information" solves the problem. That is incorrect. It may well be the case
that an empty relation value is needed to explicitly state something. An empty relation is
interpreted as meaning that every instantiation of its predicate is a false proposition, which is
very different from saying that there is no relation that can validly appear here.

So it seems that some type like M is needed for use with tuple-valued and relation-valued
attributes as well. At first sight, it would then seem natural just to use the same type M and its
value M() to define PM_TUPLE and PM_RELATION types:

TYPE PM_TUPLE { … } UNION ,
TYPE TUPLE { … } IS { PM_TUPLE { … }

POSSREP ??? } ,
TYPE PM_RELATION { … } UNION ,
TYPE RELATION { … } IS { PM_RELATION { … }

POSSREP ??? } ,
TYPE M IS { PM_TUPLE { … }, PM_RELATION { … } POSSREP { } } ;

It is not possible to write such declarations in Tutorial D because TTM requires all relation
and tuple types to be system-provided; thus they do not have "declarable" possreps. But this

7 Without a distinction between alpha and PM_alpha, finding out whether a value is other than M() can be
achieved only by using 'NOT IS_M(…)'. Requiring users to write lots of NOTs is not considered a very good idea.
The availability of IS_alpha(…) might be desirable for that reason alone.

Page 14 of 21 —How to Handle Missing Information Using S-by-C

is also the case for system-provided scalar types, such as BOOLEAN, CHAR, and INTEGER. There
is nothing to prevent the system from providing PM_ counterparts for all system-defined types.

However, the PM_TUPLE and PM_RELATION types we have now defined consist of a mix of
nonscalar values (relation and tuple values, respectively) and a scalar value (M()). There is
one particular aspect of IM that might be affected by such a construct, and that is the
definition of maximal and minimal types of relation types and tuple types.

Consider a relvar that has an attribute of type RELATION{C CIRCLE}:

VAR RVRC RELATION {R_C RELATION{C CIRCLE}};

According to IM, a corresponding maximal relation type is defined for RELATION {R_C

RELATION{C CIRCLE}}, that type being either of the following:8

RELATION {R_C RELATION{C ELLIPSE}};
RELATION {R_C RELATION{C alpha}};

The maximal type is chosen such that all values of RVRC's type are, by definition, also values
of that maximal type.

But what would happen if R_C attribute values could be "possibly missing", and we want to
reflect that possibility in the design by using a PM_ type ? Our relvar definition would
become:

VAR PM_RVRC RELATION {R_C PM_RELATION{C CIRCLE}};

The maximal relation type can now obviously no longer be any of the two formerly given
relation types. However, the corresponding PM_ relation types are suitable candidates:

RELATION {R_C PM_RELATION{C ELLIPSE}};
RELATION {R_C PM_RELATION{C alpha}};
RELATION {R_C PM_RELATION{C PM_alpha}};9

Now consider

RV1 JOIN RV2;

where RV1 and RV2 are defined as follows:

VAR RV1 RELATION {R_C PM_RELATION{C CIRCLE}};
VAR RV2 RELATION {R_C PM_INTEGER};

Note that the R_C attribute in both cases is "possibly missing", meaning in particular that in
both relations, M() might appear as a value for the R_C attribute. And since there is only one
M() value under our current assumption, this join has a potentially non-empty result (at least,
as far as the rules for join per se are concerned)! If we want to assign that non-empty result to

8 Depending on whether the system has explicit support for type alpha (and if not, which type happens to be the
root type for type CIRCLE, of course).
9 Depending on whether PM_alpha is indeed defined by the system as discussed previously, and on whether or
not PM_alpha is indeed the maximal type for scalar types other than M.

How to Handle Missing Information Using S-by-C — Page 15 of 21

a relvar, then we need to be able to find a declared type for the result of the join. IM states
that this must then be some type

RELATION {R_C R_C_TYPE}

where R_C_TYPE is a supertype of both PM_INT and PM_RELATION {C CIRCLE}. But such a
type does not exist! Even alpha and PM_alpha are only supertypes for the scalars, not for
any relation type.

This shows that it is not possible to maintain the idea of one single M type that applies both to
scalars and to non-scalarsat least not without drastic revision of IM.

We conclude from this that it seems desirable to have, in addition to the type M as defined
earlier for the scalars, an M_ relation type generator such that for each relation type there is a
corresponding M_ relation type with the same heading, and a similar M_ tuple type generator.
Thus, if {H} is a heading, then:

 M_RELATION{H} is a type having a single value, M_RELATION{H}(), representing,
very loosely speaking, a "missing relation" of type RELATION{H}. PM_RELATION{H} is
an immediate supertype of M_RELATION{H}.

 M_TUPLE{H} is a type having a single value, M_TUPLE{H}(), representing, very
loosely speaking, a "missing tuple" of type TUPLE{H}. PM_TUPLE{H} is an immediate
supertype of M_TUPLE{H}.

Now, if we replace the PM_ relation type of attribute R_C in RELVAR1 by a scalar one, say
PM_CHAR, then a similar reasoning can be applied to demonstrate that support for alpha
actually becomes a necessity as a consequence of the PM_ types, because PM_alpha becomes
the maximal type for all PM_ scalars.

We now consider the effects of the foregoing conclusions on the maximal types of relation
types and PM_ relation types. Consider first, RELATION { A st }, where st is an arbitrary
scalar type. Clearly this is a subtype of RELATION { A PM_alpha }. Equally clearly, that is a
subtype of PM_RELATION { A PM_alpha }, which is a root type. But PM_RELATION { A

PM_alpha } is also a supertype of, and therefore the maximal type for, PM_RELATION { A st

}. So PM_RELATION { A PM_alpha } is the maximal type for every unary relation type, and
every unary PM_ relation type, whose sole attribute is named A and is of some scalar type.
Applying the same argument, mutatis mutandis, to tuple types and PM_ tuple types, we
conclude that PM_TUPLE { A PM_alpha } is the maximal type for every tuple type, and every
PM_ tuple type, whose sole attribute is named A and is of some scalar type.

Generalising the foregoing discussion, we find that the maximal type for RELATION { A1 T1,

…, An Tn }, and also for PM_RELATION { A1 T1, …, An Tn }, is PM_RELATION { A1

MT1, …, An MTn }, where, for i = 1:n, MTi is the maximal type for Ti. For example,
PM_RELATION { RVA PM_RELATION { A PM_alpha } } is the maximal type for each of the
following:

RELATION { RVA RELATION { A CHAR } }

Page 16 of 21 —How to Handle Missing Information Using S-by-C

RELATION { RVA PM_RELATION { A CHAR } }
PM_RELATION { RVA RELATION { A CHAR } }
PM_RELATION { RVA PM_RELATION { A CHAR } }

This situation may not be desirablefurther investigation is needed10.

3.4 Examples

In this section we present a few examples showing how PM_ types might be put to good use in
relvar declarations, constraints and data manipulation.

In particular, the approach using PM_ types will be contrasted with the approach proposed in
reference [2].

Here are some example relvars, using PM_ types for some of their attributes:

VAR NATURALPERSON
RELATION { NR_PERS INTEGER,

NM_PERS CHAR,
DT_BIRTH PM_DATE,
DT_DECEASE PM_DATE,
MIFID_PROFILE PM_MIFID_PROFILE }

KEY { NR_PERS } ;

VAR LEGALPERSON
RELATION { NR_PERS INTEGER,

NM_PERS CHAR,
LEGAL_FORM PM_CHAR,
DT_FOUND PM_DATE }

KEY { NR_PERS } ;

VAR PERSONS_RELATIONSHIPS
RELATION { NR_PERS_1 INTEGER,

NR_PERS_2 INTEGER,
P_RELATIONSHIP_TYPE … }

KEY { NR_PERS_1, NR_PERS_2 } ;

VAR CURRENTACCOUNT
RELATION { NR_ACC CHAR,

AM_BALANCE AMOUNT }
KEY { NR_ACC } ;

VAR SHARES
RELATION { NR_ACC CHAR }
KEY { NR_ACC } ;

VAR PERSONS_CONTRACTS_RELATIONSHIPS
RELATION { NR_PERS INTEGER,

NR_ACC CHAR,
C_RELATIONSHIP_TYPE:… }

KEY { NR_PERS, NR_ACC } ;

10 There may be similar reasons why it might be desirable to have alpha, not PM_alpha, as the maximal type for
the scalar types other than M.

How to Handle Missing Information Using S-by-C — Page 17 of 21

Some remarks on the intended meanings of these relvars:

Persons can be either natural persons, or legal persons. Both are assigned a unique number.
Natural persons have a name, a birth date, a dying date, and a mifid profile. Apart from the
name, values for each of those attributes are possibly missing (for one reason or another:
irrelevant, unknown, etc.).

Legal persons have a name too, a founding date, and a legal form. The legal form is possibly
inapplicable (e.g., for companies in a different country).

A person can have a relationship with another person. A natural person can be a legal
representative for a legal person or another natural person. A legal person can "own" another
legal person, a natural person can be married to another natural person, etc., etc.

Contracts include current accounts and shares accounts (which service stock market orders
and suchlike).

Contracts are held by persons (legal or natural), but apart from the actual subscribing persons,
other persons can be related to a contract as welle.g., any other person can be authorised to
withdraw funds from a current account by the owner of that account.

Here are some constraints on this database:

1. A shares account must be held by either a legal person or a natural person who has a
mifid profile.

IS_EMPTY(SHARES JOIN PERSONS_CONTRACTS WHERE C_RELATIONSHIP_TYPE = …
NOT MATCHING (LEGALPERSONS{NR_PERS}

UNION
(NATURALPERSON WHERE

IS_MIFID_PROFILE(MIFID_PROFILE)
{NR_PERS})))

2. An account cannot be held by a legal person whose foundation date is missing or a
natural person whose birth date is missing.

IS_EMPTY(PERSONS_CONTRACTS WHERE C_RELATIONSHIP_TYPE = … JOIN
NATURALPERSON WHERE IS_M(DT_BIRTH))

and

IS_EMPTY(PERSONS_CONTRACTS WHERE C_RELATIONSHIP_TYPE = … JOIN
LEGALPERSON WHERE IS_M(DT_FOUND))

3. A natural person who is the legal representative of another person must be neither a
minor nor deceased.

Page 18 of 21 —How to Handle Missing Information Using S-by-C

WITH (PERSONS_RELATIONSHIPS WHERE P_RELATIONSHIP_TYPE = …) RENAME
NR_PERS_1 AS NR_PERS AS LEGALREPS :
IS_EMPTY(LEGALREPS JOIN NATURALPERSON WHERE (IS_M(DT_BIRTH) OR
DT_BIRTH > NOW() - 18) OR IS_DATE(DT_DECEASE))

Without PM_ types, in accordance with reference [2], the design would have to be changed
such each attribute of a PM_ type is placed in a relvar of its own to cater for the possible
"missingness":

VAR NATURALPERSON
RELATION { NR_PERS INTEGER,

NM_PERS:CHAR }
KEY { NR_PERS } ;

VAR NATURALPERSON_BIRTHDATE
RELATION { NR_PERS INTEGER,

DT_BIRTH DATE }
KEY { NR_PERS } ;

VAR NATURALPERSON_DECEASEDATE
RELATION { NR_PERS INTEGER,

DT_DECEASE DATE }
KEY { NR_PERS } ;

VAR NATURALPERSON_MIFID_PROFILE
RELATION { NR_PERS INTEGER,

MIFID_PROFILE MIFID_PROFILE }
KEY { NR_PERS } ;

Extra constraints need to be defined on the above relvars to ensure referential integrity.

CONSTRAINT FK1 IS_EMPTY(NATURALPERSON_BIRTHDATE NOT MATCHING
NATURALPERSON);

CONSTRAINT FK2 IS_EMPTY(NATURALPERSON_DECEASEDATE NOT MATCHING
NATURALPERSON)

CONSTRAINT FK3 IS_EMPTY(NATURALPERSON_MIFID_PROFILE NOT MATCHING
NATURALPERSON)

Then we would have:

VAR LEGALPERSON
RELATION { NR_PERS INTEGER

NM_PERS CHAR }
KEY { NR_PERS } ;

VAR LEGALPERSON_LEGALFORM
RELATION { NR_PERS INTEGER,

LEGAL_FORM CHAR }
KEY { NR_PERS } ;

VAR LEGALPERSON_FOUNDED
RELATION { NR_PERS INTEGER,

DT_FOUND DATE }
KEY { NR_PERS } ;

CONSTRAINT FK4 IS_EMPTY(LEGALPERSON_LEGALFORM NOT MATCHING LEGALPERSON);

How to Handle Missing Information Using S-by-C — Page 19 of 21

CONSTRAINT FK5 IS_EMPTY(LEGALPERSON_FOUNDED NOT MATCHING LEGALPERSON);

The other four relvars, having no PM_-typed attributes, remain unaltered.

The other constraints need to be adapted to deal with the altered structure:

1. A shares account must be held by either a legal person or a natural person who has a
mifid profile.

IS_EMPTY(SHARES JOIN PERSONS_CONTRACTS WHERE C_RELATIONSHIP_TYPE = …
NOT MATCHING (LEGALPERSONS {NR_PERS} UNION

NATURALPERSON_MIFID_PROFILE {NR_PERS}))

2. An account cannot be held by a legal person whose foundation date is missing or a
natural person whose birth date is missing.

IS_EMPTY(PERSONS_CONTRACTS WHERE C_RELATIONSHIP_TYPE = … JOIN
(NATURALPERSON NOT MATCHING NATURALPERSON_BIRTHDATE))

and

IS_EMPTY(PERSONS_CONTRACTS WHERE C_RELATIONSHIP_TYPE = … JOIN
(LEGALPERSON NOT MATCHING LEGALPERSON_FOUNDED)

3. A natural person who is the legal representative of another person must be neither a
minor nor deceased.

WITH (PERSONS_RELATIONSHIPS WHERE P_RELATIONSHIP_TYPE = …) RENAME
NR_PERS_1 AS NR_PERS AS LEGALREPS :
IS_EMPTY(LEGALREPS

JOIN (((NATURALPERSON NOT MATCHING
NATURALPERSON_BIRTHDATE) {NR_PERS})

UNION ((NATURALPERSON NOT MATCHING
NATURALPERSON_DECEASEDATE) {NR_PERS})

UNION ((NATURALPERSON_BIRTHDATE
WHERE (DT_BIRTH > NOW()-18)){NR_PERS})

)
)

Manipulation of these relvars in either design is pretty straightforward. In each example we
give the solution for the design using PM_ types followed by the solution using decomposition.

 Register a new natural person whose birth date is known:

INSERT NATURALPERSON RELATION{TUPLE{NR_PERS …, NM_PERS …, DT_BIRTH …,
DT_DECEASE M(), MIFID_PROFILE M()}};

INSERT NATURALPERSON RELATION{TUPLE{NR_PERS …, NM_PERS … }}, INSERT
NATURALPERSON_BIRTHDATE RELATION{TUPLE{NR_PERS …, DT_BIRTH … }};

 Remove a natural person from the database:

DELETE NATURALPERSON WHERE …;

DELETE NATURALPERSON WHERE …, DELETE NATURALPERSON_BIRTHDATE WHERE …,
DELETE NATURALPERSON_DECEASEDATE WHERE …, DELETE
NATURALPERSON_MIFID_PROFILE WHERE …;

Page 20 of 21 —How to Handle Missing Information Using S-by-C

 Set an inappropriately entered decease date back to "missing":

UPDATE NATURALPERSON WHERE … (DT_DECEASE := M());

DELETE NATURALPERSON_DECEASEDATE WHERE …;

 Get the highest age of all natural persons whose age is known:

NOW() - MIN(NATURALPERSONS : IS_DATE(DT_BIRTH), DT_BIRTH)

NOW() - MIN(NATURALPERSONS_BIRTHDATE, DT_BIRTH)

 Get the count of natural persons that do not have a mifid profile:

COUNT (NATURALPERSONS WHERE IS_M(MIFID_PROFILE))

COUNT (NATURALPERSONS NOT MATCHING NATURALPERSONS_MIFID_PROFILE)

How to Handle Missing Information Using S-by-C — Page 21 of 21

REFERENCES

1. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third
Manifesto (3rd edition). Boston, Mass.: Addison-Wesley (2006).

2. Hugh Darwen: How to Handle Missing Information Without Using NULL. Annotated
lecture slides available at http://www.thethirdmanifesto.com.

End of paper

