
1

The Importance of Column
Names

Hugh Darwen
hd@thethirdmanifesto.com
www.thethirdmanifesto.com

Last updated: 01 October, 2003

For IUAUK - 6 October 2003

2

A light-hearted but deadly serious look at
how an astonishingly badly designed but
widely used computer language came
about.

Illustrated by a close look at its third most
severe mistake (after nulls and duplicate
rows).

A plea for an implementation of Codd’s
Relational Model of Data (1969) to become
commercially available (at last).

Synopsis

My criticism of SQL should not be taken as a criticism of the System R project
that spawned SQL in the 1970s. Nor should it be taken as any kind of
personal criticism of the System R engineers. They did a brilliant job and
achieved their stated objective. The resulting acclaim was richly deserved but
should not, in my opinion, have resulted in acceptance of the ad hoc language
(as I would call it) that formed the user interface to System R.

The comparative severities of SQL’s various logical errors is a matter of
opinion, of course. I rate nulls—or rather, three-valued logic—as the worst
error because, for one reason at least, nulls can’t be totally avoided by
judicious use of the language, whereas duplicate rows can. The dependence
on column ordering can’t be avoided either, but somehow this mistake seems,
though unforgivable, just slightly less unforgivable than the other two, based
on the severity of the problems it causes. If anybody wishes to argue that
“unforgivable” is an absolute, I would accept that point.

Codd’s Relational Model of Data made it quite clear that (a) every tuple in a
relation has a value for every attribute (so, no nulls), (b) the body of a relation
is a set (not a bag), and (c) no significance attaches to the order of attributes
(where relation=table, tuple=row, attribute=column).

3

Further Reading

Relational Database Writings 1985-1989
by C.J.Date with a special contribution

“Adventures in Relationland”
by H.D. (as Andrew Warden)

Relational Database Writings 1989-1991
by C.J.Date with Hugh Darwen

Relational Database Writings 1991-1994
by C.J.Date

Foundation for Future Database Systems :
The Third Manifesto

by C.J. Date and Hugh Darwen

Introduction to Database Systems
(8th edition) by C.J. Date

Within these writings can be found much elaboration on SQL’s various errors
and, more importantly, strong indications of what a Truly Relational Database
Management System (TRDBMS) looks like in contrast. The Third Manifesto in
particular defines the necessary features, lists several notable features that
must NOT appear, and makes some additional strong suggestions.

4

A Brief History of Data
1960: Punched cards and magnetic tapes
1965: Disks and ‘direct access’
1969: E.F. Codd’s great vision: “A Relational Model of

Data for Large Shared Data Banks” (1970)
1970: C.J. Date starts to spread the word
1973: Stonebraker starts work on Ingres (QUEL) at UCB
1975: Relational Prototypes in IBM:

PRTV (ISBL), System R
1980: First SQL products: Oracle, SQL/DS
1986: SQL an international standard
1990: OODB (didn’t come to much after all)
2000: XML (?—shudder!)

The line for 1973 mentions Ingres, which was based on Codd’s ALPHA.
Ingres’s language, QUEL, is much more faithful to the Relational Model than
SQL and “for some time was a serious contender to SQL” (Date: Introduction
to Database Systems, 8th edition).

The line for 1975 mentions PRTV, which perhaps few people nowadays have
heard of, and System R, the famous research project that spawned SQL.

PRTV deserves wider recognition. Its language, ISBL, brilliantly answered all
the questions about relational algebra-based language design that Codd’s
papers raised and left unanswered. And it had no nulls, no duplicate rows,
and no dependence on column ordering. But PRTV wasn’t a DBMS, whereas
System R was. The aim of the System R project was to refute the claims of
those pundits who asserted that Codd’s Model was infeasible, for performance
reasons.

SQL was designed by people whose primary interests and skills lay in
DBMS engineering. ISBL was designed by people whose primary
interests and skills lay in computer language design.

5

A Brief History of HD

1967 : IBM Service Bureau, Birmingham

1969 : "Terminal Business System" – putting users in
direct contact with their databases.

1972 : Attended Date's course on database (a personal
watershed)

1978 : "Business System 12"
- a relational dbms for the Bureau Service

1985 : Death of Bureau Service (and of BS12)

1987 : Returned to database after brief absence. Attended
Codd & Date database conference in London

1988 : “Adventures in Relationland” by Andrew Warden.
Joined SQL standardization committee.

Let me explain the 1972 line. In response to TBS customer demand, I had
been struggling to put together a scripting language for a report generator that
would be able to collate information from multiple files, some of whose records
might be connected together by means of pointers. And I needed a Data
Definition Language capable of describing such “structures”, of course. My
struggles got me absolutely nowhere. Then Chris Date taught me Codd’s
Relational Model, and suddenly I had the basis of a complete answer to our
customers’ problems. Of course, there was a small matter that would need to
be attended to—the design of a language based on that Model.

It was not feasible to retrofit a relational language to TBS, but by 1978 a strong
business case had arisen for a new, state-of-the-art DBMS for the Bureau
Service, enabling us to start with a clean sheet. For Business System 12 we
took advice from System R people regarding the DBMS engine, but we had no
difficulty in rejecting SQL in favour of a language of our own devising, based
on the operators of ISBL (though not using ISBL syntax).

6

Ref: “The Naming of Columns” by Andrew Warden in
Relational Database Writings, 1985-1989.

and now:

A Sweet Disorder, by C.J. Date, available at
http://www.dbdebunk.com.
Subtitled “The relational model prohibits left-to-right column
ordering for sound practical reasons.”

The Importance of Column Names

I rather think right-to-left column ordering is prohibited too. (Joke)

7

Variations on a Theme: 5 SQL Queries

1. SELECT E#, SALARY + BONUS – total pay of each employee
FROM EMP

2. SELECT D#, COUNT(*) – number of employees in each department
FROM EMP
GROUP BY D#

3. VALUES 0

4. SELECT W1.E#, W2.E#, W1.P# – employees working on same project
FROM WORKS_ON W1, WORKS_ON W2
WHERE W1.P# = W2.P#

AND W1.E# > W2.E#

5. SELECT X, Y FROM T1
UNION
SELECT Y, X FROM T2

The results of all these
expressions are called
tables, but none of them can
be the current value of a
table variable (a.k.a. “base
table”)!

1. The second column has no name.
2. The second column has no name. (Exercise: what is the rule under which

the first column does have a name?)
3. The only column has no name.
4. The first two columns have the same name, E#.
5. Neither column has a name (though they both would if the second operand

were SELECT X, Y FROM T2!)

Do you know of any other computer language that supports expressions
whose results cannot be stored in variables?

Consider how one creates a view based on such SQL expressions, and how
one stores their results in the database.

How does one get SQL to present a result that is sorted on an anonymous
column such as SALARY + BONUS or COUNT(*)? Didn’t the original SQL
language designers simply take the easy way out, with their “ORDER BY
2”? Was this perhaps because System R had, as they say, bigger fish to
fry and could not be much bothered by such trifling matters (in the context
of the stated aim of their project)?

8

Examining Example 1
1. SELECT E#, SALARY + BONUS – total pay of each employee

FROM EMP

Suppose we want only the high earners. In the SQL of 1979:

SELECT E#, SALARY + BONUS
FROM EMP
WHERE SALARY + BONUS >= 5000

Many years later, “AS” was added, but did it help?

Try:
SELECT E#, SALARY + BONUS AS TOTAL_PAY
FROM EMP
WHERE TOTAL_PAY >= 5000 Illegal! And rightly so.

The necessity to repeat expressions such as SALARY + BONUS didn’t go
away until the mid-1990s and still exists in some implementations. It seems
outrageous, considering the importance that has always been attached to
avoiding such repetition.

But the emphasis of System R was on performance, not on design of an
industrial-strength language. One can guess (not necessarily rightly) that the
SQL designers couldn’t easily find a way of avoiding that repetition, given the
style and structure they had settled on, but they weren’t expecting the
language itself to achieve widespread adoption. One can also surmise that
had they tackled the problem head-on, they might have had second thoughts
about the chosen style and structure.

In their defence, it should be noted that Codd himself, whom they did consult,
paid little attention to “calculated columns”. His Relational Algebra did not
include the EXTEND and SUMMARIZE operators that were added later by
others.

9

The “Right” Solution
(Well, one that works.)

SELECT DISTINCT E#, TOTAL_PAY
FROM (SELECT E#, SALARY + BONUS AS TOTAL_PAY

FROM EMP) AS TEETH_GNASHER
WHERE TOTAL_PAY >= 5000

“Derived tables in the FROM clause” eventually made it
to the SQL international standard in 1992, but it still took
several years for the major SQL vendors to provide it
and some products are still without it.

SQL is relationally incomplete without this feature.
What does that say for the original language design?

(Aside: awful language design
continues to plague us!)

When we look at the “right” solution that did eventually come along, we can
begin to see why I wonder if the SQL designers might have had second
thoughts about the SELECT-FROM-WHERE structure, had they addressed
the repetition problem up front.

A word about relational incompleteness. Completeness is a useful concept
only when we have a clear understanding of what it takes to be complete in
some sense, and what kinds of problems can be solved given such
completeness. Like computational completeness, relational completeness is
such a concept. The real problem with not having relational completeness is
not so much that there are certain problems that you can’t solve but would be
able to solve with if you did have completeness. Rather, it is not being able
easily to identify the problems that can’t be solved. In other words, you can
scratch your head for hours in pursuit of a nonexistent solution.

TEETH_GNASHER? Yes, sorry about that. It makes me really mad that the
SQL syntax requires a name to be given here, considering that it is not
required always to give a name in places where a name really ought to be
required. Grrr!

10

The Other “Right” Solution
(But significantly less “right” than the first)

SELECT DISTINCT E#, TOTAL_PAY
FROM (SELECT DISTINCT E#, SALARY + BONUS

FROM EMP) AS TEETH_GNASHER (E#, TOTAL_PAY)
WHERE TOTAL_PAY >= 5000

In Codd’s Relational Model, no significance at all is
attached to any order in which the attributes of a relation
might be defined or perceived to appear.

This was one of Codd’s great insights.
Mathematicians deal with ordered n-tuples, and a
Cartesian product operator that is non-commutative.
Codd saw an improvement on those concepts for
database purposes.

Here’s my guess as to how this redundancy—utterly needless, surely?—might
have come about.

CREATE VIEW was part of original SQL. It was decided that the things called
views should look as much as possible like the things called base tables.
Now, SQL does require every column in a base table to have a unique name.
Views are defined on query expressions, but some query expressions define
tables that do not have that required property. How to assign unique column
names to the columns of the query on which the view is defined? The solution
they came up with was CREATE VIEW <view name> (<column-name-
commalist)—i.e., an optional list of column names in parens after the view
name, the correspondence with the columns of the query being determined by
ordinal position.

No doubt, the existence of that column-order-dependent device in CREATE
VIEW inspired the addition of a similar device for use in nested FROM
clauses. And no doubt the ability to assign column names in the SELECT
clause came later, when people complained about the inconvenience of
column ordering!??

11

The Tutorial D Solution
((EXTEND EMP ADD SALARY+BONUS AS TOTAL_PAY)
WHERE TOTAL_PAY >= 5000) { E#, TOTAL_PAY }

Or, if you prefer the steps to be more clearly visible:

WITH (EXTEND EMP ADD SALARY+BONUS AS TOTAL_PAY) AS T1,
(T1 WHERE TOTAL_PAY > 5000) AS T2 :
T2 { E#, TOTAL_PAY }

• No need for two projections.
• No need to think about whether DISTINCT is needed.
• And look! – the operations are performed in the order in
which they are specified, in the conventional manner.
• “AS” used for two purposes, but in a consistent way. The
expression is always on the left, the name on the right (cf.
SQL).

The notation used in Tutorial D was designed with pedagogic considerations in
mind. We do not particularly advocate it for industrial strength DBMSs.

In this example, we first operate on the relation variable (“base table”) EMP,
extending it to produce a relation (table) with an additional, derived attribute
(column) called TOTAL_PAY. Call that result T1. Then we apply a restriction
(WHERE) to T1, discarding the tuples (rows) we are not interested in. Call
that result T2. Finally, we project T2 over the required attributes (columns).

12

Examining Example 2
2. SELECT D#, COUNT(*) – number of employees in each department

FROM EMP
GROUP BY D#

Suppose we want only the big departments. In the
SQL of 1979:

SELECT E#, COUNT(*)
FROM EMP
GROUP BY D#
WHERE COUNT(*) >= 50 – wrong! (why?)
HAVING COUNT(*) >= 50 – “right”!

Semantically, HAVING = WHERE (= ON in JOIN).
Why have more than one operator with same meaning,
with only one of them the “right” one to use in any given
context?

They couldn’t use WHERE for this purpose, because (a) WHERE can appear
in the same query, before the GROUP BY clause, to denote a restriction on
the result of the FROM clause, and (b) the GROUP BY clause can be omitted,
in which case the existence of an aggregate operation in the SELECT clause
implies GROUP BY (). (GROUP BY () wasn’t allowed to be written explicitly
until the late 1990s.) In certain circumstances, then, it would be difficult to
know whether a WHERE restriction was to be applied before aggregation or
after it.

When you get into a fix like this in the design of a computer language, it might
be a good idea to reconsider the assumptions that might have got you into it in
the first place. Unless for some reason it’s too late to do that, of course.

13

SQL:1992 Made HAVING Redundant
SELECT D#, COUNT(*)
FROM EMP
GROUP BY D#
HAVING COUNT(*) >= 50

In SQL:1992 this is equivalent to
SELECT *
FROM (SELECT D#, COUNT(*) AS NUMBER_OF_EMPS

FROM EMP
GROUP BY D#) AS TEETH_GNASHER

WHERE NUMBER_OF_EMPS >= 5000

If it had been, would they ever have bothered with
HAVING at all?

And might they then have had second thoughts about
the enforced SELECT-FROM-WHERE structure?

Why wasn’t the problem recognised in 1979?

14

The Tutorial D Solution
(SUMMARIZE EMP

BY { D# }
ADD COUNT () AS NUMBER_OF_EMPS)

WHERE NUMBER_OF_EMPS >= 50

By the way, Tutorial D also supports “densifying”. E.g., for
number of employees in each department, including the
empty departments:

SUMMARIZE EMP
PER DEPT { D# }
ADD COUNT () AS NUMBER_OF_EMPS

So BY { D# } is shorthand for PER EMP { D# }
This is a planned shorthand. Helps user and system.
So much of SQL’s redundancy is unplanned, caused by
bad mistakes in original design.

“Densification” has been a known requirement on SQL, from the Data
Warehouse community especially, for some time. An extension to support it is
currently being considered by the committee that develops the SQL
international standard.

15

Examining Example 3
3. VALUES (0)

How to name the columns of a VALUES expression?

SELECT DISTINCT *
FROM (VALUES 0) AS TEETH_GNASHER (ZERO)

Note the necessity to add SELECT and FROM!

In Tutorial D:

RELATION { TUPLE { ZERO 0 } }

Sorry about that DISTINCT. Utterly unnecessary of course, but sometimes I
find the urge to write it just too irresistible.

16

Examining Example 4
4. SELECT W1.E#, W2.E#, W1.P# – employees working on same project

FROM WORKS_ON W1, WORKS_ON W2
WHERE W1.P# = W2.P#

AND W1.E# > W2.E#

Nowadays, the “right” solution is
SELECT *
FROM (SELECT E# AS E1, P#

FROM WORKS_ON) AS TEETH_GNASHER
NATURAL JOIN – if you can get it

(SELECT E# AS E2, P#
FROM WORKS_ON) AS TEETH_GNASHER_AGAIN

WHERE E1 > E2

In Tutorial D:

((WORKS_ON RENAME E# AS E1) JOIN (WORKS_ON RENAME E#
AS E2)) WHERE E1 > E2

I have a further observation in connection with duplicate column names. The
following expression is legal in SQL:

SELECT C1 AS X, C2 AS X FROM T

Aren’t those duplicate names likely to be a mistake, at least in a more realistic
example? Isn’t it usual in computer languages for the compiler to outlaw such
clashes? SQL outlaws it only if you subsequently attempt to reference column
X. But why? Answer: because if the duplicate names specified via AS had
been outlawed, then duplicate column names in general would have had to
have been outlawed. And that would have led to an incompatibility.

It is sometimes impossible to recover from mistakes in language design,
because of what I call “the shackle of compatibility”.

Note that in Tutorial D, the only “join” operator is called JOIN, and it means
“natural join”. Consider the sentences “e1 works on project p” and “e2 works
on project p”. When we connect those two sentences together by a
conjunction, we obtain a single sentence with two references to project p. For
example, “e1 works on project p and e2 works on project p”. In such a
sentence each appearance of the symbol p stands for the same thing! That is
the simple principle on which natural join is based. There should be no other
kind of join.

17

Examining Example 5

Nowadays, the “right” solution is

In Tutorial D:

(T1 { X, Y }) UNION (T2 RENAME (Y AS X, X AS Y))

5. SELECT X, Y FROM T1
UNION
SELECT Y, X FROM T2

SELECT X, Y FROM T1
UNION CORRESPONDING
SELECT X AS Y, Y AS X FROM T2

<screaming aside> Why is there no INSERT CORRESPONDING?</screaming aside>

If UNION CORRESPONDING had been accepted as correct
in 1979, wouldn’t it have been spelled just UNION?

Actually, not many SQL implementations seem to support
CORRESPONDING, but it’s been in the international standard since 1992.

Few people have had the experience of using a proper relational language. Of
those who have, I strongly suspect that none of them ever complained about
some perceived inconvenience in pairing columns according to their names.

18

The following SQL features are among those that became
redundant as former mistakes were recognised and “corrected”:

•subqueries in the WHERE clause

•range variables (a.k.a. “correlation names”)

•doing joins in longhand

•the HAVING clause

•the GROUP BY clause

•UNION/INTERSECT/EXCEPT based on column order.

The Growth of Redundancy

Which would you retain if we could start again with a clean sheet?

But in any case, wouldn’t you really like to be able to try out a
TRDBMS? (T = Truly)

Of course that bullet list is very incomplete.

19

I solemnly promise …

… cross my heart and hope to die.

The Relationlander’s Promise

… never to use the word “relational” when
I mean SQL, …

I made this promise, privately, in 1980. I have kept it ever since. Fortunately
for me, the SQL international standard deliberate avoids the word “relation”
and its derivatives.

20

D: “Date and Darwen’s Database Dream”

A language whose name includes “D” conforms
to The Third Manifesto and faithfully implements
The Relational Model of Data, with

- NO EXTENSION
- NO PERVERSIONS
- NO SUBSUMPTION under something else

The Dream Database Language

21

“All logical
differences are
big differences”

(Wittgenstein)

All logical mistakes are big mistakes
(Darwen’s corollary)

All non-logical (psychological) differences are
small differences

(Darwen’s conjecture)

A Guiding Light

22

“Conceptual integrity is the most important
property of a software product”

(Fred Brooks, 1975)

Conceptual Integrity

Of course, you must have concepts before
you can be true to any. These had better
be:

a.few
b.agreeable to those invited to

share them

The citation is from “The Mythical Man-Month”.

23

Reims
Cathedral

Fred Brooks uses this cathedral to illustrate what he means by conceptual
integrity.

24

Principle #7 (bis)
“This above all: to thine own self be true,
And it must follow, as the night the day,

Thou canst not then be false to any
user.”

(from Polonius’s advice to D, by WS with HD)

Conceptual Integrity

From Hamlet: Polonius’s advice to his son, Laertes, on the latter’s departure
from Denmark to France. Except that the last word was “man” in WS’s
original. I imagine Polonius wagging his finger at a would-be D.

