ISBL's Relational Operators

Hugh Darwen
This table (in three pages) shows the heavy influence of $\operatorname{ISBL}\left(1975^{1}\right)$ on the semantics of relational operators for Business System 12 (BS12, 1982) and Tutorial D (1998, revised 2010). The Tutorial D example in each row defines the semantics for the other two.

Tutorial D	ISBL	Business System 12^{2}
$r\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$ projection	$r \% \mathrm{~A}, \mathrm{~B}, \mathrm{C}$	PREsent $(r, \mathrm{~A}, \mathrm{~B}, \mathrm{C})$ or PREsent $(r$, INClude(A, B, C))
$r\{$ ALL BUT A, B \}	$\mathrm{r} \% \wedge \mathrm{~A}, \mathrm{~B}^{3}$	PREsent $(r, \operatorname{EXClude}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})$)
r \{ \}	Not supported ${ }^{4}$	PREsent (r, NONe)
$\begin{array}{r} r \text { RENAME }\{\text { A AS X, } \\ \text { B AS Y }\} \end{array}$ attribute renaming	$r \% \% \mathrm{X}:=\mathrm{A}, \mathrm{Y}:=\mathrm{B}$	$\begin{aligned} & \text { PREsent }(r, \operatorname{ALL}, \\ & \text { REName }(\mathrm{A}, \mathrm{X}), \\ & \operatorname{REName}(\mathrm{B}, \mathrm{Y})) \end{aligned}$
$r\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}$ RENAME $\{\mathrm{C}$ AS X $\}$ combined projection and attribute renaming	$r \% \mathrm{~A}, \mathrm{~B}, \mathrm{X}:=\mathrm{C}$	$\operatorname{PREsent}(r, \mathrm{~A}, \mathrm{~B}, \operatorname{REName}(\mathrm{C}, \mathrm{X}))$
r WHERE c selection	$r ; c^{5}$	SELect (r, c)
$r 1$ JOIN $r 2$ natural join	$r 1 * r 2$	$\operatorname{JOIn}(r 1, r 2)$
$\operatorname{JOIN}\{r 1, r 2, r 3\}$	$r 1 * r 2 * r 3$	$\mathrm{JOIn}(r 1, r 2, r 3)$
Not supported	$r 1 * / \mathrm{C} 1, \mathrm{C} 2 / r 2$ join if $\{C 1, C 2\}$ are the common attributes, otherwise error	Not supported
$r 1$ TIMES $r 2$	$r 1^{*} / / r 2$	QUAd(r1, r2)

[^0]| Tutorial D | ISBL | Business System 12 |
| :---: | :---: | :---: |
| ```JOIN{ rl RENAME {SUFFIX " AS '1'} RENAME {C11 AS C1, C21 AS C2}, r2 RENAME {SUFFIX " AS '2'} RENAME {C12 AS C1, C22 AS C2}}``` | $r 1^{*} / 1 / \mathrm{C} 1, \mathrm{C} 2 / 2 / r 2$
 appends ' 1 ' to all attribute names of rl except C1 and C2, appends ' 2 ' to all attribute names of 2 except $C 1$ and $C 2$, and takes the join of the two resulting relations. | no support for prefix/suffix renaming |
| $\begin{aligned} \text { EXTEND } r:\{\mathrm{X}:=\operatorname{expr} 1, \\ \mathrm{Y}:=\operatorname{expr} 2, \ldots\} \end{aligned}$ | $r \#\left(\mathrm{X}:=\operatorname{expr} 1, \mathrm{Y}:=\operatorname{expr} 2, \ldots{ }^{6}\right.$ | $\begin{aligned} \text { CALculate }(r, \mathrm{X} & =\operatorname{expr} 1 \\ \mathrm{Y} & =\operatorname{expr} 2, \ldots) \end{aligned}$ |
| $\begin{aligned} & \text { SUMMARIZE } r \text { BY }\{\mathrm{A}, \mathrm{~B}\}: \\ & \{\mathrm{X}:=\mathrm{SUM}(\text { expr }), \\ & \mathrm{Y}:=\operatorname{COUNT}()\} \end{aligned}$ | $\begin{aligned} r \$(\mathrm{~A}, \mathrm{~B})(\mathrm{X} & :=\operatorname{SUM}(\text { expr }),{ }^{7} \\ \mathrm{Y} & :=\mathrm{SUM}(1)) \end{aligned}$ | $\begin{aligned} \text { SUMmary }(r, & \operatorname{GROup}(\mathrm{A}, \mathrm{~B}), \\ \mathrm{X} & =\operatorname{SUM}(\text { expr }), \\ \mathrm{Y} & =\text { COUnt }) \end{aligned}$ |
| SUMMARIZE $r 1$ PER($r 2$): \{...\} | No direct counterpart | No direct counterpart |
| $r 1$ UNION $r 2$
 operands of same type | $r 1+r 2$ | UNIon ($r 1, r 2$) operands projected on common attributes |
| $r 1$ INTERSECT $r 2$
 operands of same type | $r 1 . r 2$ | INTersection(r1, r2) |
| $\begin{aligned} & \text { UNION }\{r 1, r 2, r 3\} \\ & \text { INTERSECT }\{r 1, r 2, r 3\} \end{aligned}$ | $\begin{aligned} & r 1+r 2+r 3 \\ & r 1 . r 2 . r 3 \end{aligned}$ | UNIon(r1,r2,r3) no n-adic intersection |
| $r 1$ MATCHING $r 2$ semijoin | No direct counterpart | INTersection(r1, r2) |
| $r 1$ NOT MATCHING $r 2$ antijoin or semidifference | $r 1-r 2$ or $r 1-/ \mathrm{C} 1, \mathrm{C} 2 / r 2$ to confirm common attributes | DIFference ($r 1, r 2$) |
| COUNT (r) | No counterpart, but see next entry | CTTv(SUMmary $(r$,
 GROup(NONe), X = COUnt)) |
| $\begin{aligned} & \text { RELation }\{\text { TUPle }\{\operatorname{CARD} \\ & \\ & \text { COUNT }(r)\}\} \end{aligned}$ | CARD(r) | SUMmary (r, GROup(NONe), CARD $=$ COUnt $)$ |
| Not supported: | DEGREE (r)
 Degree of r, given as a onetuple relation with a single attribute named $D E G$. | SUMmary(COLumns(r), GROup(NONe), DEGREE = COUnt) |

[^1]| Tutorial D | ISBL | Business System 12 |
| :---: | :---: | :---: |
| Not supported. | DOMAINS (r)
 Gives heading of r as a ternary relation with attributes CNO ("column number" ${ }^{8}$), DNAME ("column name", and SNAME (type, where C means "character" and N means "numeric") | ```PREsent(COLumns(r), REName(COLNUM, CNO), REName(COLNAME, DNAME), REName(COLTYPE, SNAME)) \({ }^{9}\)``` |
| TUPle $\{$ A expr $1, \mathrm{~B}$ expr $1, \ldots\}$ | $<: \mathrm{A}=\operatorname{expr} 1, \mathrm{~B}=\operatorname{expr} 1, \ldots$.. :> | Not supported |
| WITH (t 1 : = rel-expr $)$: . . | $\mathrm{t} 1:=\mathrm{N}!$ rel-expr not exact counterpart as the name tl persists until dropped | [DEFine] ${ }^{10} \mathrm{t} 1=$ rel-expr exact counterpart of the ISBL example |
| VAR t1 INIT(rel-expr) KEY \{ ALL BUT \}; | $\mathrm{t} 1:=\text { rel-expr }$ assuming variable t1 not already defined. | CREate tl LIKE(rel-expr)
 STOre (t1, rel-expr) |
| t1 := rel-expr ; | $\mathrm{t} 1:=$ rel-expr assuming variable t1 already defined. | STOre (t1, rel-expr, REPlace ${ }^{11}$) |

[^2]
[^0]: ${ }^{1}$ The publication date for the Hall/Hitchcock/Todd paper. Codd's 1991 book gives 1972 as the year of the first version of PRTV but Stephen Todd affirms that a working version existed when he joined the Scientific Centre in October, 1971.
 ${ }^{2}$ All BS12 key words could be abbreviated by truncation from the right down to a minimum of 3 letters Optional letters are shown in lower case.
 ${ }^{3}$ This syntax was added later-here it was BS12 that influenced ISBL.
 ${ }^{4}$ But they were aware of the possibility and it was they who drew the attention of BS12 developers to the existing of zero-degree relations.
 ${ }^{5}$ The semicolon was apparently the result of a typographical error. It should have been a colon!

[^1]: ${ }^{6}$ Incidentally, ISBL supported user-defined functions that could be invoked in such expressions.
 ${ }^{7}$ Builtin aggregate functions included SUM, AVERAGE, BIGGEST, SMALLEST, ALL, ANY, PRODUCT, STRING (concatenation, obviously suspect!), SD (standard deviation), RMS (root mean square), CORREL(X,Y) (correlation of X and Y), SLOPE(X,Y), YINTER(X,Y) (intersection with Y axis). User-defined aggregate functions were also supported.

[^2]: ${ }^{8}$ This looks nonrelational but both ISBL and BS12 supported attribute ordering to give users control over the left-to-right order in which columns would appear when results were returned to the application, perhaps for display in tabular form-and for no other purpose! (unlike SQL, where column order is used, for example, in the definition of UNION, EXCEPT, and INTERSECT).
 ${ }^{9}$ Attribute names COLNO, COLNAME and COLTYPE are from vague memory-this operator is sadly missing from the BS12 reference manual. Also, $\operatorname{COL}(r)$ had several more attributes, for things like default value.
 ${ }^{10}$ Here the keyword could be omitted (and usually was), so DEFINE was the "default command".
 ${ }^{11}$ The key word APPEND gave the equivalent of Tutorial D's INSERT.

