
Copyright (c) 2005 Hugh Darwen & C. J. Date page 1

A n O v e r v i e w a n d A n a l y s i s

o f P r o p o s a l s

B a s e d o n t h e T S Q L 2 A p p r o a c h

by

Hugh Darwen and C. J. Date

Date of this DRAFT: March 10th, 2005

┌──┐
│ 1. Introduction │
│ 2. TSQL2 and the SQL standard │
│ 3. TSQL2 tables │
│ 4. The central idea │
│ 5. Temporal upward compatibility │
│ 6. Current, sequenced, and nonsequenced operations │
│ 7. Data definition statements │
│ 8. Statement modifiers are flawed │
│ 9. Consequences of hidden columns │
│ 10. Imprecise specification │
│ 11. Lack of generality │
│ 12. Concluding remarks │
│ References and bibliography │
└──┘

1. INTRODUCTION

Along with Nikos Lorentzos, the present writers have described in
detail, in reference [6], an approach to the temporal database
problem that is firmly rooted in the relational model of data (and
we assume here and there in the present paper that you have some
familiarity with the ideas of reference [6]). However, many other
approaches have been proposed and described in the literature. In
this paper, we take a brief look at the "temporal query language"
TSQL2, which is probably the best known and most influential of
those alternative approaches──indeed, a version of it was even
proposed at one time for inclusion in the SQL standard (see
Section 2 below).1 Sections 3-7 provide an overview of the major
features of TSQL2. Sections 8-11 then describe what we regard as
a series of major flaws in the TSQL2 approach, and Section 12
offers a few concluding remarks.

With regard to those "major flaws," incidentally, we should
say there is one that seems to us so significant──indeed, it
underlies all the rest──that it needs to be mentioned right away,

1 Reference [1] describes a temporal query language very similar to TSQL2 called
ATSQL. In this paper, we use the name TSQL2 as a convenient generic label to
refer to the approach espoused in all or any of references [1] and [11-14].

Copyright (c) 2005 Hugh Darwen & C. J. Date page 2

and that is that TSQL2 involves "hidden attributes."2 As a direct
consequence of this fact, the basic data object in TSQL2 is not a
relation, and the approach thus clearly violates The Information
Principle. In other words, TSQL2, whatever else it might be, is
certainly not relational. We should immediately add that TSQL2 is
not alone in this regard──most of the other temporal proposals
described in the literature do the same thing, in one way or
another. What is more, the picture is muddied by the fact that
most if not all of the researchers involved refer to their
proposals, quite explicitly, as relational approaches to the
problem, even though they are clearly not (relational, that is).

We will elaborate on this matter of hidden attributes in
Sections 3 and 9. And although our remarks in those sections are
framed in terms of TSQL2 specifically, it should be clear that
those remarks apply with equal force, mutatis mutandis, to any
approach that attempts to "hide attributes" in the same kind of
way that TSQL2 does.

One final preliminary remark: Our discussions of TSQL2──which
are not meant to be exhaustive, please note──are based primarily
on our own understanding of references [13-15]. Naturally we have
tried to make those discussions as accurate as we can, but it is
of course possible that we have misinterpreted those references on
occasion. If so, we apologize; in our defense, however, we need
to say that those references [13-15] do contradict one another on
occasion.

2. TSQL2 AND THE SQL STANDARD

First of all, a little background. The body that publishes the
international SQL standard is the International Organization for
Standardization ("ISO"). That body produced versions of the
standard in 1992 (SQL:1992, known informally as SQL2) and 1999
(SQL:1999, known informally as SQL3). SQL:1999 [8] is the version
of the standard that is current at the time of writing; a thorough
tutorial description of the previous version, SQL:1992, with an
appendix giving an overview of SQL3 as it was around 1996 or so,
can be found in reference [5]. The next version is likely to be
ratified later this year (2003). Note added later: In fact this
latter did happen, and SQL:2003 is now the current standard.

The ISO committee with direct responsibility for the SQL
standard has delegates representing a variety of national
standards bodies. During the 1990s, the United States national
body received a proposal for a set of temporal extensions to SQL
based on TSQL2. (The name "TSQL2" presumably reflects the fact
that the language was designed as an extension to SQL2
specifically [11], which──in the form of SQL:1992──was the
official standard at the time.) The US national body in turn

2 The TSQL2 term is implicit columns. Regular attributes are called explicit
columns.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 3

submitted that proposal as an "individual expert's contribution"
(i.e., not as a formal position paper) for consideration by the
ISO SQL committee [13].

The ISO SQL committee proceeded to examine the proposal
carefully. As part of that examination, members of the United
Kingdom national body in particular came to the conclusion that,
while the proposal might look attractive at first glance, that
attractiveness did not stand up to close scrutiny. To be
specific, they found that TSQL2 departed significantly from both
established language design principles in general [2] and
relational database theory in particular (as already noted). What
is more, they found that the departures in question were
significantly different in kind from SQL's other well-documented
departures from those principles and that theory. As a
consequence of those findings, the UK body prepared a paper [4]
and submitted it for consideration at the ISO committee meeting in
January 1997.

The UK paper demonstrated conclusively that the specific
proposals of reference [13] were unacceptable for the working
draft of SQL3 at that time. Indeed, it went further: It showed
why the UK body was unlikely ever to support any proposal that was
based on TSQL2. Actually, the UK opposition to such an approach
had become clear to other participants at previous ISO committee
meetings in 1995 and 1996. However, those previous meetings had
at least achieved the following positive results among others:

• Agreement had been reached that temporal extensions of some
kind were desirable.

• A working draft for a possible Part 7 of the international
standard, known informally as "SQL/Temporal," had been
established as the base document for such extensions.

• Finally, discussion papers suggesting various ways forward had
been considered and debated.

Moreover, despite the arguments of reference [4], several
members of the ISO committee remained enthusiastic about the
possibility of a TSQL2-based approach──perhaps because of the
apparent reluctance on the part of the TSQL2 proponents themselves
to acknowledge that the arguments of reference [4] held water. Be
that as it may, it was at least agreed that the specific proposals
of reference [13] needed a significant amount of revision and left
several important questions unanswered, and the US delegates
therefore agreed to withdraw the submission.3 It was further

3 In spite of that withdrawal (and in support of our claim above that the TSQL2
proponents themselves seem reluctant to accept the arguments of reference [4]),
we observe that (a) Chapter 12 of reference [15], published some three years
later, continues to describe the TSQL2-based proposals as if they were part of
SQL3, and (b) reference [1], published later still, continues to pursue the
idea of statement modifiers, even though statement modifiers were one of the

Copyright (c) 2005 Hugh Darwen & C. J. Date page 4

agreed that nobody would submit any more temporal proposals to the
ISO committee until SQL3 was formally published. That publication
took place at the end of 1999, when the informal name SQL3 was
replaced by the official one, SQL:1999.

Following all of the activity described above, ISO interest in
temporal extensions waned somewhat; in fact, nobody was prepared
to spend any more time on the matter unless and until some
positive move was made by the leading SQL vendors. And time ran
out toward the end of 2001, when──since no vendor had made any
such move, and the committee had therefore done no further work on
the project to develop Part 7 of the standard──ISO's own bylaws
led to that project being canceled altogether. At the time of
writing, therefore, the working draft document mentioned above
("Part 7: SQL/Temporal") is in limbo.

3. TSQL2 TABLES

We begin our description of TSQL2 by describing the basic data
objects──to be more specific, the various kinds of "tables"──that
TSQL2 supports ("tables" in quotes because those "tables" are
certainly not relational tables, as we will quickly see). Then,
in subsequent sections, we can go on to explain various detailed
aspects of TSQL2 in terms of those different kinds of tables.

Before we can even start to describe those tables, however, we
need to say a word about terminology. As previously stated, TSQL2
is designed as an extension to SQL specifically. As a result, we
will frequently be forced to use SQL terminology instead of our
own preferred terms (as documented in reference [6]) in our
explanations in this paper. However, we will do our best to stay
with our preferred terms as much as possible──certainly when we
are talking about general concepts rather than TSQL2 specifics.

Here then is a list of our preferred terms and their SQL or
TSQL2 counterparts. Note that we do not say "equivalents,"
because the SQL (or TSQL2) terms are mostly not equivalent to
their relational counterparts. For example, a tuple and a row are
not the same thing, nor are an attribute and a column.

TSQL2 ideas that reference [4] showed to be fundamentally flawed (see Section
8).

Copyright (c) 2005 Hugh Darwen & C. J. Date page 5

┌─────────────┬────────────────────┐
│ Our term │ SQL or TSQL2 term │
├═════════════┼────────────────────┤
│ relvar │ table │
│ relation │ table │
│ tuple │ row │
│ attribute │ column │
│ interval │ period │
│ stated time │ valid time │
│ logged time │ transaction time │
│ operator │ operator, function │
└─────────────┴────────────────────┘
Now to the question of the kinds of tables that TSQL2

supports. Consider Fig. 1, which shows a sample value for a
relvar called S_DURING_LOG, with attributes S# (supplier number),
DURING (stated or "valid" time), and X_DURING (logged or
"transaction" time). Note our use of symbols of the form d01,
d02, etc., in that figure; the "d" in those symbols can
conveniently be pronounced "day," a convention to which we will
adhere throughout this paper. We assume that day 1 immediately
precedes day 2, day 2 immediately precedes day 3, and so on; also,
we drop insignificant leading zeros from expressions such as "day
1" (as you can see). Note: Details of how relvar S_DURING_LOG is
meant to be interpreted can be found in reference [6]; here we
just note that, for the sake of the example, we have assumed that
day 99 is "the end of time." We have also assumed that today is
day 10 (and we will stay with that assumption throughout the rest
of this paper).

╔══╗
║ ┌────┬───────────┬───────────┐ ║
║ S_DURING_LOG │ S# │ DURING │ X_DURING │ ║
║ ├════┼═══════════┼═══════════┤ ║
║ │ S1 │ [d01:d01] │ [d01:d03] │ ║
║ │ S1 │ [d05:d06] │ [d04:d10] │ ║
║ │ S2 │ [d02:d04] │ [d02:d06] │ ║
║ │ S2 │ [d02:d04] │ [d08:d08] │ ║
║ │ S2 │ [d02:d99] │ [d09:d10] │ ║
║ │ S3 │ [d05:d99] │ [d05:d10] │ ║
║ │ S4 │ [d03:d99] │ [d02:d10] │ ║
║ │ S6 │ [d02:d05] │ [d01:d02] │ ║
║ │ S6 │ [d03:d05] │ [d03:d10] │ ║
║ └────┴───────────┴───────────┘ ║
╚══╝
Fig. 1: Relvar S_DURING_LOG──sample values

Fig. 2 shows a table that might be regarded as a TSQL2
counterpart to the relvar shown in Fig. 1. Note the following
points right away:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 6

• The table is named S, not S_DURING_LOG.

• The table has no double underlining to indicate a primary key.

• The "timestamp" columns──i.e., the columns corresponding to
attributes DURING and X_DURING──are unnamed.

• Those timestamp columns are separated from the rest of the
table by a double vertical line.

╔══╗
║ ┌────╥───────────┬───────────┐ ║
║ S │ S# ║ │ │ ║
║ ├────╫───────────┼───────────┤ ║
║ │ S1 ║ [d01:d01] │ [d01:d03] │ ║
║ │ S1 ║ [d05:d06] │ [d04:d10] │ ║
║ │ S2 ║ [d02:d04] │ [d02:d06] │ ║
║ │ S2 ║ [d02:d04] │ [d08:d08] │ ║
║ │ S2 ║ [d02:d99] │ [d09:d10] │ ║
║ │ S3 ║ [d05:d99] │ [d05:d10] │ ║
║ │ S4 ║ [d03:d99] │ [d02:d10] │ ║
║ │ S6 ║ [d02:d05] │ [d01:d02] │ ║
║ │ S6 ║ [d03:d05] │ [d03:d10] │ ║
║ └────╨───────────┴───────────┘ ║
╚══╝
Fig. 2: A TSQL2 bitemporal table

The object depicted in Fig. 2 is an example of what TSQL2
calls a bitemporal table. Let us examine it more carefully.
First of all, the unnamed timestamp columns are hidden from the
user, which is why we show them separated from the rest of the
table by that double vertical line. (To the user, in other words,
the table contains just one column, named S#.) Of course, there
has to be a way to access those hidden columns, and so there is,
as we will see near the end of Section 6; however, that access
cannot be done in regular relational fashion──i.e., by simply
referring to the columns by name──because, to repeat, they have no
names. Indeed, those hidden columns are not relational
attributes, and the overall table is not a relation (more
precisely, it is not a relvar).

Next, the table is named S, not S_DURING_LOG, because TSQL2
wants to pretend as far as possible that the table is indeed just
the usual suppliers table;i4 to say it again, the timestamp
columns are hidden. In particular, TSQL2 wants regular SQL
statements to operate on the table, so far as the user is
concerned, just as if those hidden columns were not there.
(Indeed, it wants much more than that, as we will see in Section
6.)

4 We are assuming here a version of "the usual suppliers table" that has just
one column, called S# ("supplier number").

Copyright (c) 2005 Hugh Darwen & C. J. Date page 7

Next, we have omitted the double underlining we normally use
to indicate a primary key, because we clearly cannot pretend to
the user that the combination of all three columns is the primary
key (as it really is, in effect), while at the same time
pretending to that same user that the hidden columns are not
there. (In fact, TSQL2 also wants to pretend, in effect, that
certain rows are not there either, as we will also see in Section
6; as a consequence of this latter pretense, it is able to pretend
as well that {S#} alone is the primary key. But this notion is
hard to illustrate in a figure like Fig. 2, and we have not
attempted to do so.)

Now we need to explain that both of the hidden columns are in
fact optional, in general. As a result, TSQL2 supports at least
four kinds of tables:

• A bitemporal table is one that includes exactly two hidden
columns, one containing "valid-time" timestamps and the other
"transaction-time" timestamps.

• A valid-time state table5 (or just valid-time table for short)
is one that includes exactly one hidden column, which contains
"valid-time" timestamps.

• A transaction-time state table (or just transaction-time table
for short) is one that includes exactly one hidden column,
which contains "transaction-time" timestamps.

• A regular table (note that we cannot say "just table for
short," because table is a generic term that now has to
encompass all of the new kinds of tables introduced by TSQL2
as well as regular tables per se) is a table that includes no
hidden columns at all.

More terminology: A table with a valid-time hidden column is
said to be a table with valid-time support. A table with a
transaction-time hidden column is said to be a table with
transaction-time support. A table with either valid-time support
or transaction-time support is said to be a table with temporal
support.

Finally──this is important!──note that in TSQL2 valid- and
transaction-time columns are always hidden by definition. A user-
visible column that happens to contain valid or transaction times
is not regarded by TSQL2 as a valid- or transaction-time column at
all, but rather as a column that contains what it calls user-
defined times. From this point forward, therefore, we will assume

5 The term state here corresponds to reference [6]'s use of the term
during──i.e., it refers to the idea that something is true, or believed to be
true, throughout some period (interval). It is contrasted with the term event,
which corresponds to reference [6]'s use of the term at──i.e., it refers to the
idea that something is true (or believed to be true) at a certain point in
time.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 8

that all valid-time columns and all transaction-time columns are
hidden, barring explicit statements to the contrary (though we
will often refer to such columns explicitly as "hidden columns,"
for clarity). See the annotation to reference [10] for further
discussion.

4. THE CENTRAL IDEA

We now proceed to describe what we perceive to be the central idea
of TSQL2. Now, as every student of temporal databases quickly
becomes aware, queries involving intervals (temporal or otherwise)
can be surprisingly tedious or difficult or both to express. And
while it is true that the various operators discussed in reference
[6]──Allen's operators, PACK and UNPACK, and (especially) the so-
called "U_ operators"──can help in this regard, some degree of
both tedium and difficulty still remains, even when those
shorthands are used. Accordingly, it is a goal of TSQL2 to
simplify matters still further. And it appears that such further
simplification might be possible in a certain very special case;
to be specific, it might be possible if and only if the query
under consideration satisfies all four of the following conditions
(labeled C1-C4 for purposes of subsequent reference).

C1: The output table──i.e., the final result──has at most one
(hidden) valid-time column and at most one (hidden)
transaction-time column.

C2: The output table has at least one additional (regular) column,
over and above any hidden valid- or transaction-time column.

C3: Every input or intermediate-result table satisfies these same
properties──at most one hidden valid-time column, at most one
hidden transaction-time column, and at least one additional
regular column.

C4: Every hidden valid-time column in every input, output, or
intermediate-result table involved at any point in the query
is of exactly the same data type.6

Let us examine these conditions a little more carefully. Here
again is the first one (now stated a little more simply):

C1: The result has at most one valid-time column and at most one
transaction-time column.

This condition clearly derives from the fact that TSQL2 tables
have at most one valid-time column and at most one transaction-
time column (both hidden, of course). Here by way of example is a
Tutorial D query that satisfies the condition (though of course
the "valid- and transaction-time columns"──i.e., the stated- and

6 In fact Condition C4 applies to transaction-time columns as well, but
transaction times in TSQL2 are always of a data type that is chosen by the
DBMS.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 9

logged-time attributes, in the terminology of reference [6]──are
not hidden in Tutorial D):

WITH (SP_DURING RENAME (P# AS XP#)) AS T1 ,
(SP_DURING RENAME (P# AS YP#)) AS T2 :

USING DURING * T1 JOIN T2 *

Note: Relvar SP_DURING represents the predicate "Supplier S#
was able to supply part P# throughout interval DURING." Thus, the
query returns a result with predicate "Supplier S# was able to
supply both part XP# and part YP# throughout interval DURING."
That result thus certainly does have at most one stated-time
attribute and at most one logged-time attribute; in fact, it has
exactly one stated-time attribute, called DURING (which shows when
supplier S# was able to supply both part XP# and part YP#), and no
logged-time attribute at all.

As a matter of fact, this same query satisfies Conditions C3
and C4 as well. Here again are those conditions (now slightly
simplified):

C3: Every input or intermediate-result table has at most one
valid-time column, at most one transaction-time column, and at
least one additional column.

C4: Every valid-time column in every input, output, or
intermediate-result table is of exactly the same data type.

Condition C3 derives from two facts: first, the fact that,
again, TSQL2 tables have at most one (hidden) valid-time column
and at most one (hidden) transaction-time column; second, the fact
that regular SQL tables must have at least one column. Condition
C4 derives, in part, from the fact that TSQL2 makes use of
statement modifiers to express queries (as we will see in Section
6), and those modifiers are "global," in the sense that they are
meant to apply uniformly to every table involved in the query in
question. (We say "meant to" here advisedly; whether they
actually do so is another matter. See Section 8.)

Anyway, to revert to the Tutorial D example:

• (Condition C3) The relations denoted by SP_DURING, T1, and T2
each have exactly one stated-time attribute (called DURING in
every case), as does the final result relation. In the case
of SP_DURING, for example, attribute DURING shows when
supplier S# was able to supply part P#; in the case of the
final result, it shows when supplier S# was able to supply
both part XP# and part YP#. Furthermore, the relations
denoted by SP_DURING, T1, and T2 each have at least one
additional attribute and no logged-time attribute at all.

• (Condition C4) Attribute DURING is clearly of the same type
in every case: namely, type INTERVAL_DATE.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 10

Back now to Condition C1. Here by contrast is a Tutorial D
query that does not satisfy that condition, mutatis mutandis:

WITH (SP_DURING RENAME (P# AS XP#,
DURING AS XDURING)) AS T1 ,

(SP_DURING RENAME (P# AS YP#,
DURING AS YDURING)) AS T2 ,

(T1 JOIN T2) AS T3 :
T3 WHERE XDURING OVERLAPS YDURING

This query gives a result with predicate "Supplier S# was able
to supply part XP# throughout interval XDURING and part YP#
throughout interval YDURING, and intervals XDURING and YDURING
overlap." However, it fails to satisfy Condition C1, because the
relation denoted by T3 and the final result both have two distinct
stated-time attributes (in both cases, XDURING shows when supplier
S# was able to supply part XP# and YDURING shows when supplier S#
was able to supply part YP#). Note: In fact, this query also
fails to satisfy Condition C3. And if we were to add a final
step, in which (say) interval YDURING is effectively replaced by
an interval expressed in terms of hours instead of days, then it
would fail to satisfy Condition C4 also.

Now let us turn to Condition C2:

C2: The result has at least one additional column, over and above
any valid- or transaction-time column.

Condition C2 clearly derives from the same facts as does Condition
C3. And here is a Tutorial D query that fails to satisfy the
condition, mutatis mutandis:

WITH (SP_DURING { S#, DURING }) AS T1 ,
(USING DURING * S_DURING MINUS T1 *) AS T2 :

(T2 WHERE S# = S#('S1')) { DURING }

This query gives intervals during which supplier S1 was unable
to supply any parts at all. Note: Relvar S_DURING shows which
suppliers were under contract when.

So much for the four conditions that characterize the "very
special case" that, it is claimed, TSQL2 deals with very simply by
means of its special "tables with temporal support" (together with
certain other features, not yet discussed). Of course, we have
not yet shown how queries are formulated in TSQL2 at all (though
we will, in Section 6). Nevertheless, some obvious questions
suggest themselves right away:

• How often do we need to formulate queries that do not fit the
profile described above? Quite frequently, we believe.

• Even if most queries do fit that profile, is the claimed
simplification worth all of the accompanying complexity?──in
particular, is it worth jettisoning the relational model for?
We do not believe it is.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 11

• And in any case, do the simplifications actually work? We
believe not (see Section 8).

5. TEMPORAL UPWARD COMPATIBILITY

In the previous section, we discussed what we called "the central
idea" behind the TSQL2 language. However, the design of the
language was also strongly motivated by another important idea
(related to that previous one) called temporal upward
compatibility. That idea can be described in outline as follows:

• Suppose we have some nontemporal database D, together with a
set of applications that run against the database.

• Suppose we now want D to evolve to include some temporal
support.

• Then it would be nice if we could just "add" that temporal
support in such a way that those existing applications can
continue to run correctly and unchanged against that temporal
version of D.

If we meet this goal, then we say we have achieved temporal upward
compatibility (hereinafter abbreviated, occasionally, to just
TUC).

By way of example, suppose the nontemporal database shown in
Fig. 3 is somehow converted into a fully temporal counterpart,
such that all of the information in that database at the time of
conversion is retained but is now timestamped in some manner that
would allow all of the information shown in Fig. 4 to be recorded.
Note: We very deliberately show the fully temporal counterpart in
Fig. 4 in proper relational form, in order to simplify certain
subsequent explanations that we need to make. In TSQL2, of
course, the DURING attributes would be replaced by unnamed hidden
columns, the resulting tables would be named just S and SP, not
S_DURING and SP_DURING, and they would not in fact be proper
relations at all.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 12

╔══╗
║ ┌────┐ ┌────┬────┐ ║
║ S │ S# │ SP │ S# │ P# │ ║
║ ├════┤ ├════┼════┤ ║
║ │ S1 │ │ S1 │ P1 │ ║
║ │ S2 │ │ S1 │ P2 │ ║
║ │ S3 │ │ S1 │ P3 │ ║
║ │ S4 │ │ S1 │ P4 │ ║
║ │ S5 │ │ S1 │ P5 │ ║
║ └────┘ │ S1 │ P6 │ ║
║ │ S2 │ P1 │ ║
║ │ S2 │ P2 │ ║
║ │ S3 │ P2 │ ║
║ │ S4 │ P2 │ ║
║ │ S4 │ P4 │ ║
║ │ S4 │ P5 │ ║
║ └────┴────┘ ║
╚══╝
Fig. 3: A nontemporal database

╔══╗
║ S_DURING SP_DURING ║
║ ┌────┬───────────┐ ┌────┬────┬───────────┐ ║
║ │ S# │ DURING │ │ S# │ P# │ DURING │ ║
║ ├════┼═══════════┤ ├════┼════┼═══════════┤ ║
║ │ S1 │ [d04:d10] │ │ S1 │ P1 │ [d04:d10] │ ║
║ │ S2 │ [d02:d04] │ │ S1 │ P2 │ [d05:d10] │ ║
║ │ S2 │ [d07:d10] │ │ S1 │ P3 │ [d09:d10] │ ║
║ │ S3 │ [d03:d10] │ │ S1 │ P4 │ [d05:d10] │ ║
║ │ S4 │ [d04:d10] │ │ S1 │ P5 │ [d04:d10] │ ║
║ │ S5 │ [d02:d10] │ │ S1 │ P6 │ [d06:d10] │ ║
║ └────┴───────────┘ │ S2 │ P1 │ [d02:d04] │ ║
║ │ S2 │ P1 │ [d08:d10] │ ║
║ │ S2 │ P2 │ [d03:d03] │ ║
║ │ S2 │ P2 │ [d09:d10] │ ║
║ │ S3 │ P2 │ [d08:d10] │ ║
║ │ S4 │ P2 │ [d06:d09] │ ║
║ │ S4 │ P4 │ [d04:d08] │ ║
║ │ S4 │ P5 │ [d05:d10] │ ║
║ └────┴────┴───────────┘ ║
╚══╝

Fig. 4: A temporal counterpart of Fig. 3

Then the conversion to temporal form, however it is carried
out, is said to achieve temporal upward compatibility if and only
if every operation that applied to the database before the
conversion:

a. Still applies after the conversion, and

Copyright (c) 2005 Hugh Darwen & C. J. Date page 13

b. Has the same effect as before (apart, possibly, from effects
that might become noticeable only by subsequent use of new
operators that become available as a result of the
conversion).

In order to illustrate this notion, suppose the temporal
conversion has indeed been carried out, somehow; suppose further
that the converted form of relvar SP is then updated in such a way
that it now represents, somehow, exactly the information depicted
in Fig. 4; and consider the effect of evaluating the following
simple Tutorial D expression:

SP

Clearly, there are just two possibilities: Either the result
is exactly as shown as the value of relvar SP in Fig. 3──not
relvar SP_DURING in Fig. 4!──or temporal upward compatibility has
not been achieved.

By way of a second example, suppose we perform the following
DELETE on the temporal version of relvar SP (which we again assume
represents the information shown as the value of relvar SP_DURING
in Fig. 4):

DELETE SP WHERE S# = S#('S3') AND P# = P#('P2') ;

After this DELETE, if TUC is to be achieved, then the result of
evaluating the expression

SP { S# }

on day 10 must not include supplier S3, because (as Fig. 3 shows)
part P2 was the only part supplier S3 was currently──i.e., on day
10──able to supply before the DELETE. By contrast, suppose we
have some way, after the temporal conversion, of expressing the
query "Who was able to supply some part on day 9?" Then the
result of that query on day 10 must include supplier S3. (In
other words, the effect of the DELETE might be regarded, loosely,
as replacing the value [d08:d10] of "attribute" DURING in the
"tuple" for supplier S3 and part P2 by the value [d08:d09].
Remember, however, that in TSQL2 we cannot really explain the
effect of the DELETE in this way, because in TSQL2 "relvar" SP
does not really include a DURING "attribute," and "tuples" in that
"relvar" thus do not really include a DURING component.)

More on terminology: The previous paragraph made use of the
term "currently." Unfortunately, we now have to say that we do
not find the meaning of that term very clear (in a TSQL2 context,
that is), for reasons we now explain:

• Observe first of all that there seems to be a tacit assumption
pervading TSQL2 to the effect that a temporal database will
contain "historical relvars only" (to use the terminology of
reference [6])──there is no suggestion that horizontal
decomposition should be performed (yielding separate current
and historical relvars), as in our own preferred approach.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 14

(Our examples in this paper are in line with this assumption;
in particular, note the appearance of the d99 "end-of-time
markers" in the hidden valid-time column in Fig. 2 in Section
3.) Thus, whatever current information the TSQL2 database
contains will in fact be bundled in with those "historical
relvars."

• Following on from the previous point: There is no suggestion
that vertical decomposition should be performed, either. As a
consequence, TSQL2 tables will typically not be in sixth
normal form, 6NF [6]. Indeed, the recommended TSQL2 approach
of simply "adding temporal support" to an existing nontemporal
table──see Section 7 or the annotation to reference
[15]──virtually guarantees that most TSQL2 tables will not be
in 6NF. Of course, it is a large part of the point of TUC
that it should be possible just to "add temporal support" to
an existing table, but then the consequences of having to deal
with non6NF tables must be faced up to. The TSQL2 literature
has little or nothing to say on this issue.

• Now, the TSQL2 literature frequently refers to the conceptual
representation of a temporal database as a time series──in
other words, as a chronologically ordered sequence of entries,
in which each entry is the value or "state" of the database at
a particular point in time. However, the last or most recent
entry in that time series is then typically referred to as the
current state──a fact that, it might be argued, tends to
suggest that beliefs about the future, such as the belief that
a certain supplier's contract will terminate on some specific
future date, cannot be expressed using the "temporal support"
of "tables with temporal support" (?).

• More to the point: While the time-series notion might be
conceptually agreeable (since it is clear that one possible
representation of that time series is one involving
intervals), surely the TSQL2 specification should state
exactly which of those intervals are considered to contain the
current time. But it does not.

• Indeed, the actual time referred to by the phrase "the current
time" varies over time (of course!). So, if S is the set of
all intervals that are considered to contain the current time,
does S itself vary over time? If so, then many serious
questions arise (some of which are discussed in reference
[6]).

In connection with the foregoing, it is possibly relevant to
note that reference [13] proposed the following definition for
inclusion in the SQL standard: "The current valid-time state of a
table with valid-time support is the valid-time state of that
table at valid-time CURRENT_TIMESTAMP" (of course, the value of
CURRENT_TIMESTAMP──a niladic built-in function in the SQL standard
[5]──certainly does vary with time). By contrast, certain

Copyright (c) 2005 Hugh Darwen & C. J. Date page 15

examples in reference [15] seem to assume that any interval i such
that END(i) = "the end of time" is one that contains the current
time, regardless of the value of BEGIN(i).

Back to temporal upward compatibility. The TUC goal is
TSQL2's justification for its special kinds of tables, with their
hidden columns. For that goal would clearly not be achieved if
(e.g.) converting the original nontemporal relvar SP to a temporal
counterpart required the addition of an explicit new column──e.g.,
via an SQL ALTER TABLE statement, as here:

ALTER TABLE SP ADD COLUMN DURING ... ;

(Throughout this paper we follow "direct SQL" [5,8] in using
semicolons as SQL statement terminators.)

Why would the TUC goal not be achieved? Because, of course,
after execution of the foregoing ALTER TABLE statement, the result
of the SQL expression

SELECT * FROM SP

would include column DURING as well as the S# and P# columns it
would have included before the temporal conversion, thereby
violating TUC. It follows that the conversion process cannot
simply involve the addition of explicit new columns. See Section
7 for further discussion.

One last point: We have deliberately been somewhat vague as
to the nature of the operations for which the TUC concept applies
(or is even possible). The fact is, it is not at all clear
whether it applies to──for example──all possible data definition
operations, or dynamic SQL operations, etc. Here is what
reference [15] has to say on the matter:

"Temporal upward compatibility: An [SQL:1992] ... query,
modification, view, assertion, [or] constraint ... will have
the same effect on an associated snapshot database as on the
temporal counterpart of the database."

(The expression "snapshot database" as used here simply means a
regular nontemporal database.)

6. CURRENT, SEQUENCED, AND NONSEQUENCED OPERATIONS

Suppose now that the process of converting the database to
temporal form, however it has to be done in order to achieve
temporal upward compatibility, has in fact been done. Then TSQL2
supports three kinds of operations against such a database, which
it calls current, sequenced, and nonsequenced operations,
respectively. Briefly, if we regard the database as a time series
once again, then we can characterize the three kinds of operations
(loosely) as follows:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 16

• Current operations apply just to the most recent entry in that
time series. (The term current derives from the fact that
such operations are intended to apply to current data.)

• Sequenced operations apply to all of the entries in that time
series.7 (The term sequenced derives from the fact that such
operations are intended to apply to the entire "temporal
sequence," or in other words "at every point in time.")

• Nonsequenced operations apply to some specified subset of the
entries in that time series. (It is not clear why such
operations are said to be nonsequenced. It might or might not
help to point out that an operation that is not sequenced is
not necessarily nonsequenced; likewise, one that is not
nonsequenced is not necessarily sequenced. What is more, some
operations are both sequenced and nonsequenced──though it is
not possible to have an operation that is both current and
sequenced or both current and nonsequenced.)

By way of example, consider the valid-time table shown in Fig.
5. Recall our assumption that today is day 10. Then──very
loosely speaking──current operations are performed in terms of
just those rows of that table whose hidden valid-time component
includes day 10; sequenced operations are performed in terms of
all of the rows; and nonsequenced operations are performed in
terms of just those rows whose hidden valid-time component
includes some day or days specified explicitly when the operator
in question is invoked.

╔══╗
║ ┌────╥───────────┐ ║
║ S │ S# ║ │ ║
║ ├────╫───────────┤ ║
║ │ S1 ║ [d01:d01] │ ║
║ │ S1 ║ [d05:d06] │ ║
║ │ S2 ║ [d02:d04] │ ║
║ │ S2 ║ [d06:d99] │ ║
║ │ S3 ║ [d05:d99] │ ║
║ │ S4 ║ [d03:d99] │ ║
║ │ S6 ║ [d02:d03] │ ║
║ │ S6 ║ [d06:d09] │ ║
║ └────╨───────────┘ ║
╚══╝
Fig. 5: A TSQL2 valid-time table

Current Operations

7 A slight oversimplification; actually, it is possible to restrict sequenced
operations (like nonsequenced operations) to apply to some specified subset of
the entries in that time sequence.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 17

Current operations are, of course, precisely those operations that
were available before the conversion to temporal form; temporal
upward compatibility requires those operations still to be
available and to have the same effect as they did before the
conversion. A current query involves the execution of some
current operation of a retrieval nature; a current modification
involves the execution of some current operation of an updating
nature. Of course, current modifications must now have some
additional effects "behind the scenes" (as it were), over and
above those effects that are directly visible to the user of the
current modification in question. For example, consider again
this DELETE example from Section 5:

DELETE FROM SP WHERE S# = S#('S3') AND P# = P#('P2') ;

(We have added the keyword FROM in order to make the DELETE into a
valid SQL statement. Also, we assume, here and throughout this
paper, that expressions of the form S#('Sx') and P#('Py') are
valid SQL literals, of types S# and P#, respectively.)

If table SP is a valid-time table, with current value the
TSQL2 analog of the SP_DURING value shown in Fig. 4, then the
logical effect of the foregoing DELETE must be to do both of the
following:

a. To delete the row for supplier S3 and part P2, as requested
(since that row's valid-time component does include day 10,
"the current date")

b. To insert a row into "the history portion" of the table for
supplier S3 and part P2 with a valid time of [d08:d09]

In practice, of course, the deletion and subsequent insertion
could probably be combined into a single row replacement.

Sequenced Operations

We turn now to sequenced and nonsequenced operations──sequenced
ones in this subsection and nonsequenced ones in the next. After
the conversion to temporal form has been performed and updates
have been applied to the temporal version, the database will
include historical as well as current data. Thus, the question
arises as to how that historical data can be accessed. Clearly,
the answer to this question is going to involve some new
operations that were not available before the conversion, and
those new operations are, precisely, the sequenced and
nonsequenced operations already mentioned. Note: As usual, we
take the term access to include both query and modification
operations. For reasons of brevity and simplicity, however, we
will have little to say in this paper regarding modifications,
either sequenced or nonsequenced.

TSQL2 uses "statement modifiers" to specify both sequenced and
nonsequenced operations (the term is a misnomer, actually, since
it is not always statements per se that such modifiers modify).

Copyright (c) 2005 Hugh Darwen & C. J. Date page 18

Those modifiers take the form of prefixes that can be attached to
certain statements and certain (table-valued) expressions. We can
summarize the available prefixes, and the rules regarding the
operand table(s) and the result table, if any, as follows:

┌──────────────────────────────┬────────────┬───────────┐
│ Prefix │ Operand(s) │ Result │
├══════════════════════════════┼────────────┼───────────┤
│ none │ any │ nhc │
│ │ │ │
│ VALIDTIME │ VT or BT │ VT │
│ │ │ │
│ TRANSACTIONTIME │ TT or BT │ TT │
│ │ │ │
│ VALIDTIME AND │ BT │ BT │
│ TRANSACTIONTIME │ │ │
│ │ │ │
│ NONSEQUENCED VALIDTIME │ VT or BT │ nhc │
│ │ │ │
│ NONSEQUENCED TRANSACTIONTIME │ TT or BT │ nhc │
│ │ │ │
│ VALIDTIME AND │ BT │ VT │
│ NONSEQUENCED TRANSACTIONTIME │ │ │
│ │ │ │
│ NONSEQUENCED VALIDTIME AND │ BT │ TT │
│ TRANSACTIONTIME │ │ │
│ │ │ │
│ NONSEQUENCED VALIDTIME AND │ BT │ nhc │
│ NONSEQUENCED TRANSACTIONTIME │ │ │
└──────────────────────────────┴────────────┴───────────┘
Explanation: The abbreviations VT, TT, and BT stand for a

valid-time table, a transaction-time table, and a bitemporal
table, respectively; the abbreviation nhc stands for "no hidden
columns" (in other words, the table in question is just a regular
SQL table). For example, we can see that if the prefix
NONSEQUENCED VALIDTIME is used, then every operand table must be
either a valid-time table or a bitemporal table, and the result
(if the statement or expression to which the prefix applies in
fact returns a result) is a regular table. Note that the result
has a hidden valid-time column only if a prefix specifying
VALIDTIME (without NONSEQUENCED) is specified, and a hidden
transaction-time column only if a prefix specifying
TRANSACTIONTIME (without NONSEQUENCED) is specified.

At this point, a couple of minor oddities arise:

• First, the prefix (e.g.) NONSEQUENCED VALIDTIME is regarded in
the TSQL2 literature as specifying a valid-time nonsequenced
operation, not a nonsequenced valid-time operation. Although
we find this inversion of the modifiers a trifle illogical, we
will conform to it in what follows.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 19

• Second, observe that nonsequenced operations involve the
explicit keyword NONSEQUENCED, but sequenced operations do not
involve any explicit SEQUENCED counterpart; for example, a
sequenced valid-time operation is specified by just the prefix
VALIDTIME, unadorned.

For simplicity, let us concentrate on sequenced valid-time
operations specifically, until further notice. Let X be an
expression or statement that is syntactically valid on the
nontemporal version of the database. Let every table mentioned in
X map to a counterpart with valid-time support in the temporal
version of the database. Then VALIDTIME X is an expression or
statement that

a. Is syntactically valid on the temporal version of the
database, and

b. Is conceptually evaluated against that temporal database at
every point in time.

Each such conceptual evaluation is performed on a nontemporal
database that is derived from the temporal one by considering just
those rows whose associated valid times include the applicable
point in time. The results of those conceptual evaluations are
then conceptually combined by a process analogous to packing to
yield the overall result. Note: Perhaps we should say rather
that the combination process is somewhat analogous to packing; as
we will see a little later, that overall result is in fact not
precisely defined. But let us ignore this point for now.

By way of illustration, consider first the current DELETE
example from the subsection above entitled "Current Operations":

DELETE FROM SP WHERE S# = S#('S3') AND P# = P#('P2') ;

As you will recall, the effect of this DELETE (ignoring the side-
effect of "inserting into the historical record") is to delete
just the fact that supplier S3 is currently able to supply part
P2. However, if we prefix the DELETE statement with the modifier
VALIDTIME, as here──

VALIDTIME
DELETE FROM SP WHERE S# = S#('S3') AND P# = P#('P2') ;

──then the effect is now to delete all rows showing supplier S3 as
able to supply part P2 from the valid-time table SP, no matter
what the associated valid times might be. (In terms of the data
values in Fig. 4, the effect is to delete the fact that supplier
S3 was able to supply part P2 throughout the interval from day 8
to day 10──but it might delete more than that, if there were any
other rows for supplier S3 and part P2.)

Analogously, the TSQL2 expression

Copyright (c) 2005 Hugh Darwen & C. J. Date page 20

VALIDTIME
SELECT * FROM SP

returns the "real" value of the valid-time table SP, hidden valid-
time column and all. Note carefully, however, that that hidden
column remains hidden in the result; in fact, a valid-time
sequenced query always returns a valid-time table (i.e., a table
with a hidden valid-time column and no hidden transaction-time
column). See the final subsection in this section for a
discussion of how such hidden columns can be accessed in that
result (or in any other table with temporal support, of course).

Incidentally, observe that the expression SELECT * FROM SP is
indeed an expression and not a statement. The foregoing example
thus illustrates our earlier claim that "statement modifier" is
really a misnomer.

Here now are a couple more examples of valid-time sequenced
queries:

VALIDTIME │ VALIDTIME
SELECT DISTINCT S# FROM SP │ SELECT DISTINCT S# FROM S

│ EXCEPT
│ SELECT DISTINCT S# FROM SP

(In the first example, we assume table S has valid-time support;
in the second, we assume tables S and SP both have valid-time
support.) These expressions are TSQL2 formulations for two sample
queries──or, rather, TSQL2 counterparts to those queries──that we
used as a basis for introducing the temporal database problem in
reference [6]:

• Get S#-DURING pairs for suppliers who have been able to supply
at least one part during at least one interval of time, where
DURING designates a maximal interval during which supplier S#
was in fact able to supply at least one part.

• Get S#-DURING pairs for suppliers who have been unable to
supply any parts at all during at least one interval of time,
where DURING designates a maximal interval during which
supplier S# was in fact unable to supply any part at all.

The first expression results in a table showing supplier
numbers for suppliers who have ever been able to supply anything,
paired in the hidden valid-time column with the maximal intervals
during which they have been able to do so. The second expression
is analogous. Note carefully, however, that those "maximal
intervals" are indeed still represented by hidden columns; if we
want to access those hidden columns──as surely we will?──we will
have to make use of the operators described in the final
subsection of this section (see below). Note too that we are
being slightly charitable to TSQL2 here! In fact, the proposals
of reference [13] did not explicitly require the result of a query
like the ones illustrated above to satisfy any such "maximality"
condition. What is more, they did not impose any other

Copyright (c) 2005 Hugh Darwen & C. J. Date page 21

requirement in place of such a condition, either; as a
consequence, the actual value of an expression such as VALIDTIME
SELECT DISTINCT S# FROM SP is not precisely specified (it is not
even clear whether the inclusion of the keyword DISTINCT has any
effect). See Section 11 for further discussion.

Suppose now that S and SP are tables with transaction-time
support. Then the prefix TRANSACTIONTIME can be used in place of
VALIDTIME in examples like those shown above; the operations in
question then become transaction-time sequenced operations
(transaction-time sequenced queries specifically, in all of those
examples except the very first). A transaction-time sequenced
query returns a transaction-time table (i.e., a table with a
hidden transaction-time column and no hidden valid-time column).

Finally, suppose S and SP are bitemporal tables. Then the
prefix VALIDTIME AND TRANSACTIONTIME can be used, in which case
the operations in question become (prosaically enough) valid-time
sequenced and transaction-time sequenced operations. A valid-time
sequenced and transaction-time sequenced query returns a
bitemporal table. Note: If the result of such a query is indeed
automatically packed, it is pertinent to ask whether they are
packed on valid time first and then transaction time or the other
way around. The literature does not appear to answer this
question.

Nonsequenced Operations

Nonsequenced operations are specified by means of the prefixes
NONSEQUENCED VALIDTIME and NONSEQUENCED TRANSACTIONTIME.
Furthermore, if the operand tables are bitemporal, then all
possible combinations──e.g., (sequenced) VALIDTIME AND
NONSEQUENCED TRANSACTIONTIME──are available. Thus, operations on
bitemporal tables can be simultaneously sequenced with respect to
valid time and nonsequenced with respect to transaction time, or
the other way around, or sequenced with respect to both, or
nonsequenced with respect to both.

Here is an example of a nonsequenced query:

NONSEQUENCED VALIDTIME
SELECT DISTINCT P# FROM SP

Table SP must have valid-time support in order for this query to
be legal. The result is a table with no hidden valid-time column
at all, representing part numbers for all parts we currently
believe ever to have been available from any supplier.

Despite the somewhat arcane prefixes, nonsequenced operations
are comparatively easy to understand, for here TSQL2 is
effectively reverting to regular SQL semantics. Well,
almost──there is a glitch!8 The glitch is that "regular

8 At least, there is according to reference [15], but not (or possibly not)
according to reference [13]. See Example 14 in Section 8.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 22

semantics" implies that we should be able to reference the hidden
columns in the regular way; but such references are impossible,
precisely because the columns are hidden. We therefore need some
special mechanism in order to access the hidden columns. In
TSQL2, that mechanism is provided by the operators VALIDTIME(T)
and TRANSACTIONTIME(T)──see the subsection immediately following.
Note: Orthogonality dictates that these operators be available in
connection with current and sequenced operations too, despite the
fact that we have introduced them in the context of a discussion
of nonsequenced operations specifically. However, the effect of
including such operators in such queries is unclear to the present
writers.

Accessing the Hidden Columns

Consider the following example (note in particular the VALIDTIME
operator invocations):

NONSEQUENCED VALIDTIME
SELECT T1.S# AS X#, T2.S# AS Y#,

BEGIN (VALIDTIME (T2)) AS SWITCH_DATE
FROM S AS T1, S AS T2
WHERE END (VALIDTIME (T1)) = BEGIN (VALIDTIME (T2))

This expression returns a table without any hidden valid-time
column in which each row gives a pair of supplier numbers X# and
Y# and a date such that, on that date, supplier X#'s contract
terminated and supplier Y#'s contract began (according to our
current belief). The expression is the TSQL2 analog of the
following Tutorial D query (expressed in terms of the database of
Fig. 4):

WITH (((S RENAME (S# AS X#, DURING AS XD))
JOIN
(S RENAME (S# AS Y#, DURING AS YD)))

WHERE END (XD) = BEGIN (YD)) AS T1 ,
(EXTEND T1 ADD (BEGIN (YD) AS SWITCH_DATE)) AS T2 :

T2 { X#, Y#, SWITCH_DATE }

Of course, the operator invocation VALIDTIME(T) is valid in
TSQL2 only if the table denoted by T has valid-time support;
likewise, the operator invocation TRANSACTIONTIME(T) is valid only
if the table denoted by T has transaction-time support. Observe,
incidentally, how these operators implicitly rely on the fact that
any given TSQL2 table has at most one hidden valid-time column and
at most one hidden transaction-time column.

7. DATA DEFINITION STATEMENTS

We now consider the effects of the ideas discussed in the
foregoing sections on the SQL CREATE TABLE and ALTER TABLE
statements.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 23

Valid-Time Tables

There are two ways to create a valid-time base table in TSQL2.
The underlying principle in both cases is just to extend a
nontemporal counterpart of the table in question by "adding valid-
time support," both to that counterpart as such and to the
constraints──primary and foreign key constraints in
particular──that apply to that counterpart. "Adding valid-time
support" can be done either directly in the original CREATE TABLE
statement or subsequently by means of appropriate ALTER TABLE
statements.

By way of example, consider the following CREATE TABLE
statements, which will suffice to create a TSQL2 counterpart of
the database of Fig. 3 (note the text in boldface):

CREATE TABLE S (S# S#,
VALIDTIME PRIMARY KEY (S#))
AS VALIDTIME PERIOD (DATE) ;

CREATE TABLE SP (S# S#, P# P#,
VALIDTIME PRIMARY KEY (S#, P#),
VALIDTIME FOREIGN KEY (S#) REFERENCES S)
AS VALIDTIME PERIOD (DATE) ;

Explanation:

• The specification AS VALIDTIME ... (in line 3 of the CREATE
TABLE for suppliers and line 4 of the CREATE TABLE for
shipments) indicates that tables S and SP are tables with
valid-time support; i.e., they have hidden valid-time columns.
They are not packed on those columns (perhaps because such
packing could lead to a violation of temporal upward
compatibility, if the AS VALIDTIME ... specification appeared
in an ALTER TABLE──rather than CREATE TABLE, as here──and the
table in question currently contained any duplicate rows).

• The specification PERIOD (DATE) following AS VALIDTIME gives
the data type for the hidden valid-time columns; PERIOD is a
"type constructor" (it is the TSQL2 counterpart of our
INTERVAL type generator), and DATE is the corresponding point
type.9 Note: TSQL2 could not use the keyword INTERVAL here,
because the SQL standard already uses that keyword for
something else. More to the point, observe that──of
course──any TSQL2 table, regardless of whether or not it has
any kind of "temporal support," can have any number of regular

9 Note that TSQL2 follows its keyword PERIOD with the name of the point type in
parentheses, whereas we follow our keyword INTERVAL with the name of the point
type attached by means of an underscore instead. A related observation is that
the TSQL2 analog of what we would express as, e.g., INTERVAL_DATE ([di:dj]) is
just PERIOD ([di:dj]); in other words, TSQL2 assumes the type of the
interval──or period, rather──can be inferred from the type of the begin and end
points di and dj. We do not agree with this latter position, for reasons
explained in detail in reference [6].

Copyright (c) 2005 Hugh Darwen & C. J. Date page 24

columns of some period type. As noted near the end of Section
3, TSQL2 regards such columns as containing what it calls
user-defined time [10].

• The VALIDTIME prefixes on the primary key and foreign key
specifications specify that the corresponding constraints are
valid-time sequenced constraints. Moreover:

■ A VALIDTIME PRIMARY KEY constraint is analogous, somewhat,
to a WHEN / THEN constraint as defined in reference [6]
(except that we do not believe in the idea of being forced
to single out some specific candidate key and make it
"primary," and as a matter of fact neither does SQL). It
is not clear whether TSQL2 allows a VALIDTIME PRIMARY KEY
constraint to coexist with a regular PRIMARY KEY
constraint, though it is clear that the existence of a
VALIDTIME one makes a regular one more or less redundant.

■ A VALIDTIME FOREIGN KEY constraint is analogous, again
somewhat, to a "foreign U_key" constraint as defined in
reference [6]. Note that the referenced table──S, in our
example──must have valid-time support in order for the
VALIDTIME FOREIGN KEY constraint to be valid.

Absence of the VALIDTIME prefix on a primary or foreign key
specification, in the presence of AS VALIDTIME, means the
corresponding constraint is a current one; that is, it applies
only to those rows whose valid-time component is considered to
contain the current time (speaking rather loosely).

Suppose now, in contrast to the foregoing, that the
nontemporal tables S and SP have already been defined, thus:

CREATE TABLE S (S# S#,
PRIMARY KEY (S#)) ;

CREATE TABLE SP (S# S#, P# P#,
PRIMARY KEY (S#, P#),
FOREIGN KEY (S#) REFERENCES S) ;

Suppose further that we now wish to "add valid-time support"
to these tables (remember the goal of temporal upward
compatibility). Then the following more or less self-explanatory
ALTER TABLE statements will suffice (again, note the text in
boldface):

ALTER TABLE S ADD VALIDTIME PERIOD (DATE) ;
ALTER TABLE S ADD VALIDTIME PRIMARY KEY (S#) ;

ALTER TABLE SP ADD VALIDTIME PERIOD (DATE) ;
ALTER TABLE SP ADD VALIDTIME PRIMARY KEY (S#, P#) ;

ALTER TABLE SP ADD VALIDTIME FOREIGN KEY (S#) REFERENCES S ;

In rows that already exist when the valid-time support is
added, the new (hidden) column is set to contain a period of the

Copyright (c) 2005 Hugh Darwen & C. J. Date page 25

form [b:e], where b is the time of execution of the ALTER TABLE
and e is "the end of time."10 Whether it is necessary to drop the
primary and foreign keys that were defined for the tables before
the valid-time support was added is unclear.

Transaction-Time Tables

Creation of transaction-time base tables is similar but not
completely analogous to the creation of valid-time base tables:

CREATE TABLE S (S# S#,
TRANSACTIONTIME PRIMARY KEY (S#))
AS TRANSACTIONTIME ;

CREATE TABLE SP (S# S#, P# P#,
TRANSACTIONTIME PRIMARY KEY (S#, P#),
TRANSACTIONTIME FOREIGN KEY (S#) REFERENCES S)
AS TRANSACTIONTIME ;

The AS TRANSACTIONTIME specifications are more or less self-
explanatory; observe, however, that no data type is specified,
because (as mentioned in a footnote in Section 4) transaction
times in TSQL2 are always of a data type that is chosen by the
DBMS. The TRANSACTIONTIME prefixes on the primary and foreign key
specifications are analogous to their VALIDTIME
counterparts──except that there seems to be no point in having
them (although they are permitted), because the corresponding
current constraints must surely imply that these transaction-time
sequenced constraints are always satisfied. (By definition,
transaction times cannot be updated; it therefore follows that
constraints that apply to the current state of affairs must apply
equally to the historical record, since everything in that
historical record must once have been current.) Also, if the
prefix is omitted on a foreign key specification, then the
referenced table can be of any kind (not necessarily even one with
temporal support); in every case, the constraint is then treated
as a current constraint rather than a transaction-time sequenced
one.

Adding transaction-time support to existing tables via ALTER
TABLE is analogous to its valid-time counterpart. In particular,
in rows that already exist when the transaction-time support is
added, the new (hidden) column is apparently set to the same
initial value as it is in the case of adding valid time──i.e., it
is set to a period of the form [b:e], where b is the time of
execution of the ALTER TABLE and e is "the end of time"──even
though neither the b value nor the e value seems to make any sense
(the b value is clearly incorrect, and the e value means we have

10 Actually, reference [13] says e is the immediate predecessor of "the end of
time," but this is surely just a slip, probably arising from confusion over
notation (in effect, confusing [b:e] with [b:e)──see reference [6]). Reference
[15] says it is "the end of time."

Copyright (c) 2005 Hugh Darwen & C. J. Date page 26

transaction times that refer to the future). We omit further
discussion here.

Bitemporal Tables

Finally, here are the CREATE TABLE statements needed to create
bitemporal versions of tables S and SP:

CREATE TABLE S (S# S#,
VALIDTIME AND TRANSACTIONTIME PRIMARY KEY (S#))
AS VALIDTIME PERIOD (DATE) AND TRANSACTIONTIME ;

CREATE TABLE SP (S# S#, P# P#,
VALIDTIME AND TRANSACTIONTIME PRIMARY KEY (S#, P#),
VALIDTIME AND TRANSACTIONTIME FOREIGN KEY (S#)

REFERENCES S)
AS VALIDTIME PERIOD (DATE) AND TRANSACTIONTIME ;

These statements should once again be self-explanatory.

Adding bitemporal support to existing tables via ALTER TABLE
is analogous to its valid-time and transaction-time counterparts.
We omit further discussion here.

8. STATEMENT MODIFIERS ARE FLAWED

This brings us to the end of our brief overview of TSQL2 basics.
In this section and the next three, we give our reasons for
rejecting the TSQL2 approach, and indeed for seriously questioning
its very motivation. Note: Those reasons are very similar to
those that have previously been aired in the international
standards and academic research communities, precisely because two
of the authors of reference [6] (Darwen and Lorentzos) have been
at the forefront in articulating such objections in those
communities.

The goal of the present section is to demonstrate a number of
logical problems with the basic idea of statement modifiers. In
order to meet that goal, we present a series of simple examples
that illustrate those problems. The examples are numbered for
purposes of subsequent reference. Here then is the first example
(a current query against versions of tables S and SP with──let us
assume──valid-time support):11

1. SELECT DISTINCT S.S#, SP.P#
FROM S, SP
WHERE S.S# = SP.S#
AND SP.P# = P#('P1')

Note: It might be objected that this first example is not a
very sensible one, inasmuch as (a) the result of the query will

11 All of the examples in this section are based on a certain simple combination
of a join, a restriction, and a projection. Consideration of examples
involving something a little more complicated is left as an exercise.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 27

have part number P1 in every row and (b) the DISTINCT cannot
possibly have any effect. However, the example is adequate as a
basis for illustrating the points we wish to make, and we will
stay with it.

It is easy to see that the following reformulation (Example 2)
is guaranteed under all circumstances to yield the same result as
Example 1:

2. SELECT DISTINCT S.S#, T1.P#
FROM S, (SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1
WHERE S.S# = T1.S#

Now consider the TSQL2 valid-time counterpart of Example 1:

3. VALIDTIME
SELECT DISTINCT S.S#, SP.P#
FROM S, SP
WHERE S.S# = SP.S#
AND SP.P# = P#('P1')

The obvious question arises as to whether simply adding the
VALIDTIME prefix to Example 2 gives an equivalent reformulation,
as it did before:

4. VALIDTIME
SELECT DISTINCT S.S#, T1.P#
FROM S, (SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1
WHERE S.S# = T1.S#

The answer to this question is no!──in fact, the putative
reformulation is syntactically invalid. The reason is that, in
the presence of the VALIDTIME modifier, each and every "table
reference" in the FROM clause is required to denote a table with
valid-time support, and in the example the second such reference
in the outer FROM clause does not do so; as you can see, in fact,
that second reference involves an expression of the form SELECT *
FROM SP WHERE SP.P# = P#('P1'), and that expression lacks the
statement modifier that is needed to make it yield a table with
valid-time support. In order to obtain the correct desired
reformulation, therefore, we must insert the VALIDTIME prefix in
more than one place, as here:

5. VALIDTIME
SELECT DISTINCT S.S#, T1.P#
FROM S, (VALIDTIME

SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1
WHERE S.S# = T1.S#

Note, by the way, that the foregoing quirk arises (at least in
part) because of an existing quirk in SQL: The first table
reference in the outer FROM clause (i.e., S), does not require the
prefix, simply because a simple table name like S does not
constitute a valid query in SQL! If we were to replace it by, for
example, the expression SELECT * FROM S (which is a valid query,

Copyright (c) 2005 Hugh Darwen & C. J. Date page 28

of course), then we would have to include the prefix as well, as
here:

6. VALIDTIME
SELECT DISTINCT T2.S#, T1.P#
FROM (VALIDTIME

SELECT * FROM S) AS T2,
(VALIDTIME

SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1
WHERE T2.S# = T1.S#

What if the table denoted by a table reference in a FROM
clause happens to be a view? Suppose, for example, that view VS
is defined as follows:

7. CREATE VIEW VS AS
SELECT * FROM S ;

In principle──and in SQL too, normally──a reference to a given
view and the expression that defines that view are logically
interchangeable. The question therefore arises as to whether we
can replace the expression SELECT * FROM S in the outer FROM
clause in Example 6 by a reference to VS, as follows:

8. VALIDTIME
SELECT DISTINCT T2.S#, T1.P#
FROM (VALIDTIME VS) AS T2,

(VALIDTIME
SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1

WHERE T2.S# = T1.S#

Again the answer is no, and again the replacement gives rise
to a syntax error, because VS is not a table with valid-time
support (and simply inserting the VALIDTIME prefix does not make
it one, either). Instead, we have to place that prefix inside the
view definition:

9. CREATE VIEW VS AS
VALIDTIME
SELECT * FROM S ;

VS is now a table with valid-time support and a reference to
it can appear wherever a reference to S can appear.

A similar observation applies when VS is defined "inline,"
using a WITH clause:

10. WITH VS AS (SELECT * FROM S)
VALIDTIME
SELECT DISTINCT T2.S#, T1.P#
FROM (VALIDTIME

SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1,
VS AS T2

WHERE T2.S# = T1.S#

This expression is again invalid. However, it can be rescued
by placing the VALIDTIME prefix inside the WITH clause:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 29

11. WITH VS AS (VALIDTIME SELECT * FROM S)
VALIDTIME
SELECT DISTINCT T2.S#, T1.P#
FROM (VALIDTIME

SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1,
VS AS T2

WHERE T2.S# = T1.S#

In fact, according to reference [13], in a query that includes
a WITH clause, the VALIDTIME prefix cannot be placed at the
beginning of the entire expression. Rather, it can only be placed
as shown above, between the WITH clause and the main body of the
expression.

It follows from all of the foregoing that the TSQL2 claim to
the effect that a temporal counterpart of a nontemporal query can
be easily obtained by just adding a prefix is not entirely valid
and needs to be made more precise. For example, consider the
following nontemporal query:

12. WITH VS AS (SELECT * FROM S)
SELECT DISTINCT T2.S#, T1.P#
FROM (SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1,

VS AS T2
WHERE T2.S# = T1.S#

We cannot obtain a temporal counterpart of this query by just
adding a VALIDTIME prefix to the beginning, nor, as we have
already seen, can we do so by just adding it in the middle,
between the WITH clause and the main body. Rather, we have to add
it three times, as shown in Example 11.

Now, all of the examples we have shown so far have made use
just of the VALIDTIME prefix and have dealt just with tables with
valid-time support. As you would probably expect, however, the
whole discussion is applicable in like manner to the
TRANSACTIONTIME prefix and tables with transaction-time support.
Here, for instance, is a bitemporal counterpart of Example 11 (and
here we must assume that S and SP are bitemporal tables):

13. WITH VS AS (VALIDTIME AND TRANSACTIONTIME
SELECT * FROM S)

VALIDTIME AND TRANSACTIONTIME
SELECT DISTINCT T2.S#, T1.P#
FROM (VALIDTIME AND TRANSACTIONTIME

SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1,
VS AS T2

WHERE T2.S# = T1.S#

However, the whole discussion appears not to be applicable in
like manner in connection with prefixes that use the NONSEQUENCED
modifier! For example, suppose we take Example 5 and replace both
of the VALIDTIME prefixes by the prefix NONSEQUENCED VALIDTIME:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 30

14. NONSEQUENCED VALIDTIME
SELECT DISTINCT S.S#, T1.P#
FROM S, (NONSEQUENCED VALIDTIME

SELECT * FROM SP WHERE SP.P# = P#('P1')) AS T1
WHERE S.S# = T1.S#

This expression is syntactically invalid, because the second
table reference in the outer FROM clause denotes a table without
temporal support. (In fact, it is not clear exactly what table it
does denote; references [13] and [15] contradict each other on the
issue. Details of just how they contradict each other are beyond
the scope of this paper, however.)

The net of all of the foregoing is as follows. First, the
suppliers table S is (according to our original assumption) a
table with valid-time support, from which it follows that in TSQL2
the expression S can appear as a table reference in a FROM clause
in an SQL query that has the VALIDTIME prefix. However, the
expression SELECT * FROM S yields a result that is not a table
with valid-time support, and so that expression cannot appear as a
table reference in a FROM clause in such a query. By contrast,
the expression VALIDTIME SELECT * FROM S can so appear. But the
expression VS, when defined to mean the same as the expression
SELECT * FROM S, cannot so appear, and nor can the expression
VALIDTIME VS──nor, for that matter, can the expression VALIDTIME
SELECT * FROM VS. Taken together, these anomalies show that TSQL2
fails to meet normal expectations of a computer language with
respect to construction of expressions from subexpressions and
replacement of subexpressions by introduced names.

But there is still more to be said regarding introduced names.
All such names we have considered so far have resulted from view
definitions and WITH clauses. If we go on to consider introduced
names that result from user-defined functions, we encounter even
more serious problems, problems that make us conclude that the
concept of statement modifiers as manifested in TSQL2 is
fundamentally flawed. By way of example, consider first the
following query (again we assume that tables S and SP have valid-
time support):

15. VALIDTIME
SELECT S.S#
FROM S
WHERE S.S# NOT IN (SELECT SP.S# FROM SP)

The overall result of this query will obviously depend on
whether the VALIDTIME prefix applies to the whole expression,
including the parenthesized subexpression following the IN
operator, or whether it applies only to the portion of the query
not included in those parentheses:

a. (VALIDTIME applies to whole expression) The result is a
valid-time table in which the hidden valid-time column
indicates, for each supplier number, a time interval

Copyright (c) 2005 Hugh Darwen & C. J. Date page 31

throughout which the supplier in question was unable to supply
any parts.

b. (VALIDTIME applies only to outer portion) The result is a
valid-time table in which the hidden valid-time column
indicates, for each supplier number, a time interval
throughout which the supplier in question was not among those
suppliers who are currently able to supply any parts.

It is clear from many examples in the TSQL2 literature that
the first of these two interpretations is the one intended. Yet
it is difficult to obtain a reading of the expression that is
consistent with that interpretation, because the table denoted by
the parenthesized subexpression seems, according to our
understanding of unprefixed expressions in TSQL2, to give just
supplier numbers of suppliers currently able to supply some
part.12 Clearly, we must revise that understanding somehow,
perhaps by replacing that "currently" by something like "at the
relevant point in time." (We are deferring here to the notion
that a TSQL2 sequenced query is conceptually evaluated at each
point in time, with subsequent packing──or, rather, some
unspecified variant of packing──of the resulting conceptual
sequence of results.)

Although the foregoing revised understanding is very vague, it
can presumably be made more precise, somehow, and so we have
probably not dealt a mortal blow, yet, to the idea of statement
prefixing. But let us see where else this example might lead us.
We now consider the possibility of replacing the expression in the
WHERE clause──S.S# NOT IN (SELECT SP.S# FROM SP)──by an equivalent
invocation of a user-defined function. The function in question
could be defined in SQL as follows:

16. CREATE FUNCTION UNABLE_TO_SUPPLY_ANYTHING (S# S#)
RETURNS BOOLEAN
RETURN (S# NOT IN (SELECT SP.S# FROM SP)) ;

Given this function, the following expression──
17. SELECT S.S#

FROM S
WHERE UNABLE_TO_SUPPLY_ANYTHING (S.S#)

──is clearly equivalent to this one:

18. SELECT S.S#
FROM S
WHERE S.S# NOT IN (SELECT SP.S# FROM SP)

The natural question to ask now is whether the following
expression──

12 What is more, it is our further understanding that that table has no hidden
valid-time column; as a consequence, it is not clear how the comparisons
implied by the IN operator can be the ones that TSQL2 seems to want, either.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 32

19. VALIDTIME
SELECT S.S#
FROM S
WHERE UNABLE_TO_SUPPLY_ANYTHING (S.S#)

──is equivalent to this one:

20. VALIDTIME
SELECT S.S#
FROM S
WHERE S.S# NOT IN (SELECT SP.S# FROM SP)

The answer to this question is far from clear! Indeed, the
following excerpt from the concluding summary of reference [1] is
perhaps revealing in this connection:

Implementing functions ... is another interesting research
topic. Specifically, function calls are affected by statement
modifiers, so that the semantics of a function call will
depend on whether it is used in a temporal upward-compatible,
a sequenced, or a nonsequenced context.

The authors of reference [1] appear to be claiming here that
Examples 19 and 20 are equivalent. In that case, we have to ask
why, if "function calls are affected by statement modifiers," the
same is not true of references to view names and names introduced
using WITH. But in any case the authors are also clearly
admitting that "function calls" in the context of statement
modifiers have not been fully researched. We venture to think
that anybody attempting to undertake that research is likely to
meet with insuperable problems. If the body of the function
consists of some highly complex series of statements, including
assignments, branches, and exception-handling operations, how is
the function to be conceptually evaluated at each point in time
other than by actually evaluating it at each point in time? Note:
The matter is made even worse in SQL specifically by the fact that
user-defined functions can be coded in programming languages other
than SQL, using the same facilities (such as embedded SQL,
SQL/CLI, or JDBC) as are available to client application programs.

One last point to close this section: It might be thought
that the "U_" operators of reference [6] suffer from the same
problems as TSQL2's statement modifiers, since those operators
also involve a prefix that affects the semantics of the expression
following that prefix. However, we believe──of course!──that the
same criticisms do not apply. The reason is that our prefixes are
defined very carefully to affect only the outermost operator in
the pertinent expression (and just what it is that constitutes
that "pertinent expression" is well-defined, too, both
syntactically and semantically). If that operator is monadic,
then it is precisely the single relation operand to that monadic
operator that is initially unpacked; if the operator is dyadic,
then it is precisely the two relation operands to that dyadic
operator that are initially unpacked. In both cases, the regular

Copyright (c) 2005 Hugh Darwen & C. J. Date page 33

relational operation is then performed on the unpacked operand(s),
and the result is then packed again. In brief: Our USING
prefixes can be thought of as operator modifiers, not statement
(or, rather, expression) modifiers.

9. CONSEQUENCES OF HIDDEN COLUMNS

If, as we believe, the concept of statement modifiers is
irredeemably flawed, then perhaps nothing more needs to be said.
As we have seen, however, TSQL2 also involves a radical departure
from The Information Principle. Just to remind you, that
principle states that all information in the database should be
represented in one and only one way: namely, by means of
relations. (SQL tables are not true relations, of course, but for
the sake of the present discussion we can pretend they are; that
is, we can overlook for present purposes such matters as duplicate
rows, nulls, and left-to-right column ordering. What we want to
do is consider the differences between TSQL2 tables──rather than
SQL tables in general──and true relations.)

Now, the uniformity of structure provided by adherence to The
Information Principle carries with it uniformity of mode of access
and uniformity of description: All data in a table is accessed by
reference to its columns, using column names for that purpose;
also, to study the structure of a table, we have only to examine
the description (as recorded in the catalog) of each of its
columns.

TSQL2's departure from this uniformity leads to several
complications of the kind that the relational model was explicitly
designed to avoid. For example, new syntax is needed (as we have
seen) for expressing temporal queries and modifications; new
syntax is also needed for referencing hidden columns; new features
are needed in the catalog in order to describe tables with
temporal support; and similar new features are needed in the "SQL
descriptor areas" used by generalized applications that support ad
hoc queries [5,8]. These are not trivial matters, as the
discussions of earlier sections in this paper should have been
sufficient to demonstrate.

It is worth taking a moment to elaborate on the implications
of hidden columns for generalized applications (the final
complication in the list called out in the previous paragraph).
Consider the tasks that are typically performed by such an
application. A simple example is the task of saving the result of
an arbitrary query Q. So long as Q is well-formed, in the sense
that every result column has a unique name, then all the
application has to do is create an SQL table T, taking its
definition from the column names and data types given in the SQL
descriptor area for the query, and then execute the SQL statement
INSERT INTO T Q. Now consider, by contrast, what the application
will have to do if the query Q happens to take one of the forms

Copyright (c) 2005 Hugh Darwen & C. J. Date page 34

illustrated by the examples in the previous section. The simple
solution that worked so well before will clearly now be very far
from adequate.

10. LACK OF GENERALITY

TSQL2's support for tables with temporal support and temporal
intervals fails to include support for operations on intervals in
general. Of course, it does support some of the operators
normally defined for intervals in general──BEGIN, MEETS, OVERLAPS,
UNION, and so on (though we have not discussed these operators in
this paper)──but even in the case of temporal intervals it fails
to provide any counterpart of the useful shorthands we have
described in reference [6] for operations on relations and relvars
involving interval attributes. In particular, it has nothing
equivalent to the PACK and UNPACK operators,13 nor to any of the
"U_" operators, nor to any of the proposed shorthands for
constraints ("U_key" constraints and others) or for updating.

TSQL2 lacks generality in another sense, too. If it is
reasonable to use hidden columns for valid times and transaction
times, would it not be equally reasonable to use hidden columns
for other kinds of data? For example, consider a requirement to
record measurements showing variation in soil acidity at various
depths [9]. If we can have tables with valid-time support, should
we not also be able to have, analogously, tables with valid-depth
support, tables with valid-pH support, and perhaps tables with
both valid-depth and valid-pH support? In fact, is there any
reason to confine such facilities to hidden interval columns?
Perhaps relvar SP in the nontemporal version of suppliers and
shipments could be a table with valid-P# support (having S# as its
only regular column), or a table with valid-S# support (having P#
as its only regular column). Such observations might raise a
smile, but we offer them for serious consideration. The fact is,
as soon as we permit the first deviation from The Information
Principle, we have opened the door──possibly the floodgates──to
who knows what further indiscretions to follow.

Incidentally, lest we be accused of possible exaggeration in
the foregoing, we would like to draw your attention to another
extract from reference [1]. The authors are discussing
"interesting directions for future research":

It would also be useful to generalize statement modifiers to
dimensions other than time──for example, spatial dimensions in
spatial and spatiotemporal databases, the "dimensions" in data
warehousing, or the new kinds of multidimensional data models.
Providing general solutions that support the specific
semantics associated with the new dimensions is an important
challenge.

13 ATSQL [1] does have an analog of our PACK operator.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 35

11. IMPRECISE SPECIFICATION

Consider again Example 3 from Section 8:

3. VALIDTIME
SELECT DISTINCT S.S#, SP.P#
FROM S, SP
WHERE S.S# = SP.S#
AND SP.P# = P#('P1')

We have already mentioned (in Section 6) TSQL2's failure to
specify precisely what set of rows constitutes the result of a
valid-time or transaction-time query. The response usually given
to this complaint is that if all of the tables in some set of
tables are equivalent, in the sense that they yield the same
result when unpacked (or packed) on some interval column, and one
table in that set is agreed to be a correct result for a given
query, then any table in that set is equally correct and can be
produced as the result of the query. In other words, if tables S
and SP represent precisely the information shown for relvars S and
SP in Fig. 4 in Section 5, then either of the tables shown in Fig.
6──as well as literally billions of others14──might be produced as
the result of the query shown above as Example 3. (It might help
to point out explicitly that the table on the left-hand side of
the figure is packed on the hidden valid-time column.)

╔══╗
║ ┌────┬────╥───────────┐ ┌────┬────╥───────────┐ ║
║ │ S# │ P# ║ │ │ S# │ P# ║ │ ║
║ ├────┼────╫───────────┤ ├────┼────╫───────────┤ ║
║ │ S1 │ P1 ║ [d04:d10] │ │ S1 │ P1 ║ [d04:d08] │ ║
║ │ S2 │ P1 ║ [d02:d04] │ │ S1 │ P1 ║ [d06:d07] │ ║
║ │ S2 │ P1 ║ [d08:d10] │ │ S1 │ P1 ║ [d05:d10] │ ║
║ └────┴────╨───────────┘ │ S1 │ P1 ║ [d04:d09] │ ║
║ │ S2 │ P1 ║ [d02:d03] │ ║
║ │ S2 │ P1 ║ [d04:d04] │ ║
║ │ S2 │ P1 ║ [d08:d10] │ ║
║ └────┴────╨───────────┘ ║
╚══╝
Fig. 6: Two possible results for Example 3

But the foregoing position is surely unacceptable. The
various results that are regarded as equally correct under the
given equivalence relationship are distinguishable from one
another in SQL. Even the cardinality, unless it happens to be
zero (or possibly one), is not constant over all of those results!

14 Actually the upper bound is infinite, since SQL tables can have duplicate
rows. Even if we ignore duplicate rows, however, the number of possible
results is still astronomical; in the case at hand, for example, there are over
137,438,953,472 such possible results──and this figure is just a lower bound.
(In case you are interested, an upper bound for the same example is over a
trillion──1,099,511,627,776, to be precise.)

Copyright (c) 2005 Hugh Darwen & C. J. Date page 36

It follows that, in general, TSQL2's temporal queries (and
modifications too, presumably) are indeterminate.

That said, the problem can easily be addressed by specifying,
for example, some suitably packed form to be the actual result.
Therefore, we do not regard this fault in TSQL2, astonishing
though it is, as in itself militating against the whole approach.
We think the other reasons we have given are sufficient to do
that.

12. CONCLUDING REMARKS

We have presented a brief overview and analysis of TSQL2 and found
much in it to criticize. In fact, we have two broad (and
orthogonal) sets of criticisms: one having to do with the overall
approach in general, and one having to do with the language's poor
fit with SQL specifically (even more specifically, with certain of
the features that were added in SQL:1999──for example, triggers,
row types, and "typed tables"). In this paper, we have
concentrated on the first of these two sets of criticisms; for a
discussion of the second, see references [2], [3], and [4].

By way of conclusion, we repeat in summary form some of our
biggest criticisms from the first category.

• Regarding "the central idea": Even if we accept for the sake
of argument that TSQL2 succeeds in its objective of
simplifying the formulation of queries that satisfy Conditions
C1-C4, it is surely obvious that there are many, many queries
that fail to satisfy those conditions.

• Regarding temporal upward compatibility: Here we reject the
very idea that the goal might be desirable, let alone
achievable. In particular, we reject the idea that just
"adding temporal support" is a good way to design temporal
databases, because (a) it leads to the bundling of current and
historical data, and (b) it leads to relvars (tables) that are
not in 6NF. Further, we reject the notion that "current
operations" should work exactly as they did before, because
that notion leads to the notion of hidden columns and
(apparently) to the notion of statement modifiers.

• Regarding statement modifiers: We have discussed at great
length (in Section 8) our reasons for believing this concept
to be logically flawed. Furthermore, we do not believe it can
be fixed.

• Regarding hidden columns: We have discussed this issue at
considerable length, too. Hidden columns are a logical
consequence of the objective of temporal upward
compatibility──but they constitute the clearest possible
violation of The Information Principle, and they lead directly
to many of TSQL2's other problems.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 37

REFERENCES AND BIBLIOGRAPHY

1. Michael H. Böhlen, Christian S. Jensen, and Richard T.
Snodgrass: "Temporal Statement Modifiers," ACM TODS 25, No. 4
(December 2000).

2. Hugh Darwen: "Valid Time and Transaction Time Proposals:
Language Design Aspects," in reference [7].

3. Hugh Darwen, Mike Sykes, et al.: "Concerns about the TSQL2
Approach to Temporal Databases," Kansas City, Mo. (May 1996);
ftp:// sqlstandards.org/SC32/WG3/Meetings/MCI_1996_05_
KansasCity_USA/mci071.ps.

A precursor to reference [4]. As explained in Section 5, a
major part of the rationale for TSQL2 was temporal upward
compatibility (TUC). Briefly, TUC means that it should be
possible to convert an existing nontemporal database into a
temporal one by just "adding temporal support," and then have
existing nontemporal applications still run (and run
correctly) against the now temporal database. Among other
things, the present paper (i.e., reference [3]) raises
questions as to whether TUC is even a sensible goal, and some
of the arguments it makes in this connection are worth
summarizing here. Consider the following example. Suppose we
start with an SQL table EMP, with columns EMP#, DEPT#, and
SALARY. Suppose we now "add valid time support" to that table
as described in Section 7, so that every existing EMP row is
timestamped with the valid-time value (a period or interval
value) "from now till the end of time." But:

■ The table is not yet telling the truth (as reference [3]
puts it), since, in general, existing employees did not
join the company or move to their current department or
reach their current salary "now." So those valid-time
timestamps all need to be updated, somehow.

■ The table is also not yet telling the truth in that it
contains rows only for current employees and current
department assignments and current salary levels. All of
the historical information for previous employees and
previous departments and previous salaries needs to be
added, somehow.

■ We cannot tell for any given row whether the timestamp
shows when the employee moved to the indicated department,
or when the employee reached the indicated salary, or
perhaps even when the employee joined the company. It is
thus likely that the table will need to be vertically
decomposed into three separate tables (one each for
employment history, department history, and salary
history), as explained in reference [6].

Copyright (c) 2005 Hugh Darwen & C. J. Date page 38

■ What would happen if──as is not at all unlikely──table EMP
already included columns DATE_OF_JOINING_DEPT and
DATE_OF_LAST_INCREASE before the "valid-time support" was
added?

■ Even if all of the foregoing issues can be addressed
successfully, we are left with tables that represent both
history and the current state of affairs. It is thus
likely that each such table will need to be split into two,
as described in reference [6].

The net effect of the foregoing points (it seems to us) is
that

a. Converting a nontemporal database to a temporal counterpart
involves──necessarily──much more than just "adding temporal
support,"

and hence that, in general,

b. Having existing applications run unchanged after such a
conversion is not a very realistic goal.

4. Hugh Darwen, Mike Sykes, et al.: "On Proposals for Valid-Time
and Transaction-Time Support," Madrid, Spain (January 1997);
ftp://sqlstandards.org/SC32/WG3/Meetings/MAD_1997_01_Madrid_ES
P/mad146.ps.

The "UK response" to reference [13].

5. C. J. Date and Hugh Darwen: A Guide to the SQL Standard (4th
edition). Reading, Mass.: Addison-Wesley (1997).

6. C. J. Date, Hugh Darwen, and Nikos A. Lorentzos: Temporal Data
and the Relational Model. San Francisco, Calif.: Morgan
Kaufmann (2003).

The present paper was originally prepared as an appendix to
this book, though it has been edited to make it stand by
itself as far as possible.

7. Opher Etzion, Sushil Jajodia, and Suryanaryan Sripada (eds.):
Temporal Databases: Research and Practice. New York, N.Y.:
Springer-Verlag (1998).

This book is an anthology giving "the state of the temporal
database art" as of about 1997. It is divided into four major
parts, as follows:

1. Temporal Database Infrastructure
2. Temporal Query Languages
3. Advanced Applications of Temporal Databases
4. General Reference

8. International Organization for Standardization (ISO): Database
Language SQL, Document ISO/IEC 9075:1999. Also available as
American National Standards Institute (ANSI) Document ANSI
NCITS.135-1999.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 39

9. Nikos A. Lorentzos and Vassiliki J. Kollias: "The Handling of
Depth and Time Intervals in Soil Information Systems," Comp.
Geosci. 15, 3 (1989).

10. Richard Snodgrass and Ilsoo Ahn: "A Taxonomy of Time in
Databases," Proc. ACM SIGMOD Int. Conf. on Management of Data,
Austin, Texas (May 1985).

The source of the terms transaction time, valid time, and
user-defined time. Note: Transaction time and valid time are
discussed at length in reference [6], but "user-defined time"
is not. Reference [10] defines this term to mean temporal
values and attributes that are "not interpreted by the DBMS";
examples are date of birth, date of last salary increase, or
time of arrival. Observe, however, that in the approach to
temporal databases espoused and described in reference [6],
transaction times and valid times are also──like all other
values and attributes!──"not interpreted by the DBMS." While
it might make sense to have a term for "times" that are
neither transaction times nor valid times, the idea that
"user-defined times" are operationally different from the
others makes sense only if we start by assuming a
nonrelational approach to the temporal database problem in the
first place.

11. R. T. Snodgrass et al.: "TSQL2 Language Specification," ACM
SIGMOD Record 23, No. 1 (March 1994).

12. Richard T. Snodgrass (ed.): The TSQL2 Temporal Query Language.
Norwell, Mass.: Kluwer Academic Publishers (1995).

13. Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen,
and Andreas Steiner: "Adding Valid Time to SQL/Temporal" and
"Adding Transaction Time to SQL/Temporal," Madrid, Spain
(January 1997);
ftp://sqlstandards.org/SC32/WG3/Meetings/MAD_1997_01_Madrid_ES
P/mad146.ps.

14. Richard T. Snodgrass, Michael H. Böhlen, Christian S. Jensen,
and Andreas Steiner: "Transitioning Temporal Support in TSQL2
to SQL3," in reference [7].

15. Richard T. Snodgrass: Developing Time-Oriented Database
Applications in SQL. San Francisco, Calif.: Morgan Kaufmann
(2000).

The following remarks on temporal database design are taken
from this reference (we find them interesting inasmuch as they
describe an approach that is diametrically opposite to that
advocated by the present authors in reference [6]): "In the
approach that we espouse here, conceptual design initially
ignores the time-varying nature of the applications. We focus
on capturing the current reality and temporarily ignore any
history that may be useful to capture. This selective amnesia
somewhat simplifies what is often a highly complex task of

Copyright (c) 2005 Hugh Darwen & C. J. Date page 40

capturing the full semantics ... An added benefit is that
existing conceptual design methodologies apply in full ...
Only after the full design is complete do we augment the ER [=
entity/relationship] schema with ... time-varying semantics
... Similarly, logical design proceeds in two stages. First,
the nontemporal ER schema is mapped to a nontemporal
relational schema, a collection of tables ... In the second
stage, each of the [temporal annotations on the otherwise
nontemporal ER schema] is applied to the logical schema,
modifying the tables or integrity constraints to accommodate
that temporal aspect."

*** End *** End *** End ***

