
1 of 3

Reply to Sólmundur Jónsson

Sólmundur Jónsson writes:
The presentation by Hugh Darwen, "How to Handle Missing Information Without Using
Nulls" is very interesting and I can see that 6NF can solve some problems.  But with all these
tables aren’t we getting very close to [violating] Codd's Information Principle "All
information in the database must be cast explicitly in terms of values in tables and in no other
way"? Especially by [having a] separate table for each meaning of the Nulls? Aren’t we
hiding away information in table names?

Hugh Darwen and Chris Date reply:

Either we have relvar names or we don't.  The Third Manifesto requires relation variables.  It
doesn't actually state that a variable must have a name, but all of our illustrative examples are
based on an assumption that every variable has a name that is unique within its scope.
Foundation for Future Database Systems: The Third Manifesto, Chapter 13, The Inheritance
Model, includes IM Prescription 9, which is not (and cannot be) part of The Third Manifesto
per se but does require every variable to be named.  Furthermore, our discussion of OO
Proscription 2 in Chapter 9 effectively suggests that we have always assumed that every
variable has a name.  Now we are considering making that assumption explicit in our next
revision of The Third Manifesto.

Assuming, then, that we have named relation variables, the question is asking if Hugh
Darwen's presentation involves "hiding away information in variable names", suggesting (a)
that there is something unusual about the proposed design, compared with relational database
designs in general, and (b) that the unusual thing in question is that the design involves using
variable names in an unorthodox manner, viz., to hide information.

Regarding (a), we claim that there is nothing unusual.  The proposed database is just a
collection of relation variables whose possible values are restricted according to declared
constraints.

Regarding (b), we claim that no information is hidden in those names.  Of course, those names
do stand for relvars and relvars certainly do carry information, so it might be argued that the
names carry information too, in a sense.  But we claim that this state of affairs cannot be
regarded as either "hiding information" or as a violation of The Information Principle—
especially since the notion of "hiding information" and The Information Principle itself are
both somewhat imprecise at this time.  The names could be changed arbitrarily without
affecting the design at all.  The operations available on the variables denoted by those names
are exactly those general operations that are normally supported—their effects are in no way
determined by the actual choice of names.  In fact, it most definitely is the case that all the
information represented in the database is "cast in the form of" relations.  Every statement of
belief is represented by some tuple in one of those relation variables, and every one of those
tuples represents some statement of belief.  These statements of belief constitute the
information represented in the database.



2 of 3

Now, it might be observed that the proposed design violates The Principle of Orthogonal
Design, proposed by C.J. Date and David McGoveran in Relational Database Writings 1991-
1994, Chapter 4: A New Database Design Principle.  But violating that Principle, we argue,
does not imply violating Codd's Information Principle.1  In any case The Principle of
Orthogonal Design, like normalization, is only a recommendation, not a "legal requirement".
We think that The Information Principle was an attempt by Codd to summarize the most
important "legal requirement" of The Relational Model of Data.  Furthermore, an alternative
design that does not violate The Principle of Orthogonal Design, as suggested in the
presentation, would still involve relvar names.

Consider CALLED, EARNS, SALARY_UNK and UNSALARIED.  Suppose we decide to
dispense with UNSALARIED.  Now every tuple in CALLED either has a matching tuple in
EARNS and no matching tuple in SALARY_UNK, or has a matching tuple in
SALARY_UNK and not in EARNS, or has no matching tuple in either SALARY_UNK or
EARNS.  Now The Principle of Orthogonal Design is not violated,2 and yet any information
deemed to be hidden in the name SALARY_UNK is presumably still hidden there.  (But we
claim none is hidden.)

The important thing about relvar names is that they do presumably (and definitely, in the
example given in the presentation) have different meanings in their real world interpretations,
implying that the relvars correspond to different predicates.  The system doesn't know the real
world interpretations, of course, but it does know that SALARY_UNK represents the predicate
SALARY_UNK ( t ) and UNSALARIED the predicate UNSALARIED ( t ), where t can be
meaningfully replaced by a tuple of type TUPLE { Id Id_type3 }.  The real world
interpretations of SALARY_UNK ( t ) and UNSALARIED ( t ) are the predicates given on
Slide 9 of the presentation.

Notice that a tuple per se does not constitute a statement of belief.  For example, the tuple
TUPLE { Id 1234 }, considered in isolation, does not convey any information at all.  The
presence of that tuple in UNSALARIED, however, tells the system that
UNSALARIED ( TUPLE { Id 1234 } ) is currently true and tells us that "The person with id
1234 has no salary" is currently true.  Contrariwise, the absence of that tuple from that relvar
tells the system that UNSALARIED ( TUPLE { Id 1234 } ) is currently false and us that "The
person with id 1234 has no salary" is currently false.  So, in order to convey information, a
tuple has to be regarded as representing an instantiation of a specific predicate, yielding a
proposition whose truth is determined by the appearance or non-appearance of that tuple in the
corresponding relvar.  Every predicate is a declarative sentence, possibly and usually
containing some parameters4 (standing for nouns).  As far as the system is concerned, a relvar
name stands for the part of that relvar's predicate that remains when the parameters are

                                                
1 One of us (Chris Date) is on record to the effect that a violation of The Principle of Orthogonal Design is a
violation of The Information Principle, but neither of us any longer believes this to be the case.  Please accept
our apologies if you have been misled by this previous assertion (given, for example, in An Introduction to
Database Systems, 7th edition).
2 At least, not the Principle in its current form, which has been found to be insufficiently precise.  A
reformulation of that Principle is currently being sought.
3 The actual type is not relevant to the issue here.  In the next paragraph we assume it to be INTEGER.
4 Logicians often call these variables, but we prefer to avoid that term because of possible confusion with the
programming language concept of the same name.  Our "relvar" is an abbreviation for "relation variable".



3 of 3

removed.5  Given a relvar name and an appropriate tuple, we can construct the corresponding
proposition, with real nouns in place of the predicate's parameters.  Thus, given a relvar name
and the zero or more tuples constituting the body of that relvar, we have a proposition6 that is
believed to be true—in other words, some information.  Take away the set of tuples or the
relvar name, and we don't have information!7

Finally, we would like to make a comment on "separate table for each meaning of the Nulls".
The comment is not intended to be taken very seriously, nor is it meant unkindly.  No, we don't
propose to have a separate table for each meaning of Nulls.  There's no such thing as a Null.
We cannot entertain the idea of having a table for any meaning of something that doesn't exist!
We would rather characterise our design (a trifle loosely) as involving a relvar for every
distinct kind of statement8 that we wish to be represented in the database.

                                                
5 We have encountered the terms predicate letter and predicate constant for this concept, but we prefer to avoid
those terms too.
6 Formed by anding together the zero or more propositions represented by the tuples of that relvar body.
7 We remark in passing here that it is perhaps unfortunate that The Information Principle was so imprecisely
stated.
8 For "kind of statement", read "predicate".


