
Copyright © C. J. Date 2006 page 1

T o B e I s t o B e

a V a l u e o f a V a r i a b l e

by

C. J. Date

with apologies to George Boolos
and his book Logic, Logic, and Logic

(I cribbed the title of this paper from an essay in that book)

If we want things to stay as they are,
things will have to change

—Giuseppe di Lampedusa

"Change" is scientific, "progress" is ethical;
change is indubitable,

whereas progress is a matter of controversy
—Bertrand Russell

July 17th, 2006

ABSTRACT

In reference [1], two writers, referred to herein as Critics A and B, criticize The Third Manifesto
for its support for relation variables and relational assignment. This paper is a response to that
criticism. Readers are expected to be familiar with the following concepts and terminology:

 A relation variable (relvar for short) is a variable whose permitted values are relation
values (relations for short).

 Relational assignment is an operation by which some relation r is assigned to some relvar
R.

Reference [14] explains these notions in detail, using a language called Tutorial D as a basis for
examples.

Why we want relvars
Critic A's objections
Critic B's objections
Multiple assignment
Database values and variables
Concluding remarks

Copyright © C. J. Date 2006 page 2

References

WHY WE WANT RELVARS

As noted in the abstract, the term relvar is short for relation variable. It was coined by Hugh
Darwen and myself in reference [9], the first published version of The Third Manifesto; Codd's
first papers on the relational model [3-4] used the term time-varying relation instead, but "time-
varying relations" are just relvars by another name. Of course, we don't claim to be the first to
recognize this fact, but we do believe we were the first to draw wide attention to it. Note:
Reference [2], which predated the first version of The Third Manifesto by several years, also
clearly distinguished between relations and relvars (it called them tables and table variables,
respectively). However, it did so only as a direct consequence of comments by myself on an
earlier draft, which didn't.

We believe further that relvars and the related notion of relational assignment are essential
if we're to be able to update the database. Note that variables and assignment go hand in hand
(we can't have one without the other)—to be a variable is to be assignable to, to be assignable to
is to be a variable. Note further that "assignable to" and "updatable" mean exactly the same
thing; hence, to object to relvars is to object to relational updating (equivalently, to object to
relational updating is to object to relvars).

Perhaps a little additional explanation is needed here. Most people, if they think about
relational updating at all, probably think about the conventional INSERT, DELETE, and
UPDATE operators, not about relational assignment—especially as SQL in particular doesn't
support relational assignment, though it does support INSERT, DELETE, and UPDATE, of
course. But INSERT, DELETE, and UPDATE are all in the final analysis just shorthand for
certain relational assignments. For example, suppose we're given the usual suppliers-and-parts
database (see Fig. 1 for a set of sample values).* Then the Tutorial D INSERT statement

──────────

* The discussion and examples that follow are taken from reference [10].

──────────

Copyright © C. J. Date 2006 page 3

╔══╗
║ ┌────┬──────┬───────┬───────┐ ┌────┬────┬─────┐ ║
║ S │ S# │ SNAME │ STATUS │ CITY │ SP │ S# │ P# │ QTY │ ║
║ ├════┼──────┼───────┼───────┤ ├════┼════┼─────┤ ║
║ │ S1 │ Smith │ 20 │ London │ │ S1 │ P1 │ 300 │ ║
║ │ S2 │ Jones │ 10 │ Paris │ │ S1 │ P2 │ 200 │ ║
║ │ S3 │ Blake │ 30 │ Paris │ │ S1 │ P3 │ 400 │ ║
║ │ S4 │ Clark │ 20 │ London │ │ S1 │ P4 │ 200 │ ║
║ │ S5 │ Adams │ 30 │ Athens │ │ S1 │ P5 │ 100 │ ║
║ └────┴──────┴───────┴───────┘ │ S1 │ P6 │ 100 │ ║
║ │ S2 │ P1 │ 300 │ ║
║ ┌────┬──────┬───────┬───────┬───────┐ │ S2 │ P2 │ 400 │ ║
║ P │ P# │ PNAME │ COLOR │ WEIGHT │ CITY │ │ S3 │ P2 │ 200 │ ║
║ ├════┼──────┼───────┼───────┼───────┤ │ S4 │ P2 │ 200 │ ║
║ │ P1 │ Nut │ Red │ 12.0 │ London │ │ S4 │ P4 │ 300 │ ║
║ │ P2 │ Bolt │ Green │ 17.0 │ Paris │ │ S4 │ P5 │ 400 │ ║
║ │ P3 │ Screw │ Blue │ 17.0 │ Oslo │ └────┴────┴─────┘ ║
║ │ P4 │ Screw │ Red │ 14.0 │ London │ ║
║ │ P5 │ Cam │ Blue │ 12.0 │ Paris │ ║
║ │ P6 │ Cog │ Red │ 19.0 │ London │ ║
║ └────┴──────┴───────┴───────┴───────┘ ║
╚══╝

Fig. 1: The suppliers-and-parts database—sample values

INSERT SP RELATION
{ TUPLE { S# S#('S3'), P# P#('P1'), QTY QTY(150) },
TUPLE { S# S#('S5'), P# P#('P1'), QTY QTY(500) } } ;

is shorthand for the relational assignment

SP := (SP) UNION (RELATION
{ TUPLE { S# S#('S3'), P# P#('P1'), QTY QTY(150) },

TUPLE { S# S#('S5'), P# P#('P1'), QTY QTY(500) } }) ;

Likewise, the Tutorial D DELETE statement

DELETE S WHERE CITY = 'Athens' ;

is shorthand for the relational assignment

S := S WHERE NOT (CITY = 'Athens') ;

And the Tutorial D UPDATE statement

UPDATE P WHERE CITY = 'London'
(WEIGHT := 2 * WEIGHT, CITY := 'Oslo') ;

(a little trickier, this one) is shorthand for the relational assignment

Copyright © C. J. Date 2006 page 4

P := WITH (P WHERE CITY = 'London') AS T1,
(EXTEND T1
ADD (2 * WEIGHT AS NW, 'Oslo' AS NC)) AS T2,

(T2 { ALL BUT WEIGHT, CITY }) AS T3,
(T3 RENAME (NW AS WEIGHT, NC AS CITY)) AS T4,
(P MINUS T1) AS T5 :

T5 UNION T4 ;

It should be clear, therefore, that relational assignment is fundamentally the only relational
updating operator we need. For that reason, I'll focus on relational assignment as such for the
remainder of this paper. Also, throughout the paper from this point forward, I'll take (a) the
unqualified term assignment to mean relational assignment specifically and (b) the unqualified
term relation to mean a relation value specifically (except possibly in quotes from other writers).

CRITIC A'S OBJECTIONS

Relvars and assignment are criticized in a lengthy series of messages from Critics A and B to
Hugh Darwen [1]. The overall exchange was sparked off by a question on an issue only
tangentially related to the matter at hand (and I'll therefore ignore the substance of that issue in
what follows). In his reply to the questioner, Critic A said this:1

I and [Critic B] do not subscribe to relvars and think Codd did not either.

Hugh responded:

I'm baffled by your nonsubscription to relvars ... Don't you subscribe to INSERT,
DELETE, UPDATE, and relational assignment? Codd certainly did. The target operand
for all of these operations is a relation variable (relvar for short).

To which Critic A replied:

More precisely, we don't subscribe to explicit relvars and Codd used "time-varying
relations" to avoid them ... Bearing in mind that simplicity was one of Codd's main
objectives, we think he may have refrained intentionally from introducing relvars. He was
obviously aware of the time dimension of databases, yet as far as we have been able to
determine, he never included time-variance semantics in his formal model. Had he done
so, the language of sets and mathematical relations would have been rather strained
because, as Date himself points out, every object in the language has a fixed value. Since
relationships within and among Codd's relations are evaluated at a point in time, this
permits the use of set semantics ... While conceptually Codd's "time-varying relation" has
to be something like a relvar, the "gloss" permitted Codd to stick to simple sets (which

1 For reasons of clarity and flow I've edited most of the quotes in this paper, sometimes
drastically so.

Copyright © C. J. Date 2006 page 5

cannot change), yet still contend with updates ... It is, perhaps, significant that later, in his
RM/T paper, he referred to insert-update-delete as "transition rules," not operations.

And in a subsequent email he (Critic A) went on to say:

Please note that it is not claimed there are no relvars involved. The only claim is that it is
not a good idea to deal with them explicitly in the data language, because it creates
complexity due to problems with unfixed sets. It's hard to believe that Codd did not think
about variables, and that he used the term "time-varying relation" lightly.

———— ————

At this point I'd like to interject some blow-by-blow responses of my own to these various
remarks of Critic A's. I've repeated and numbered those remarks for purposes of reference.

1. More precisely, we don't subscribe to explicit relvars.

This statement seems to suggest that Critic A does subscribe to "implicit" relvars, whatever
they might be. So apparently relvars are bad only if they're explicit. I don't understand
this position.

2. Codd used "time-varying relations" to avoid [explicit relvars].

There are two ways to interpret this remark. The first is: Codd used the concept of "time-
varying relations" in order to avoid having to deal with the concept of relvars (explicit or
otherwise). If this interpretation is the intended one, then I'd like to know exactly what the
difference is between these two concepts; our critics claim a difference exists, but they
never seem to come out and say what it is.

The second interpretation is: Codd used the term "time-varying relations" in order to
avoid having to use the term "relvars" (again, explicit or otherwise). If this interpretation
is the intended one, then I simply don't believe it. I worked with Codd for many years and
knew him well, and I had many discussions with him on this very point. While I don't
think I can do complete justice to his position on the matter, I can at least state with some
authority that there was no hidden agenda behind his use of the term "time-varying
relation"; it was just the term he used, that's all, and I don't think he attached any great
significance to it.

More particularly (and contrary to both of the foregoing possible interpretations of
Critic A's remark), the papers (references [3] and [4]) in which Codd first used the term
contain not the slightest hint that he introduced it to avoid discussing variables and/or
updating. Au contraire, in fact: In both of those papers, he explicitly discussed the
question of relational updating. To quote: "Insertions take the form of adding new
elements to declared relations ... Deletions ... take the form of removing elements from
declared relations." What's more (in case you might be wondering what Codd meant by
the term declared relation), references [3] and [4] both make it clear that a declared
relation is a named relation ("time-varying," of course) that (a) is explicitly declared as
such to the system, (b) is described in the system catalog, (c) can be updated (so the
declared name denotes different relations—that is, different relation values—at different

Copyright © C. J. Date 2006 page 6

times), and (d) can be referenced in queries (and constraints, presumably). That looks like
a relvar to me, and an explicit one to boot.

3. Bearing in mind that simplicity was one of Codd's main objectives, we think he may have
refrained intentionally from introducing relvars.

I find no evidence in any of his writings that Codd ever intended any such thing; in fact, I
find a great deal of evidence to the contrary—not only in the remarks just quoted regarding
insertions and deletions and declared relations, but in numerous remarks elsewhere as well.

4. He was obviously aware of the time dimension of databases, yet as far as we have been
able to determine, he never included time-variance semantics in his formal model.

If "time-variance semantics" merely means that Codd's time-varying relations vary over
time, there is clear evidence—not solely in the name—that he did include such semantics.
In particular, he certainly included relational assignment "in his formal model," a point I'll
come back to later.

5. Had he done so, the language of sets and mathematical relations would have been rather
strained because, as Date himself points out, every object in the language has a fixed value.

I don't know what this means, nor do I know what writings of my own are being referred to
here.

6. Since relationships within and among Codd's relations are evaluated at a point in time, this
permits the use of set semantics.

The phrases "set semantics" and a slight variant, "set theoretic semantics," appear
repeatedly in reference [1], but I have little idea as to what they mean. From other remarks
in reference [1] I can guess they refer to something that includes set operators such as
union and intersection but excludes assignment; but then why not talk about (e.g.)
"arithmetic semantics," meaning something that includes arithmetic operators such as "+"
and "*" but excludes assignment? (I won't repeat these questions every time one of the
unclear phrases appears, letting this one paragraph do duty for all.) Overall, I don't think
this remark of Critic A's means anything other than that the value of a relvar at any given
point in time is a relation (whose body is a set, of course: namely, a set of tuples). If that is
indeed what it means, then of course I agree, but I can't attach any special significance to
it.

7. While conceptually Codd's "time-varying relation" has to be something like a relvar, the
"gloss" permitted Codd to stick to simple sets (which cannot change), yet still contend with
updates.

I agree with Hugh's response on this one. To quote:

Copyright © C. J. Date 2006 page 7

Well, somebody will have to explain to me what the difference is [between a relvar
and a "time-varying relation"] ... If it walks like a duck, swims like a duck, flies like a
duck, and quacks like a duck, what is it?

See also my own earlier comments on this same issue. Note: I might add that I don't
really understand what's meant by the term "gloss" here, either, but perhaps it's not
important.

8. It is, perhaps, significant that later, in his RM/T paper, he referred to insert-update-delete
as "transition rules," not operations.

No, he didn't. What he actually said was this [6]:

All insertions into, updates of, and deletions from ... relations are constrained by the
following two rules [and he goes on to give definitions of the entity and referential
integrity rules. Then he explicitly states that the relational model includes those two rules,
and he refers to them generically as] the insert-update-delete rules.

Note the explicit reference to "insertions into, updates of, and deletions from"
relations! (Incidentally, the paper continues to refer to the target of such operations as
"time-varying relations.")

9. Please note that it is not claimed there are no relvars involved. The only claim is that it is
not a good idea to deal with them explicitly in the data language, because it creates
complexity due to problems with unfixed sets.

To the extent that I understand these remarks (which isn't very far), they just look like arm
waving to me. See my response to Critic A's remark no. 1.

10. It's hard to believe that Codd did not think about variables, and that he used the term "time-
varying relation" lightly.

No, it's not. See my response to Critic A's remarks nos. 2 and 4.

──────────

I've already quoted part of Hugh's response to Critic A's remarks. That response continues:

I thought "relational assignment" was Codd's term, and one of his twelve rules ... Codd's
accounts of assignment, insert, update, and delete on pp 87-94 of the RM/V2 book look
indistinguishable from those of Tutorial D ...

Well, I can confirm that Codd used the term relational assignment in "the RM/V2 book"
[8], though not in fact in "the twelve rules" paper [7]. (One of those rules does have to do with
INSERT, DELETE, and UPDATE, but there's no rule regarding assignment as such.) But he
certainly included the concept of assignment, and explicit syntax for that concept, much earlier
than that—in the RM/T paper [6], to be specific (which appeared in 1979), and possibly earlier
still.

Copyright © C. J. Date 2006 page 8

As an aside, I have to say that it's not at all obvious that RM/V2's facilities in this area are
"indistinguishable from those of Tutorial D" (and indeed they aren't; for example, the RM/V2
facilities do include the idea that certain deletes can cause the introduction of nulls into the
database, while at the same time they don't include support for multiple assignment). What's
more, the text on pages 87-94 of the RM/V2 book contains much material not directly related to
the semantics of the operators as such, including many details that don't belong in an abstract
model at all—e.g., "Whenever rows are withheld by the DBMS from insertion (to avoid
duplicate rows in the result), the duplicate row indicator is turned on"; "If one or more indexes
exist for the target relation, the DBMS will automatically update these indexes to support the
inserted rows"; and so on. It also contains several prescriptions that are in direct conflict with
The Third Manifesto—e.g., "The domain of any column of T in which the values are derived by
means of a function is identified [in the catalog] as function-derived, because the DBMS usually
cannot be more specific than that"; "The relational model includes the cascading option in some
of its manipulative operators";2 and so on. All of that being said, however, I do of course agree
with Hugh that the general functionality being defined in this part of the RM/V2 book is
essentially similar to that found in the analogous portions of Tutorial D.

To all of the above I add that as early as 1971 Codd was proposing explicit support for INSERT,
DELETE, and UPDATE (albeit not for assignment as such); I refer to his paper on "Data
Sublanguage ALPHA" [5], in which 12 examples (out of a total of 32, or nearly 40 percent) were
updating examples specifically.

CRITIC B'S OBJECTIONS

After the exchanges between Critic A and Hugh discussed above, Critic B joined the
correspondence (effectively taking over from Critic A, who didn't contribute any further). In his
first message, Critic B said this among other things:

The conflation of set theoretic language (which has only equivalence) and a computational
language (which has both assignment and equivalence) results in muddy semantics, which
neither Hugh nor Chris have discussed or even acknowledged. Furthermore, neither seem
to have applied any of the vast literature on nondecidability and incompleteness to The
Third Manifesto.

Well, it's true that The Third Manifesto prescribes, and Tutorial D (like every other
imperative language I know) supports, "both assignment and equivalence." In fact, the
Manifesto prescribes, and Tutorial D supports, all three of the following:

 Logical equivalence: If p and q are predicates, the equivalence (p) EQUIV (q)—not meant
to be actual Tutorial D syntax—is a predicate also, evaluating to TRUE if and only if p
and q both evaluate to the same truth value.

 Value equality "=": Values v1 and v2 are equal if and only if they're the very same value.

2 The Third Manifesto does not prohibit "cascading options" that are specified declaratively, but
Codd is suggesting here that they might be specified procedurally instead.

Copyright (C) C. J. Date 2006 page 9

 Assignment ":=" (relational or otherwise): The assignment V := v causes the specified
value v to be assigned to the specified variable V (after which, the comparison V = v is
required to evaluate to TRUE).

I'd like to elaborate on value equality in particular, since certain subsequent remarks of
Critic B's suggest there might be some breakdown in communication in this area. As I've said,
values v1 and v2 are equal if and only if they're the very same value (and I note in passing that
the term identity might reasonably be used instead of equality for this concept). It's our position,
reflected in the Manifesto, that any given value—e.g., the integer 3—exists (a) for all time and
(b) exactly once in the universe (as it were), but that many distinct occurrences or appearances
of that given value can exist simultaneously, in many different places. And if two such "places"
happen to contain appearances of the same value at the same time, then comparing those two
"places" for equality will give TRUE (they'll "compare equal") at that time.3 Here's some text
from reference [10] that explains the overall situation:

<quote>

Observe that there's a logical difference between a value as such and an appearance of that
value—for example, an appearance as the current value of some variable or as some
attribute value within the current value of some relvar. Each such appearance consists
internally of some physical representation of the value in question (and distinct
appearances of the same value might have distinct physical representations). Thus, there's
also a logical difference between an appearance of a value, on the one hand, and the
physical representation of that appearance, on the other; there might even be a logical
difference between the physical representations used for distinct appearances of the same
value. All of that being said, however, it's usual to abbreviate physical representation of
an appearance of a value to just appearance of a value, or (more often) just value, so long
as there's no risk of ambiguity in doing so. Note that appearance of a value is a model
concept, whereas physical representation of an appearance is an implementation
concept—for example, users certainly might need to know whether two variables contain
appearances of the same value, but they don't need to know whether those appearances use
the same physical representation.

Example: Let N1 and N2 be variables of type INTEGER. After the following
assignments, then, N1 and N2 both contain an appearance of the integer value 3. The
corresponding physical representations might or might not be the same (for example, N1
might use a binary representation and N2 a packed decimal representation), but it's of no
concern to the user either way.

N1 := 3 ;
N2 := 3 ;

</quote>

3 So we might say we have here an example of yet another kind of equality, which we might
call appearance equality. No such term is used in the Manifesto, however.

Copyright (C) C. J. Date 2006 page 10

What if anything is wrong with the foregoing state of affairs? Note: If (as Critic B's next
sentence might suggest) the answer to this question is that it gives rise to undecidability, then I've
already dealt with that issue in a couple of companion papers [11-12], and I won't discuss it
further here. But I can't tell from the quoted extract whether the problem that Critic B is
referring to is indeed that one.

I'd also like to know exactly what's "muddy" about the semantics of Tutorial D. Hugh
asked the same question:

Please justify by showing concrete examples in Tutorial D where our "semantics" are
"muddy." Please also explain what you think it takes for semantics to be muddy. I
understand indeterminacy (as found in SQL), but I believe we have none of that.

Critic B never explicitly responded to these requests, as far as I can tell, unless the
following is a response:

Your request that I explain what Tutorial D does wrong through examples in Tutorial D
is absurd! You cannot give examples in any language of what that language does NOT do!

I'll come back to these remarks of Critic B's in a little while.

Anyway, Hugh wrote a long response to Critic B's complaint, of which the following is the
substance:

<quote>

If the database language has no named relvars, how are updates expressed in it, and how
are constraints expressed? And how are queries expressed? ... The answers must be
accompanied by examples in some concrete syntax. This requirement is a stringent one
and I might not respond to a response that does not attempt to address it. The syntax
should be based, where appropriate, on relational algebra ...

We have assignment so that the database can be updated. As far as the database is
concerned, assignment is restricted to relational assignment only, because relation
variables are the only kind allowed in the database ... A proposal to do away with relation
variables needs to demonstrate two very important things: first and foremost, an alternative
way of updating the database; second, the advantages of this alternative way over
assignment to relvars.

</quote>

Critic B returned to the fray:

<quote>

To clarify, I have NOT proposed doing away with the concept of relation variables per se
...

Copyright (C) C. J. Date 2006 page 11

Your question goes to the heart of the very great difference in semantics between set
theoretic and computational languages ... The set theoretic analog of "updating" semantics
is two sets (e.g., {A} and {B}) connected by a "set transformation" or "transition" rule ...
Semantically, this is VERY different from saying that {A} becomes {B} via some update
operator because—in set theoretic language—{B} does not replace {A} and so there is no
assignment of values to some variable. Instead both always exist but are merely related in
a known way.

The problem created by combining set theoretic language and computational language
semantics in some completely unspecified manner makes The Third Manifesto as flawed as
the NULL problems in SQL!

Your request that I explain what Tutorial D does wrong through examples in
Tutorial D is absurd! You cannot give examples in any language of what that language
does NOT do!

In Tutorial D, I do not know how to interpret "equivalence"—sometimes you seem to
want the set theoretic concept (i.e., an assertion of identity) and sometimes you seem to
want the computational concept (an assertion of value equivalence). If the first is not
intended, then how does Tutorial D support inference? And if it is, how do you square
this with assignment, which is obviously at odds with the set theoretic semantics for which
there is no concept of variable?

</quote>

I have some blow-by-blow responses of my own to all this:

1. To clarify, I have NOT proposed doing away with the concept of relation variables per se.

This claim seems to be related to Critic A's remark to the effect that (apparently) explicit
relvars are bad but implicit ones might be OK. I still fail to understand what exactly is
being proposed here.

2. Your question goes to the heart of the very great difference in semantics between set
theoretic and computational languages.

The question referred to is, I presume, the one in which Hugh asks how updates are to be
done without relvars; if not, then I don't understand.

3. The set theoretic analog of "updating" semantics is two sets (e.g., {A} and {B}) connected
by a "set transformation" or "transition" rule.

I note that Critic A also referred to transition rules (though his reference was incorrect).

4. Semantically, this is VERY different from saying that {A} becomes {B} via some update
operator because—in set theoretic language—{B} does not replace {A} and so there is no
assignment of values to some variable. Instead both always exist but are merely related in
a known way.

Copyright (C) C. J. Date 2006 page 12

First, The Third Manifesto never talks in terms of "one set becoming another"; rather, it
talks in terms of a variable which has one value at one time and another at another.
Second, it also never talks in terms of one set replacing another; since all values "always
exist," all sets also "always exist," a fortiori (in fact, sets are values). However, it does talk
in terms of a variable being updated, which means the appearance of one value (in that
variable) is replaced by an appearance of another. In fact, it tries very hard to be precise
over such matters—over the logical difference, in particular, between a value as such and
an appearance of such a value in some context, as I tried to explain some pages back—and
it's truly frustrating to be so roundly misunderstood. Overall, these two sentences of Critic
B's just look like an attempt to state, fuzzily, what the Manifesto states very precisely.

5. The problem created by combining set theoretic language and computational language
semantics in some completely unspecified manner makes The Third Manifesto as flawed as
the NULL problems in SQL!

What exactly is it in The Third Manifesto that's "completely unspecified"? If anything's
unspecified here, I'd have to say it's the meaning of "computational language semantics"—
not to mention "set theoretic semantics," a notion I've already commented on. Also, what
exactly does "as flawed as the NULL problems in SQL" mean? Nulls give rise to a many-
valued logic, which most authorities agree causes horrible problems; but I'm not aware that
the Manifesto's insistence on "computational language semantics" necessitates any
departure from conventional two-valued logic. At best, therefore, the reference to nulls is
a red herring, and the claim that the Manifesto is "as flawed as the NULL problems in
SQL" is an apples and oranges comparison.

Note added later: It occurs to me that the phrase "the problem created by combining
set theoretic language and computational language semantics" might refer to something we
categorically prohibit: namely, the possibility that a new value might be assigned to some
variable during the process of evaluating some expression that involves that very same
variable. We agree that allowing such a possibility could have adverse consequences
(though some languages do in fact permit it). For that reason, any language that's
supposed to conform to The Third Manifesto is required to satisfy the following
prescriptions among others (and of course Tutorial D does satisfy these prescriptions):

 Syntactically, no assignment is an expression; more generally, no update operator
invocation is an expression.

 Syntactically, therefore, no expression (no relational expression in particular) is
allowed to include either an assignment or, more generally, an update operator
invocation of any kind.

 By contrast, an expression (a relational expression in particular) is allowed to include
a read-only operator invocation. However, such an invocation is itself fundamentally

Copyright (C) C. J. Date 2006 page 13

just shorthand for another expression; by definition, therefore, it includes no
assignments and no update operator invocations of any kind.4

It follows from all of the above that if a given relational expression exp includes any
references to some relvar R, then throughout evaluation of exp those references all denote
the same thing: namely, the relation r that's the value of R immediately before evaluation
of exp begins.

6. Your request that I explain what Tutorial D does wrong through examples in Tutorial D
is absurd! You cannot give examples in any language of what that language does NOT do!

Well, I thought the point was (see references [11-12]) that Tutorial D allows expressions
that can't be evaluated. If so, it must be possible to give an example of such an expression.
Now, I agree it might be difficult to do so—I mean, the expression might be extremely
complex—but Critic B is saying it's impossible. So perhaps Critic B is referring to
something else that Tutorial D "does wrong." In fact, I think he must be—since he goes
on to suggest that there's something the language "does NOT do," and allowing
expressions that can't be evaluated is something it does do (at least according to Critic B).

4 The code that implements a given read-only operator is always logically equivalent to a single
RETURN statement, the operand to which is itself formulated as an expression. (While that
implementation code might in fact be written in such a way as to update certain variables that
are purely local to the operator in question, such updates have no lasting effect.) Thus, such an
operator cannot and does not update anything in its environment; in particular, it cannot and
does not update anything in the database.

When the foregoing points are clarified, I'd then like to know why analogous
criticisms don't apply to the hypothetical language described in Codd's original papers
[3-4] or to his ALPHA language [5]. And assuming I'm right in thinking those
criticisms do apply, I'd also like to see a language to which they don't.

7. In Tutorial D, I don't know how to interpret "equivalence"; sometimes you seem to
want the set theoretic concept (e.g., an assertion of identity) and sometimes you seem to
want the computational concept (an assertion of value equivalence). If the first is not
intended, then how does Tutorial D support inference? And if it is, how do you square
this with assignment, which is obviously at odds with the set theoretic semantics for
which there is no concept of variable?

I'm afraid I'm far from fully understanding these remarks. I think what Critic B here
calls "assertion of identity" is what we call equality. I think what Critic B here calls
"assertion of value equivalence" is what I earlier suggested (in a footnote) might be
called "appearance equality." I've already tried to explain these constructs (viz., equality
and "appearance equality"), and I believe the Manifesto is perfectly explicit on when and
where they can be used and what their semantics are. As for "[the Manifesto] supporting
inference": I think what Critic B is referring to here is the process of determining the
value of a relational expression (in particular, the process of responding to a query). If
so, then I believe the Manifesto is perfectly explicit on what's involved in that process.

Copyright (C) C. J. Date 2006 page 14

What's more, I fail to see how assignment and "the concept of variable" come into the
picture, since—as I tried to explain a little while back—neither has any role to play in
that process.

———— ————

In a subsequent message, Critic B said this:

My desire is not to introduce a database language with no variable names, etc., but that
Tutorial D should cleanly separate set theoretic semantics and computer language
semantics. You want a single language which has both, but I don't believe this is
possible unless (for example and at least) truth value equivalence is distinct from
cardinal and ordinal value equivalence.

As I said earlier, Tutorial D has logical equivalence (which is presumably the same as
what Critic B here calls truth value equivalence), together with value equality,5 together with
assignment (which Critic B previously at least suggested was also a kind of equivalence).
Now he additionally talks about "cardinal and ordinal value equivalence." I have no idea
whether or not this is one of the three kinds Tutorial D has; I don't know whether "cardinal
and ordinal value equivalence" is one kind or two; and I don't even know whether Critic B
thinks it would be good or bad if Tutorial D supported it (or them). Anyway, Hugh
responded:

I have explained what we mean by "equals," in response to certain statements from you
that indicated you were worried that we had two different kinds. (I didn't understand
both of the two kinds, but our only kind appears to be the one you want. See RM
Prescription 8.)

What Hugh here calls "our only kind" is specifically value equality, the semantics of
which are precisely specified in The Third Manifesto's RM Prescription 8. Critic B replied:

I realize you don't understand that there are two (actually many) kinds of "equal" ... As
best I can guess, your ability to think in purely set theoretic terms when talking about
Tutorial D is mentally blocked. Let me simply say that value equivalence is not the
same as identity. Value refers to a comparison of measures of a quantitative property,
while identity pertains to what mathematicians often call entities ("things").

Well, I'm going to have to repeat some things I've already said (and I apologize up front
for the repetitiousness) ... but I strongly suspect from these remarks that Critic B hasn't taken
on board exactly what The Third Manifesto means by the term value. I also suspect that what
he calls "value equivalence" is what we mean when we talk of equality of distinct appearances
of the same value (where we would say that—by definition—there's just one value, as such). I
further suspect that this misunderstanding on his part (of our use of terms) has led him into a
criticism that has no basis in fact. I also think, contrary to what Critic B is saying here, that
our "value equivalence" (I used the term "value equality" earlier) is "the same as identity":
Two appearances are equal ("value equal"?) if and only if they're appearances of the identical

5 And possibly "appearance equality," too.

Copyright (C) C. J. Date 2006 page 15

value. As for the notion that there are many kinds of equality: Well, it might be true (I really
don't know) that many kinds can be defined, but I think the important one is the one we define
in RM Prescription 8—and that's the one we appeal to, explicitly or implicitly, whenever we
talk about equality as such in the context of The Third Manifesto.

In the same message, Critic B also says this:

I have not stated how I think updates to the database should be expressed, except that we
can safely use the set theoretic representation as having both a "canonical" method and a
"canonical" semantics. I object to assignment because I see it as being at odds with the
set theoretic representation and importing a "before and after semantics" which is
inherently procedural.

My responses:

1. I have not stated how I think updates to the database should be expressed.

Well, as I said earlier (quoting Hugh), a proposal to do away with relation variables
needs to demonstrate two very important things: first and foremost, an alternative way of
updating the database; second, the advantages of this alternative way over assignment to
relvars. It's truly frustrating to be told over and over that our approach doesn't work—
especially without being told clearly why it doesn't work, and especially when it's
essentially the same as the approach supported by all imperative languages since
programming languages were first invented—without at the same time being told about
some alternative approach that does work.

2. We can safely use the set theoretic representation as having both a "canonical" method
and a "canonical" semantics.

The significance of these observations is unclear to me.

3. I object to assignment because I see it as being at odds with the set theoretic
representation and importing a "before and after semantics" which is inherently
procedural.

Assume for the sake of the discussion that (a) it's true that set theory has no notion of
assignment and that (b) it's true that updates are a requirement. (For my part I have no
difficulty in accepting either of these assumptions.) Then the obvious conclusion is not
that assignment is inherently flawed; rather, it's that set theory by itself is inadequate as a
theoretical basis for a database programming language. However, Critic B asserts that
assignment and set theory (or "the set theoretic representation") are actually at odds with
each other—i.e., they're actually in conflict, suggesting that if we support one we can't
support the other. If this is true, then so much the worse for set theory; but frankly, I
don't see why it's true. Note: Replace "set theory" by "logic" throughout the foregoing
remarks, and the resulting argument is something I would also sign on to.

What's more, the notion of "before and after semantics" is indeed implied by
assignment. More significantly, however, it's implied by—derives from might be a
better way of putting it—the fundamental way time works in our universe! (I suppose

Copyright (C) C. J. Date 2006 page 16

we might say that being "inherently procedural" derives from the way time works in our
universe, too, if we could agree that "procedural" just means performing one action after
another, in sequence; but the problem here is that the label "procedural" is usually taken
to mean "low-level procedural" and hence is used, almost always, in a pejorative sense.)
If set theory can't deal with "before and after semantics," then so much the worse for set
theory. Note: Again, replace "set theory" by "logic" throughout the foregoing remarks
and the resulting argument is something I would also sign on to.

MULTIPLE ASSIGNMENT

The Third Manifesto prescribes not just assignment per se but what it calls multiple
assignment. Multiple assignment is an operation that allows several individual assignments all
to be performed "simultaneously," as it were, without any integrity checking being done until
all of those individual assignments have been executed in their entirety. For example, the
following "double DELETE" is, logically, a multiple assignment operation:

DELETE S WHERE S# = S#('S1') ,
DELETE SP WHERE S# = S#('S1') ;

Note the comma separator after the first DELETE, which indicates syntactically that the
end of the overall statement has not yet been reached.

In reference [1], Critic B raises several questions about multiple assignment. To quote:

I am uncertain as to how you intend multiple assignment to be implemented. If there
are, e.g., five individual assignments, are they processed in order as stated from top to
bottom or is the order arbitrary or are they expected to be processed in parallel? Your
rewrite algorithm for eliminating multiple references to the same variable raises more
issues than it solves. At best, it seems to assume there are no side effects among the
individual assignments, so that order does not matter. If this is the assumption, then
clearly there are certain ordered sets of assignments (normally coded as transactions)
that cannot be rewritten as a multiple assignment because they will produce a result
different than that which was originally intended ... I like the idea of multiple
assignment but not at the expense of transactions and therefore not at the expense of
deferred constraint checking.

Some blow-by-blow responses:

1. I am uncertain as to how you intend multiple assignment to be implemented.

We expect it to be implemented as specified. The semantics are specified in The Third
Manifesto [14] and also in a standalone paper [13].

2. If there are, e.g., five individual assignments, are they processed in order as stated from
top to bottom or is the order arbitrary or are they expected to be processed in parallel?

Copyright © C. J. Date 2006 page 17

This question is fully answered in references [13] and [14]. For the record (and
simplifying slightly), the basic idea is that (a) the expressions on the right-hand sides of
the individual assignments are evaluated (in arbitrary order, because the order makes no
difference) and then (b) the individual assignments to the variables on the left-hand sides
are executed in sequence as written.

3. Your rewrite algorithm for eliminating multiple references to the same variable raises
more issues than it solves.

References [13] and [14] do include a "rewrite algorithm" for combining—not
eliminating!—"multiple references to the same variable." If that algorithm truly does
raise "more issues than it solves," it would be helpful to be given more specifics
regarding those issues.

4. At best, it seems to assume there are no side effects among the individual assignments,
so that order does not matter.

"It" here is apparently the rewrite algorithm. That algorithm certainly doesn't "assume
there are no side effects among the individual assignments." Au contraire, in fact: The
whole point of that algorithm is precisely to make sure those side effects occur instead
of being lost.

5. If this is the assumption, then clearly there are certain ordered sets of assignments
(normally coded as transactions) that cannot be rewritten as a multiple assignment
because they will produce a result different than that which was originally intended ...

I can't resist twitting Critic B slightly here on his use of the phrase "ordered sets" ...
More important, however, we would like to see an example of a sequence of
assignments that can't be rewritten as a multiple assignment. The obvious suggestion
would be seem to be something along these lines:

X := x ;
Y := f(X) ;

But the following multiple assignment will achieve what's presumably intended:

X := x ,
Y := f(x) ;

6. I like the idea of multiple assignment but not at the expense of transactions and therefore
not at the expense of deferred constraint checking.

We like multiple assignment, too; in fact, we regard it as a sine qua non. Please note,
however, that we haven't proposed it as a replacement for transactions. In reference [1],
Hugh says the following (and I agree with these remarks):

I believe that transactions can theoretically be dispensed with but I prefer to keep them
for what I believe are strong and possibly compelling reasons of convenience. I know
people who disagree with me here and would prefer to get rid of transactions altogether.

Copyright (C) C. J. Date 2006 page 18

I respond to them by agreeing that that might be nice but I need to see some specific
language proposals to address the inconvenience that transactions currently address.

DATABASE VALUES AND VARIABLES

Despite everything I've said in this paper so far, there's one sense in which relvars and
relational assignment are a mistake after all, as I'll now try to explain.

We want to be able to update the database. Now, I said earlier that "updatable" and
"assignable to" mean exactly the same thing; I also said that to be assignable to is to be a
variable, and to be a variable is to be assignable to. Doesn't it follow from these remarks that
the database is a variable? And since the notion of variables containing variables is a logical
absurdity, doesn't it follow further that the database, being a variable, can't possibly contain
relation variables?

The answer to both of these questions is in fact yes: The database is a variable, and it
can't contain other variables (not relation variables and not any other kind) nested inside itself.
Here's a quote from Appendix D of reference [14]:

The first version of The Third Manifesto drew a distinction between database values and
database variables, analogous to that between relation values and relation variables. It
also introduced the term dbvar as shorthand for database variable. While we still
believe this distinction to be a valid one, we found it had little direct relevance to other
aspects of the Manifesto. We therefore decided, in the interests of familiarity, to revert
to more traditional terminology.

After elaborating slightly on these remarks, Appendix D of reference [14] continues:

Now this bad decision has come home to roost! With hindsight, it would have been
much better to "bite the bullet" and adopt the more logically correct terms database
value and database variable (or dbvar), despite their lack of familiarity.

And it goes on to show that (a) a database variable is really a tuple variable, with one
(relation-valued) attribute for each "relation variable" contained in that database variable; (b)
relation variables are really pseudovariables, which allow update operations to "zap"
individual components of the containing database variable. As Hugh puts it in reference [1]:

Chris and I contemplated the idea of regarding the database as a single variable [but] we
were unable to devise convenient syntax for the usual kinds of ... updating that are
expected (assignment of the complete database for every required update being obviously
unthinkable). Or rather, the only convenient syntax we could come up with involved
dividing the database up into the named "portions" that we call relation variables.

Now, I mention all this merely for completeness and to head off at the pass, as it were,
certain criticisms of our position that might occur to some readers. The fact is, even though the

Copyright (C) C. J. Date 2006 page 19

database is really a variable and relvars are really pseudovariables, it's my belief that this state of
affairs in no way invalidates any of the arguments I've been making earlier in this paper.

CONCLUDING REMARKS

I'd like to conclude with a couple of final observations:

1. First and foremost, the position of Critics A and B with regard to relvars remains extremely
unclear: They seem to think relvars are fundamentally flawed, and yet at the same time
they seem to want to retain them, at least "implicitly" (?). They also fail to explain what
the logical difference is between a relvar as such and a "time-varying relation."

2. It's true that certain programming languages—specifically, the so-called logic languages
(e.g., Prolog) and functional languages (e.g., LISP)—do apparently manage to exist
without assignment: indeed, without any notion of "persistent memory" at all. As far as I
know, however, all such languages cheat when it comes to updating the database; in effect,
they perform some kind of assignment, possibly as a side effect, even though assignment
as such isn't part of the logic or functional programming style.

REFERENCES

1. Anon.: Private correspondence with Hugh Darwen (December 2005 - January 2006).

2. E. O. de Brock: "Tables, Table Variables, and Static Integrity Constraints." University of
Technology, Eindhoven, Netherlands (1980).

3. E. F. Codd: "Derivability, Redundancy, and Consistency of Relations Stored in Large Data
Banks," IBM Research Report RJ599 (August 19th, 1969).

4. E. F. Codd: "A Relational Model of Data for Large Shared Data Banks," CACM 13, No. 6
(June 1970). Republished in Milestones of Research—Selected Papers 1958-1982 (CACM
25th Anniversary Issue), CACM 26, No. 1 (January 1983).

5. E. F. Codd: "A Data Base Sublanguage Founded on the Relational Calculus," Proc. 1971
ACM SIGFIDET Workshop on Data Description, Access and Control, San Diego, Calif.
(November 1971).

6. E. F. Codd: "Extending the Database Relational Model to Capture More Meaning," ACM
TODS 4, No. 4 (December 1979).

7. E. F. Codd: "Is Your DBMS Really Relational?" (Computerworld, October 14th, 1985);
"Does Your DBMS Run By The Rules?" (Computerworld, October 21st, 1985).

8. E. F. Codd: The Relational Model for Database Management Version 2. Reading, Mass.:
Addison-Wesley (1990).

Copyright © C. J. Date 2006 page 20

9. Hugh Darwen and C. J. Date: The Third Manifesto. ACM SIGMOD Record 24, No. 1
(March 1995).

10. C. J. Date: The Relational Database Dictionary. Sebastopol, Calif.: O'Reilly Media Inc.
(2006, to appear).

11. C. J. Date: "Gödel, Russell, Codd: A Recursive Golden Crowd,"
www.thethirdmanifesto.com (July 2006).

12. C. J. Date: "And Now for Something Completely Computational,"
www.thethirdmanifesto.com (July 2006).

13. C. J. Date and Hugh Darwen: "Multiple Assignment," www.dbdebunk.com (February
2004).

14. C. J. Date and Hugh Darwen: Databases, Types, and the Relational Model: The Third
Manifesto (3rd edition). Reading, Mass.: Addison-Wesley (2006).

*** End *** End *** End ***

