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Abstract

The aim in this paper is to show how to use the 2.5D facial surface nor-
mals (needle-maps) recovered using shape from shading (SFS) to improve
the performance of gender classification. We incorporate principal geodesic
analysis (PGA) into SFS to guarantee the recovered needle-maps is a possible
example defined by a statistical model. Because the recovered facial needle-
maps satisfy data-closeness constraint, they not only give the facial shape
information, but also combine the image intensity implicitly. Experiments
show that this combination gives better gender classification performance
than using facial shape or texture information alone.

1 Introduction

Humans are remarkably accurate determining the gender of a subject based on the appear-
ance of the face alone. In fact, an accuracy as good as 96% can be achieved with the hair
concealed, facial hair removed and no makeup [6]. In recent years, a lot of effort has been
spent on the statistical features based [4], [5], [16], [15], [10] approaches for gender clas-
sification. Most of them are based on the 2D intensity information. Although studies [3]
have shown that the gender is not only revealed by the 2D face textures, but also has close
relationship with the 3D shapes of the human faces, only a few studies have investigated
the 3D shapes in gender classification [10]. In [10], Lu and Chen exploit the range in-
formation of human faces for gender classification, and propose an integration scheme by
combining the registered range and intensity images. The experiment results demonstrate
that integrating the 3D range modality provides better classification accuracy than using
the 2D intensity modality alone. However, the representation and computation is much
more complex for 3D face shapes than 2D face textures. Moreover, due to the immaturity
of the 3D sensors in the current market, some typical problems with range images includ-
ing missing data near dark regions and spikes at the region with high reflectivity would
deteriorate the classification.

In this paper, we present a statistical framework for gender classification based on the
2.5D facial needle-maps. The needle-map is a shape representation which can be acquired
from 2D intensity images using shape from shading (SFS). Therefore it avoids the prob-
lems caused by the immaturity of the current 3D sensors, and provides the shape informa-
tion from a fixed view point. In [14], a new iterative SFS method is proposed, which not
only satisfies the data-closeness constraint (satisfies the image irradiance equation)[17],
but also guarantees the projection onto the statistical model that can capture the distribu-
tion of the surface normal directions. However, the analysis of the distribution of surface



Figure 1: The exponential map.

normals cannot be effected in a linear way, because a linear combination of unit vectors
(normals) is not itself a unit vector. Therefore, to construct the statistical model, we make
use of principal geodesic analysis (PGA). PGA is a generalization of principle component
analysis (PCA). For data residing on a Riemannian manifold, PGA is better suited to the
analysis of directional data than PCA.

The idea of our work is to construct a statistical model from a set of ground-truth
facial needle-maps, and combine the model and SFS to recover the training and testing
needle-maps from the intensity images. Then by performing linear discriminant analysis
(LDA) on the PGA parameters of the training needle-maps, we obtain the female and
male models which are used to discriminate the genders of the testing faces. Because the
SFS method satisfies data-closeness constraint, the recovered facial needle-maps not only
represent the 3D shape, but also integrate the 2D texture information. Experiments show
that this combination obtains better classification rate than using shape or texture alone.

The outline of the paper is as follows. Section 2 gives the idea of incorporating PGA
into SFS to recover facial shapes. Section 3 reviews the LDA method and the proba-
bility based classification strategy. In section 4, firstly, a description of the data set and
normalization is given, then, the experiment results and discussion are presented.

2 Facial Shape Recovery

We aim to recover the facial needle-maps using an iterative SFS which is augmented by
a statistical model that captures variations of the surface normals. The surface normal
n ∈ R3 may be considered as a point lying on a spherical manifold n ∈ S 2, therefore,
we turn to the intrinsic mean and PGA proposed by Fletcher et al. [8] to construct the
statistical model.

2.1 Principal Geodesic Analysis

If u ∈ TnS2 is a vector on the tangent plane to S2 at n and u �= 0, the exponential map,
denoted Expn, of u is the point, denoted Expn(u), on S2 along the geodesic in the direction
of u at distance ‖ u ‖ from n. This is illustrated in Fig. 1. The log map, denoted Log n is
the inverse of the exponential map.

The intrinsic mean is defined as μ = argminn∈S2 ∑N
i=1 d(n,ni) , where d(n,ni)= arccos(n ·

ni) is the arc length. For a spherical manifold, the intrinsic mean can be found using the



gradient descent method of Pennec [11]. Accordingly, the current estimate μ (t) is updated
as follows: μ (t+1) = Expμ(t) ( 1

N ∑N
i=1 Logμ(t) (ni)).

In PGA each principle axis is a geodesic curve. In the spherical case this corresponds
to a great circle. For a geodesic G passing through the intrinsic mean μ , π G may be
approximated linearly in the tangent plane TμS2: Logμ(πG(n1)) ≈ ∑K

i=1V i ·Logμ(n1),
where V1, . . .VK is an orthonormal basis for TμS2, which are the principal eigenvectors of
the covariance matrix of the long vectors U = [u1| . . . |uK ]. uk = [uk

1, . . . ,u
k
N ]T is the log

mapped long vector of the kth sample data, in our experiment, the kth training needle-map.
We use the numerically efficient snap-shot method of Sirovich [13] to compute the

eigenvectors of L. Accordingly, we construct the matrix L̂ = 1
KUTU , and find the eigenval-

ues and eigenvectors. The ith eigenvector ei of L can be computed from the ith eigenvector
êiof L̂ using ei = Uêi. The ith eigenvalue λi of L equals the ith eigenvalue λ̂i of L̂ when
i ≤ K. When i > K, λi = 0. In our experiments, we use the K − 1 leading eigenvectors
of L as the columns of the eigenvector matrix (projection matrix) Φ = (e 1|e2| . . . |eK−1),
where K is the number of training data.

Given a long vector u = [u1, . . . ,uN ]T , we can get the corresponding PGA parameters
b = ΦT u. Given the PGA parameters b = [b1, . . .bS]T , we can generate a needle-map
using: np = Expμp

((Pb)p).

2.2 Incorporating PGA into SFS

The iterative SFS method used in our experiments satisfies a strict global constraint (pro-
jection onto the statistical model) as well as a hard local constraint (satisfaction of the
image irradiance equation) in each iteration.

Let I ∈ RN denote the intensity image, according to Worthington and Hancock [17],
when the surface reflectance follows Lambert’s law, then the surface normal is constrained
to fall on a cone whose axis is in the light source direction s and whose opening angle is
α = arccosI. Therefore, the image irradiance equation I = n ·s is satisfied by constraining
the recovered surface normal to lie on the reflectance cone. While, the recovered surface
normal is generated from the best fit PGA parameters, thus the constraint imposed by
statistical model is as well satisfied.

So, there are two steps in each iteration (t). First the surface normal at pixel p is

generated by: n(t)
p = Expμ(u(t)

p ), where u(t)
p = (Φb(t))p, and b(t) is the current best fit

PGA parameters. Then, to satisfy the data-closeness constraint, each surface normal is

rotated back to its closest on-cone position by: n (t+1)
p = Exps(arccos(Ip)

Logs(n
(t)
p )

‖Logs(n
(t)
p )‖

). This

is demonstrated in Fig. 2 which shows the tangent plane TsS2. This principal geodesic
SFS algorithm can be summarized as follows:

1. Initialize: N(0) = μ , where μ is the intrinsic mean of the model. Set iteration t = 0.
2. Estimate PGA parameters: b(t) = ΦT logμ(N(t)).

3. Update normals: N (t+1)′ = Expμ(Φb(t)), N(t+1)′′ = Exps(arccos(I).∗ Logs(N(t))
‖Logs(N(t))‖ ),

where the operator .∗ denotes the component-wise product of any two vectors of the same
length. Set t = t +1.

4. Stop if t >max iterations. Set N ′ = N(t)′ , N′′ = N(t)′′ .
Upon convergence, the output N ′ is an instance of the statistical model. N ′′ is the

closest on-cone position of N ′, therefore it satisfies data-closeness constraint. However,



Figure 2: Restoring a normal to the closest position on the reflectance cone.

as stated in [14], the angular difference between N ′ and N ′′ is almost solely due to the
variation in albedo at the eyes, eye-brows and lips. Therefore, N ′ can be considered more
close to the shape of the face, while N ′′ combines the facial shape and texture information.
Our experiments show the difference between the classification rates of using N ′ and N ′′.
The albedo at each pixel can be estimated as well [14]: ρ p = Ip

s·N′
p
.

3 Feature Extraction and Classification

The recovered facial needle-maps are represented by the PGA parameters: b = Φ T logμ(N).
However, the parameter vectors inevitably contain information which is either redundant
or irrelevant to the gender classification task. Therefore, we extract the most discriminant
features for gender using certain discriminating analysis method on the PGA parameters,
then the classification is performed on the extracted feature vectors. Linear Discrimi-
nant Analysis (LDA) is a simple and widely used discriminating analysis method, and
it is especially suitable to the analysis in the PCA subspace. Therefore, in our gender
classification task, we choose LDA as the discriminating analysis method.

3.1 Linear Discriminant Analysis

Linear Discriminant Analysis [1] utilizes the class information of the training data to find
the vectors in the underlying space that best discriminate among classes. The transform
matrix W is chosen in such a way that the ratio of the between class scatter and the within
class scatter is maximized. Let the between class scatter be defined as: SB = ∑c

i=1 Ni(μi−
μ)(μi − μ)T , and the within class scatter be defined as: SW = ∑c

i=1 ∑xk∈Xi
(xk − μi)(xk −

μi)T , where μ is the mean of all the samples, μi is the mean of class Xi, and Ni is the

number of samples in class Xi. Then Wopt = argmaxW
|WT SBW |
|W T SWW | = [w1,w2, . . . ,wm], where

{wi|i = 1,2, . . . ,m} is the eigenvectors of S−1
W SB corresponding to the m largest eigenval-

ues.
Gender classification is a two-class problem, therefore the class number c = 2. The

rank of Sw is at most N − c, where N is the number of training data. Therefore to avoid



Sw to be singular, the input PGA parameters are truncated to be N − c dimensional by
keeping the first N − c components. Because there are at most c−1 nonzero generalized
eigenvalues for S−1

W SB, the extracted feature vectors contain only one component in our
experiments.

3.2 Classification

After the feature vectors of the training and testing faces have been extracted, we use the
a posteriori class probabilities to classify testing faces to one of the genders.

Let C = {Ci|i = f emale,male} denotes the two gender classes, x denotes the feature
vector of any testing face. Then according to the Bayes law, the probability that x is of
class Ci is:

P(Ci|x) =
P(x|Ci)P(Ci)

∑i= f emale,male P(x|Ci)
(1)

We assume that the distribution of gender is Gaussian, and the mean and covariance
of class Ci is μi, σi, the a priori probability is P(Ci) = 0.5. Then,

P(x|Ci) =
1√

2πσ 2
i

exp(− (x− μi)2

2σ 2
i

). (2)

The a posteriori probabilities P(C f emale|x) and P(Cmale|x) are computed by applying
(2) and the a priori probabilities into (1). If P(C f emale|x) > P(Cmale|x), then the face is
classified as female. Otherwise, the face is classified as male.

4 Experiments and Discussion

In this section, we first introduce the data set and the normalization method used in our ex-
periments. Then, we do experiments on the normalized data to evaluate the performance
of gender classification based on the recovered facial needle-maps. In experiments, we
first examine the performance of SFS. Then the results of gender classification based on
the recovered needle-maps are given in comparison with the results based on intensity
images. Finally, we compare our method with human classification. The results show
that our gender classification strategy is competive to human classification and achieves
better classification rates than using facial shape and texture information alone.

4.1 Data set and normalization

The data set used in our experiments contains 260 3D and corresponding 2D frontal face
images (103 females and 157 males) selected from the University of Notre Dame Biomet-
rics Database [9], [7]. To construct the statistical modal and apply the SFS method, the
3D and 2D face images are required to be normalized.

Geometric normalization is needed for the 3D scans which are a set of points S =
{(x,y,z)}. Seven points are manually selected (as shown in Fig. 3): the inside and the
outside corners of the left eye (1,2), the inside and the outside corners of the right eye
(3,4), the nose tip (5), the middle of the lips (6), the chin point (7). The centers of the



Figure 3: Seven control points.

left and the right eyes, denoted as El and Er, are calculated as the midpoints of 1 and 2, 3
and 4. We first rotate and translate the face scans so that the plane passing El, Er and 7
is perpendicular to the Z-axis, the line passing 1 and 2 is horizontal, and the XY position
of 5 is (0,0). After that, we calculate five mean positions (El, Er, 5, 6, 7) for all the 260
scans, and use them as the reference points. Then, we scale the scans to make the distance
between 1, 2 identical to the reference. The nose tip 5 gives the centerline for cropping
a 100×114 region from the raw 3D scan to create a range image from the depth values.
Then, we use the principal warps proposed in [2] to warp the range image so that the XY
positions of the five points (El, Er, 5, 6, 7) are identical to those of the reference points.
Then linear interpolation is used to fill the holes.

The geometric normalization for the 2D images is almost the same as for the 3D
scans, except that the rotation and cropping are performed in XY plane only. Besides
the geometric normalization, the 2D images need brightness normalization as well. First,
the colored images are converted into greyscale, the intensity at each pixel is the mean
value of the three color channels. Then, the intensity contrast is stretched to normalize for
ambient lighting variations. Finally, photometric correction and specularity subtraction
are applied using the method proposed in [12] in order to improve the results of SFS.

After the normalization, the facial needle-maps are calculated from the 3D face scans.
Because the cropping step involves re-sampling, some noises are introduced into the
needle-maps. Examples of the rendered needle-maps and the normalized 2D images are
shown in Fig. 4.

4.2 Experiment Results

In the experiments, 200 normalized face images (needle-maps and corresponding inten-
sity images) are randomly chosen for training, while the remaining 60 are used for testing.
In this way, we run the system 6 times and obtain 6 different training and testing data sets.
We first apply PGA to the training facial needle-maps to construct the statistical model



Figure 4: Examples of normalized 2D images (1st row) and surface normals (2nd row).

for SFS. Then, the principal geodesic SFS is used on the training intensity images to get
the recovered facial needle-maps for the training data. The recovered needle-maps for
the testing data are obtained in the same way. We represent the recovered needle-maps
in PGA parameters and apply LDA to extract the feature vectors. The Gaussian models
for female and male are constructed from the training feature vectors, and are used to
discriminate the gender for the testing faces.

Performance of SFS The recovered needle-maps (N ′ and N ′′) and surfaces, together
with the estimated albedos of two face images (one male and one female) are shown
in Fig. 5. The ground-truth needle-maps and surfaces are also given for comparison.
Since N ′′ satisfy data-closeness, it would appear identical to the image when rendered
with a frontal light source. For this reason, we show N ′′ reilluminated with a light source
moved 30◦ from the viewing directionalong along the positive x-axis. For comparison
convenience, N ′ and the ground-truth needle-map are also reilluminated in the same way.
From the figure, we can see the recovered needle-maps and the surfaces are similar to the
ground-truth ones, especially at the cheek and mouth regions in which some gender infor-
mation is encoded. Both the albedos and N ′ convey some gender information. However,
more gender information is conveyed in N ′′ which implicitly combines the facial shape
and texture.

There are noises in the recovered needle-maps. The reason is that the ground-truth
data are noised because of the re-sampling in the alignment, and the statistical model used
in SFS is constructed from the noised ground-truth data. Therefore the model captures the
noises and introduces it to the recovered needle-maps. Modification of the re-sampling in
data alignment to reduce the noise will be needed in our future work.

Gender Classification Results The gender classification rates are shown in Table 1.
The experiment results show that both 2D facial texture (intensity images) and 3D fa-
cial surface shape (N ′) shows some capability for gender classification. However, using
the recovered facial needle-maps satisfying data-closeness - the implicit combination of



Figure 5: Examples of the results of SFS. From left to right, the columns are: the input
intensity images, the estimated albedos, the recovered N ′, the recovered N ′′, the ground-
truth needle-maps. The 2nd and 4th rows are the recovered surfaces of the according
needle-maps.



facial texture and shape - achieves better classification rates than using texture or shape
individually. Because of the recovery of shape from images, the classification using N ′
and N ′′ are more computationaly expensive than using the intensity images. However in
our experiments the recovery of the shapes for 200 images takes less than 5 minutes.

Female Male Overall
Intensity 83.2%±0.161 89.8%±0.069 87.2%±0.092
N′ 68.2%±0.079 70.6%±0.048 69.7%±0.044
N′′ 95.0%±0.062 92.7%±0.046 93.6%±0.040

Table 1: Gender classification performance.

We use one randomly selected training and testing data set to compare the results of
our method using N ′′ with the results of human classification. We present the 60 testing
intensity images to 10 subjects (4 males and 6 females) who are not familiar with the
images and are inocent of our research. Their average correct classification rates are
calculated. The results are shown in Table 2. From the table, we can see that using the
same intensity images (cropped and hair removed), the classification rates achieved using
our method are similar to (even better than) the results of human classification.

Female Male Overall
Machine 89.3% 96.9% 93.3%
Human 86.1% 95.6% 91.2%

Table 2: Comparison with human classification.

5 Conclusion

In this paper, we present a gender classification method based on the 2.5D facial needle-
maps recovered using SFS. We incorporate PGA into SFS to guarantee the projection onto
a statistical model as well as satisfy the data-closeness constraint. The recovered needle-
maps implicitly combine the facial shape and texture information. Experiment results
show that using the recovered facial needle-maps satisfying data-closeness achieves better
gender classification rate than using facial texture or shape information individually.

However, there are some problems that require further investigation. First, modifica-
tions of the cropping method in data alignment are needed to reduce the noises caused by
re-sampling. Second, the SFS method used is only applicable to grey scale images. The
extension to recover needle-maps from color images may improve the gender classifica-
tion further. Third, apply LDA to the training data is a supervised learning. In the future,
we will apply unsupervised learning method to construct models for different genders.
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