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Abstract

This paper presents an efficient object-class recognition approach based on a
new type of image descriptor: the Class-Specific Binary Correlogram (CSBC).
In our representation, the image is described by a collection of CSBCs, where
each one encodes the spatial distribution of class-specific features around a
particular reference point. This representation is obtained by first performing
an automatic selection of class-specific features from a vocabulary, and then
extracting collections of binary correlograms that encode, at the same time,
detected object parts and their spatial distribution around multiple points of
the image. Our descriptors live in high-dimensional spaces (in the order of
10K dimensions), but they are very sparse. We show that efficient learning
and matching procedures can be obtained for such a representation if we use,
first, fast feature selection techniques specific for binary features, and then
Boosting integrated with an appropriate Inverted File data organization. The
proposed strategy works with weak supervision, outperforms state-of-the-art
bag-of-feature methods, and it is more accurate and computationally more ef-
ficient than well-known geometrical-based methods, including our previous
work on Generalized Correlograms (GCs) [1].

1 Introduction

In this paper we deal with the problem of Object-Class Recognition, which has received
much attention recently [6, 14, 16, 15, 12]. The objective is to detect the presence or
absence of objects from a desired category (for example ’car’) in the images presented to
the system. The problem is challenging due to the large variability of object appearance
across instances of the category, added to the variability of pose and illumination, partial
occlusion and clutter.

A fundamental issue is how relevant information is extracted from the image and
how it is efficiently managed in order to first learn a model of the desired category, and
then scan for instances of this model in new images. There is broad consensus upon the
suitability of describing the local features and their spatial relation: local features are
more robust against clutter than global signatures, and considering the mutual position of
features significantly increases the distinctiveness of the representation. However, using
spatial relations usually leads to much higher costs in the learning and matching proce-
dure. The common approach is to use graph-base representations where local features and



spatial relations are described respectively by nodes in the graph and arcs between nodes.
Despite its flexibility, the problem with such an approach is that learning and matching
graph representations is known to be very expensive, even if we use fast optimization
procedures [7, 4, 9].

Instead of representing these two types of information (local information about fea-
tures and geometrical information about the mutual position of these features) by two
separate entities (nodes and arcs), we proposed in [1] a Generalized Correlogram (GC)
that encodes in the same feature vector the local information describing what are the lo-
cal features in the image and, at the same time, the geometrical information describing
the mutual position of these features. The advantage of such a representation is that, by
simply comparing two feature vectors we take into account simultaneously the similarity
of local features and their spatial distribution. This allows us to employ fast matching
techniques that quickly consider the relevant information.

The Generalized Correlogram from our previous work [1] is a joint distribution of
local and geometrical attributes, similar in spirit to previously defined correlograms in
the literature [10, 3], but specially suitable for the object-class recognition task. It was
defined to be generic in order to be used in retrieval of large databases, where the descrip-
tors of database images were extracted off-line, i.e. regardless of the query the user was
interested on. In this paper, we explore an alternative framework and introduce a Class-
Specific Binary Correlogram (CSBC), which varies depending on the object category to
be recognized. Along with it, we describe fast learning and matching procedures that
permit to efficiently manage this type of description by exploiting its binary nature and its
high degree of sparseness.

The rest of the paper is organized as follows: section 2 describes the image representa-
tion, section 3 describes the construction of model contexts in the learning the object class,
section 4 describes fast procedures for learning our representation, section 5 describes the
matching step with Inverted Files, section 6 shows results and section 7 concludes.

2 Imagerepresentation

The image is represented by a collection of Class-Specific Binary Correlograms (CSBC),
each one describing the spatial distribution of class-specific features around a certain ref-
erence point of the image. For this purpose, the method: i) extracts a set of local features
which convey relevant information about the object category, ii) detects the presence of
these class-specific features in each image; and iii) extracts a set of correlograms, each
one describing the mutual position of detected features relative to a certain reference
point of the image. As we will see, our CSBC descriptors make use of a log-polar spatial
quantization [3] that make them semi-local, so that CSBC focus on the local information
around a certain reference, and incorporates the contextual properties (how the rest of de-
tected object parts are distributed around the reference) in a smoothly decreasing degree
of attention. Let us describe each step of the representation procedure.

2.1 Extraction of class-specific local features

Local features specific of the object category are gathered by using feature selection over
a large pool of features extracted from training images. The extraction procedure is di-
vided in the following stages: i) extraction of a large pool of local features, referred to as



“dictionary” in the bag-of-features paradigm [13, 21, 5] and ii) selection of a reduced set
of class-specific features that convey relevant information about the object class.

2.1.1 Building a dictionary of local features

Let the training set T consist of N images T = {l,...,In}, and let the i-th image I; € T
have an associated set of local descriptors (features) Lj = {ril,...,riK} extracted from
li. These local descriptors can be extracted either from interest points detected in the
image or by simply performing a random sampling in both position and scale. In our
implementation we employ the interest point extractor of Kadir et al. [11], which obtains
a set of points with maximum entropy in scale-space, and then take the K most salient
points. Finally, the vocabulary V is built by gathering all the local descriptors extracted
from each training image: V = UN_, L.

2.1.2 Selection of class-specific features

Given a large pool of features V, we want to select a reduced set which conveys the max-
imum amount of information about our particular object category. Different mechanisms
have been employed in the literature for this purpose. The standard one finds class-specific
features by observing the frequency of occurrence of each feature from the vocabulary in
each image from the training set. Intuitively, those features that are more frequently found
in foreground images than in background ones will convey information about our object
class. This approach is followed in the well-known bag-of-features paradigm [13, 21, 5],
where each image | is described by a histogram h that counts the number of times that
each feature from the vocabulary V is matched with some feature of I. A problem ob-
served this approach is the sensitivity to the number of bins utilized in the histograms.

In this work we follow an alternative method. For each image I; of the training set,
we compute a vector of distances d = (d1,dz,...,dm) where the j-th element measures
the distance d(V},l;) between the j-th feature V; of the vocabulary and the image I;.
This distance is defined as the minimum distance from V; to all the features found in

li: d(Vj, 1) = ming_, |V; — 1]|. In other words, for each Vj, we match it against the feature

I € I; with minimum distance, and keep the distance score. Intuitively, if Vj is some char-
acteristic feature of the object, most of the foreground images in the training set will have
some local feature that is similar to Vj, whereas background images will have features that
are dissimilar. Therefore, distances to foregrounds d(V;, F) will be generally smaller than
distances to backgrounds d(V;,B).

Once we represent each training image I; by a distance vector d;, we can employ
several techniques to select class-specific features. If we use maximum information, we
will obtain a method very similar to the method used by employed by Ullman et al. [18]
for selecting their class-specific image fragments. Alternatively, we can use Boosting
with decision stumps in order to obtain a small set of informative features that maximally
complement each other in the classification task. The latter has the advantage of being
computationally much more efficient, and it is the method that we use in this work. This
method was followed by Opelt et al. in [14], although they did not use it for feature
selection, but directly for obtaining a classifier.

Selecting class-specific features with AdaBoost and decision stumps as weak classi-
fiers is straightforward, once we have each training image I; described by the distance



vector di. We only need to call the standard AdaBoost procedure with the training pairs
(cﬂ,yi),i =1,...,N where y; is the label of the image I;. We used the AdaBoost with de-
cision stumps algorithm described by Viola et al. in [19], we do not reproduce it here due
to lack of space.

As a result, AdaBoost obtains an ensemble of decision stumps f1,..., fx, where K is

—

a parameter introduced to AdaBoost. The k-th decision stump fi(d) is the function:

fk(J):{l it dy, <@

0 otherwise

where iy and 6 are parameters defining f. In our case, d is the vector of distances com-
puted for some image |, and the element iy of this vector, d;,, represents the distance of
image | to the feature v;, from the vocabulary:d;, = d (¥, 1) = min;_ [|Vk — 1]|. Therefore,
in our case the following definition is equivalent:

1 it el TV < 6
fk(l)_{ 0 otherwise

In other words, the function fy is activated over the image | iff there is an image feature
I'e I whose distance to the vocabulary feature Vj, is lower than the threshold 6. In
our setting, Boosting selects those features V;, that better separate positive and negative
images respect to their distance to Vj,. In other words, Boosting selects those features
Vi, that match (i.e. have a small distance) with some feature in every foreground image
and that, at the same time, do not match (i.e. have a big distance) with all the features
of background images, which is exactly what we need, and additionally it outputs the
matching thresholds 6, found to be statistically more consistent.

Finally, let us express as the output of this step as the set C = {@}E:l of features, so
that ¢ = Vi, ,k = 1,...,K. We will refer to features in C € C as class features, because
they convey information about our object class. Associated with C, we obtain a set of
thresholds © = {Gk}ﬁzl, where 6 defines the matching threshold of the class feature €,
i.e. Cx matches with all the image features from | with distance to Ty lower than 6.

2.2 Extraction of Class-Specific Binary Correlograms

In our implementation, given image | we extract a dense set of image local descriptors
sampled every 4 pixels in 7 different scales that range from 0.5 to 2 times the size of
the image, with linear increments. We use a very basic type of local descriptors reported
in [6]: local gray-level windows re-scaled to size 11 x 11 and projected by PCA to 15 di-
mensions, parameters used in [6]. Much better results can be obtained with more sophis-
ticated descriptors, but our interest in this work was to measure the relative performance
compared to previous methods with the same type of local descriptors.

Given the image I, let the class feature Cx € C match with the set of image features
My = {m‘f}?’il from the image, and let us define P, = {p* ?‘il C R? to be the spatial
positions from which these matching features are extracted, i.e. p"j‘ € P is the spatial
position of matching feature mjk € My.

Let X = {Xi}iRzl be a set of reference points sampled from the image I. For each
reference point X; € X we extract a Class-Specific Binary Correlogram h; as follows. Let
the spatial relation (Xi — §j) from the reference to any point §; be expressed in polar



Figure 1: (a) Sampled set of points taken as reference. (b)-(c) Log-polar spatial quantiza-
tion of our descriptor given two different references X1, X.

coordinates (dij, rij) : aij = (Xi — rﬁ,) rij = ||Xi — Bj||. The angle and radius are quantized
into ny and n; bins respectively. Let A, be the u-th bin of angles,u=1,...,nq, and let Ry
be the v-th bin of radius, v=1,...,n;. We use the same log-polar spatial quantization as
used by Belongie et al. for their Shape Context descriptor in [3], see fig. 1(b)-(c).

The class-specific correlogram h; associated with X; measures the distribution of points
ﬁ'j‘ according to their position relative to the reference X; and the index k of the class
feature. The distribution is estimated by the histogram:

hi(u, k) = #{p5 € P : (% — BY) € Au I — B € R}, @)

Note that index k provides local information, as it indicates the class-specific local feature
that is detected at position p¥. Therefore, h; measures a joint distribution of geometrical
properties (the quantized spatial relations to the reference) and local properties (the type
of matching feature). Instead of considering h;, we binarize it to obtain a binary correlo-
gram. This permits to compact considerably the correlogram, and allow us to employ fast
techniques based on binary features. Also, in practice we did not observe a significant
difference in performance, although a systematic comparison was not performed. In the
end, we obtain a CSBC h;(u,v,k) that flags those spatial bins (u,v) where class feature Cj
is detected.

As said before, the angle and radius are quantized using the log-polar quantization
of [3] (see Figs. 1(b)-(c)), which makes the descriptor more sensitive to local context.
The angle is quantized into ng = 12 bins, and the logarithm of the radius is quantized
into n, = 5 bins. If we use K class features, the CSBC h; has 12 x 5 x K dimensions.
For example, for K = 250 class features, we obtain 15000 dimensions. However, the
descriptor does not occupy much space: first, it can be represented in a bit-wise manner,
i.e. if we use integers of 32 bits the CSBC occupies only 15000/32 = 469 integers. Further,
most of the elements are 0, so that we can use a sparse format which further reduces the
space to a few integers.

Reference points in X are sampled from contour points extracted from the image, and
we keep the R points with maximum distance to each other, so as to cover the image from
every possible angle, a more detailed explanation can be found in [1], for an illustration
see fig. 1(a).

In the final image representation we use a multi-scale representation, and express the
image description as:

A = {Hs}2y
Hs= {ﬁiS}ﬁzl



where Hg is a set of CSBCs scaled according to the s-th scale, and S is the total number of
scales. CSBCs are scaled by normalizing the radius of the difference vectors expressed in
polar coordinates.

3 Building a collection of model contexts

As we saw, images are represented by collections of correlograms, where each one rep-
resents a particular image context, i.e., how different types of local features are spatially
distributed around a particular reference point. Given this representation, we also express
the learned model as a collection of parametric model contexts: Q = {(wx, Fic) }S_;, where
. identifies the c-th model context and is associated with vector of parameters .

In order to build such a model, we have to match homologous image contexts across
images of our training set. Therefore, each model context ax. is learned by using a training
set 9 of CSBC descriptors matched across the different training images. In order to
explain how the matching is performed, let us first explain how an image is recognized
once we have learned the model.

3.1 Recognition

Suppose that we have learned a model Q = {(cu, §c) }S_;, and we get a new image | that
we want to evaluate, i.e., decide whether or not it contains an object that is an instance of
the model Q. Assume for now that descriptors are only extracted at one scale, so that the
image | is represented by only one set H = {ﬁi}iRzl.

Let I(h|ax) € [0,1] be the likelihood that the contextual descriptor h represents the
model context ax. This likelihood is based on learned parameters @, and we use Boost-
ing as explained in section 4. Let L(H|ax) € [0,1] be the likelihood that any contex-
tual descriptor in H represents c.. For computing this likelihood we use the maximum:

L(H|wx) = maxg I(hi|e). This can be regarded as matching the model context coc

with the contextual descriptor hi- whose likelihood is maximum. We express this as
M(H|ex) = hi, where M(H|ax) = hi- = argmax; 1 (Rijax). Let L(H|Q) € [0,1] be
the likelihood that H represents the object according to the evidence provided by all the
model contexts {cu:}$_; of our model constellation. As we want all the model contexts to
contribute to this classification score, we use as combination rule the sum of likelihoods,
with equal weight for each model context: L(H|Q) = 2 55 ; L(H|a).

Consider now multiple scales .7 = {Hs}3_, for image I. Let . (#|Q) be the prob-
ability that any of the scaled representations Hs € .7 of image | contains our object. This
is computed again by using the maximum .£(s2|Q) = maxp.e» L(Hs|Q). Again, this
can be regarded as matching the model object Q with some scaled representation Hsg:,
which is expressed as: . (|Q) = Hg: = argmaxpe» L(Hs|Q). The described proce-
dure is similar to multi-scale Chamfer matching [2], using learned likelihoods instead of
distances. This matching can be efficiently performed if we exploit the sparseness of our
representation by means of inverted files, which is explained in section 5.

3.2 Matching with low supervision

As explained above, before learning the model we match homologous contexts in the
training set. Our procedure consists of two stages. In the first stage, we apply the reg-
istration procedure of [3] to a small set of manually segmented images. As a result of



registration, we obtain sets of homologous contexts across a small number of images, and
we can learn an initial model Q’. Then, we use this model and the matching explained
in the recognition section (functions M(H|w}) and .# (.22°|Q’)) to obtain homologous de-
scriptors for the rest of the training set. Basically, given a non-segmented image | from
the training set, we match every model context w} € Q" with the descriptor of image |
that maximizes the likelihood of representing cwj, and we use the scale that has the high-
est likelihood according to all the model contexts { wy 2:1. After this matching, we can
gather the complete sets of homologous contexts for all the training set, and learn the final
model Q = {wc}gzl. We refer to [1] for a more detailed description of the procedure.

In order to learn the initial model Q’, we use Generalized Correlograms (GCs) with
quantized local descriptors that represent the direction of edges, as done in previous
work [1]. The motivation is that the first matching produces small training sets of ho-
mologous contexts and it is better to utilize GCs that have a small number of dimensions.
In order to obtain the final model Q, we use as contextual descriptors a concatenation
of the previous GCs and the Class-Specific Binary Correlograms (CSBC) described in
previous section 2.

4 Learning a compact model by fast binary feature
selection and Boosting

We want to obtain a final model that is compact, in the sense that it is based on few dimen-
sions of the large feature space where CSBCs live. For this purpose we propose to use a
feature selection algorithm especially efficient in binary spaces, based on maximizing the
conditional mutual information between selected features and the class label, and intro-
duced by Fleuret in [8]. This algorithm allows to efficiently perform feature selection in
very large binary spaces, and obtains a small set of dimensions that convey a high amount
of information about our object category. In our case, each dimension flags the presence
of some class-specific local feature located in some relative spatial position. Therefore,
we obtain a compact model characterizing the relevant local parts of the object and their
characteristic mutual position.

The Conditional Mutual Information Maximization (CMIM) [8] works by selecting
those features that maximize their mutual information with the object class, conditional to
any feature already picked. It ensures the selection of features which are both individually
informative and two-by-two weakly dependant [8]. After efficiently obtaining a small set
of class-informative features by CMIM, we use Boosting with decision stumps to learn the
final parametric contexts @ of section 3. We use the Boosting implementation described
by Viola and Jones in [19], which can be easily adapted to work with sparse data, as in
our case, in order to efficiently learn the model, we refer to [1] for further detail. Further,
Boosting with weak classifiers allows to easily and efficiently work with Inverted Files in
order to match the model with new images. This is explained below.

5 Effi cient matching with Inverted Files

If we use the Chamfer matching algorithm described in 3.1, and we use Boosting with
decision stumps, we can easily adapt the matching procedure to efficiently work with In-
verted Files (IF) from the information retrieval community [17], as we will briefly explain
in this section (for more details we refer to [1]). We describe here a procedure valid for



Method Motorbike | Plane | Carrear | Face Cat Leaf
Others, Gray 92.5% 90.2% | 90.3% | 96.4% | 90.0% 84.0%
(6] (6] (6] [6] (6] [20]
GC[1], Gray 96.7% 925% | 95.8% | 95.2% | 92.8% 98.0%
GC[1], Col. 94.2% 94.4% | 95.8% | 90.5% | 86.1% | 96.3%%
CSBC, 250 c.s., 2000 d., Col. 98.3% 98.7% | 99.6% | 95.7% | 89.0% 100%
CSBC, 25¢.s, 250d., Col. 97.5% 96.4% | 98.7% | 94.4% | 80.1% 95.7%

Table 1: ROC equal error rate in CALTECH.

both binary CSBCs and non-binary GCs, because we use GCs in the first matching step
of 3.2. Each decision stump from Boosting is defined by a threshold 6, a selected dimen-
sion k and a weight a. The stump evaluates as positive those descriptors whose value in
k-th dimension is lower than 6. For each entry (dimension) in the IF the negative values
are stored in ascending order, so that the virtual zeros are put at the end of the list (when
training the classifier we also use negative values). From the first descriptor found, we
visit all the descriptors until the beginning of the list and we add o to the likelihood of
these descriptors. Let py be the fraction of descriptors in the list whose value is lower
than 0: 0 < px < 1. The cost of evaluating the weak classifier is O(logny + pxnk). Note
that we can evaluate all the weak classifiers that share the same dimension k in only one
pass along the IF list of this dimension.

6 Results

In order to test the performance of the method, we used the CALTECH database, which
has become a standard database for object-class recognition. For a description of the
database and image examples we refer to [6], we do not show them here due to lack
of space. Most of the object categories have instances under the same bi-dimensional
arrangement, except for the cat category. Each category has roughly 800 images of differ-
ent objects of this category. From the positive training set, only 10 images are manually
segmented and the rest are left unsegmented. Two background sets are used: the original
gray-level backgrounds [6] and color bakgrounds. The latter was found to be harder to
classify than the gray-level background set.

In table 1 we compare the performance against well-known geometry-based methods
and against our previous work using Generalized Correlograms [1]. The first two rows
are scores with Gray backgrounds and the three last rows use more difficult Color back-
grounds. 250 c.s + 2000 d. means that we use 250 class-specific features and we select
2000 dimensions for obtaining the final model. We used 2000 dimensions for obtaining
the highest scores, although a much smaller number (250) obtain similar scores. As we
can see, CSBCs significantly outperform GCs with color bacgkrounds, and GCs in turn
outperform the well-known benchmark of Fergus et al. [6] with gray-levels. We did not
test our CSBCs with gray-level backgrounds. In table 2 we compare our method against
well-known methods that also use dictionaries of class-specific features but without inte-
grating geometry. We implemented the bag-of-feature methods by using histograms, as
in [13]. For fair comparison, we used the same setting (local descriptors, vocabulary ex-
traction, etc.) as the one used for our CSBCs. We also implemented the version of Opelt
et al. [14] by using the same setting as in our method. We can see that using Class-Specific
Binary Correlgrams we outperform methods based only on class-specific local features.



Method Motorbike | Plane | Carrear | Face Cat Leaf
Bag-of-features, 250 c.s. 90.8% 95.0% 98.9% 95.0% | 91.0% | 96.7%
dist. vec. [14] 250 c.s. 96.0% 95.8% | 99.1% | 95.2% | 92.0% | 96.7%
CSBC, 250 c.s., 2000 dim. 98.3% 98.7% | 99.6% | 95.7% | 89.0% | 100%
dist. vec. [14] 25c.s. 90.0% 95.0% | 95.6% | 91.7% | 88.0% | 94.6%
CSBC, 25c¢.s, 250 dim. 97.5% 96.4% | 98.7% | 94.4% | 80.1% | 95.7%

Table 2: ROC equal error rate in CALTECH. Comparison with methods based on dictio-
naries of class-specific features.

Using CSBCs can be seen as a post-processing step after performing a method that
obtains class-specific features, such as [13, 14]. The cost of extracting the multi-scale
CSBCs in a Pentium 1V at 3.0GHz was around 0.7 seconds per image, with code im-
plemented in Matlab and some subroutines in C. The cost of classifying an image with
2000 selected features and inverted file was around 1/3 seconds in a Pentium 1V at 3.0
GHz. Note that a smaller number of dimensions is enough for obtaining almost the same
results: with 500 dimensions the average difference in accuracy is 0.62%, and we classify
an image in 1/15 seconds. Learning CSBCs of 15000 dimensions and 2000 weak clas-
sifiers takes about 80 minutes, whereas using 500 dimensions we spend only 20 minutes
approximately. These costs are much smaller than using fast graph-based methods such
as [6], were the authors spend around 24 hours (in a 2.0 GHz processor). Using our GCs
in [1] and a 2.4 GHz we spent 1 hour and 30 minutes for the whole learning algorithm
and 250 selected features.

CSBCs share the same robustness as GCs, evaluated in [1]. Notably they are invariant
to translation, robust against scaling in our case (we use a multi-scale approach) and
robust against small rotations. This is in contrast with recently proposed fast geometry-
based methods that are not robust against pose variation.

7 Conclusions

We showed how to efficiently consider spatial relations by using Class-Specific Binary
Correlograms. For this purpose, we outlined an architecture were all the components are
designed so as to efficiently learn and match this type of descriptors, i.e. by exploiting
their sparseness and their binary nature. Notably, we saw that the proposed method out-
performs recent methods based on dictionaries of class-specific features. In this sense,
using CSBCs can be considered as an efficient post-processing step after after obtaining a
set of class-specific features used in many recent works [13, 14, 12, 16]. We saw that this
step can be done without high cost and significantly increments performance. As future
work we will test it in the CALTECH-101 database and will use rich features as [12, 16].
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