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Abstract

This paper deals with the task of object tracking in the presence of occlu-
sions and clutter by fitting a layered appearance model to data. Four major
problems must be overcome: (1) the association of each pixel to a particu-
lar layer (layer segmentation), (2) the determination of layer support, (3) the
determination of layer appearance, and (4) determination of layer location.
Tao, Sawhney, and Kumar successfully proposed a generalized expectation
maximization algorithm solving these problems by directly inferring masks
representing layer segmentation in conjunction with a deforming elliptical
shape prior defining layer support. We extend their work with the introduc-
tion of active contours: instead of directly inferring these masks, we evolve
a series of curves to obtain a layer segmentation. These curves provide a
natural shape prior by constraining segmentations to a family of curves local
to layer supports and allow for non-rigid layer deformations through the pre-
diction of unobserved appearance information during inference. A benefit of
this extension is the ability to track through massive occlusions and clutter,
as demonstrated on a series of difficult real-world video sequences.

1 Introduction
Over the past few years, layered representations have been shown to be powerful tools
for motion analysis and tracking. Sometimes referred to as motion segmentation in the
literature, fitting a layered representation to imagery consists of segmenting video into
regions (layers) containing homogeneous motion (from a given family of motions, e.g.
translation), tracking those layers throughout the video, and building an appearance model
for each layer. To solve the tracking problem within this framework, these segmentations,
motions, and appearances are evolved in a causal fashion to fit imagery from a video
stream.

Critical to the success of these algorithms are the constraints placed upon the layer, or
motion, segmentations they generate. As such, many different classes of these constraints
have been posed within the literature. For instance, layered segmentations performed via
clustering have been constrained to meet certain size and smoothness criteria [12, 1]. In
[6], similar constraints were proposed in conjunction with a constellation of parts model.
In [14] segmentations were constrained to have short, smooth boundaries via graph cuts.
Other segmentation constraints have been proposed that utilize a model-based approach
involving approximate inference via generalized expectation maximization [5, 9, 13, 15].
In [4], a parameterized polybone skeleton shape prior is employed to constrain layered
segmentations. Dai, Zheng, and Li [3] utilized a shape constraint specific to the problem
of pedestrian detection and tracking. Toyama and Blake proposed a shape constraint
facilitated by a learned metric [10]. Tao, Sawhney, and Kumar [8, 17] proposed the use of



an elliptical, probabilistic shape constraint, the most general of the proposed model-based
constraints.

Contribution. In our work, we propose a tracking algorithm which extends the frame-
work proposed by Tao, Sawhney, and Kumar. Instead of representing layer segmentations
as probabilistic masks (or explicit models as in other works) we propose the use of active
contours in their place. We believe that our approach gives four major advantages:

1. The curve representation enforces a general shape prior capable of handling com-
plex shapes, but is still suitable for general tracking. This prior is achieved by con-
straining layer segmentations to the set of curves local to layers’ physical shapes,
or support.

2. The use of curves naturally gives rise to a method of handling non-rigid layer defor-
mations through the prediction of unknown layer appearance information beyond
the current layer support.

3. The resulting tracker can handle massive occlusions over long periods of time and
can track through clutter and other similar targets due to the accurate layer segmen-
tation made possible through 1 and 2.

4. Unlike other segmentation algorithms such as [7, 14], the method is causal and
maintains explicit track points based on the physical shape of the layers, not the
segmentation itself.

We present results on seven video sequences that show this extension significantly
improves segmentation and tracking performance over the original tracking algorithm.

Outline. In Section 2, we describe the layered active contour model and accompanying
dynamic model. In Section 3, we describe the active layered tracking algorithm. In Sec-
tion 4, we present results of tracking using a baseline tracker (a version of that proposed
in [8]) and the proposed tracker. Finally, in Section 5 we give conclusions followed by
directions for future work.

2 The Layered Active Contour Model

We define an instance of a layered representation Σ = (C,M,G,F) = ({Ci,Mi}l−1
i=1,{~g

i, f i}l−1
i=0)

that parameterizes the following family of imagery defined by the function F ,

F(~r) =

{

f k(~r−~gk), ~r ∈Ck
in and~r−~gk ∈ Mk

in
f 0(~r−~g0), otherwise

(1)

where:

• l ∈ Z+ is defined as the number of layers utilized within the model, k ∈ {1,2..., l−
1} and,

• F : Ω → R where Ω ⊂ R2.

The data associated with each layer is:



Figure 1: One parameterization of the layered model with two layers: a triangle f 1 oc-
cluded by a circle f 2 as indicated by the relative configuration of the curves C1,C2 (de-
scribing the visible region of each f ) and M̃1,M̃2 (describing the support of each f ).

• ~g ∈ Ω, a layer translation.

• Each Ck is a closed curve in Ω and each Ck
in is taken to be the set of all points

enclosed by Ck. We enforce the constraint that the region enclosed by each curve is
mutually exclusive of all other regions defined by their respective curves.

• Each Mk, like Ck, is a closed curve and, similarly, each Mk
in is taken to be the set

of all points enclosed by each Mk. Unlike C, the curves M are not considered to be
mutually exclusive since they each lie in different coordinate systems.

• Each f k : Ω → R represents the appearance of the kth layer in the model; f 0 is
assumed to be the appearance of the background of the model.

The function F describes all imagery composed of l independently translated 2D sig-
nals, each occluding one another. Figure 1 illustrates one member of this family, an image
of a triangle (layer one) occluded by a circle (layer two). The 2D appearances of these
layers are given by f 1 and f 2 with their respective shapes defined by M1 and M2. These
objects are translated by the offsets~g1 and~g2 (resulting in each M̃), respectively, to make
up the final output F. The curves C1 and C2 mark the boundary of the visible regions
of each appearance function in F while M̃1 and M̃2 give the total support or shape of
each layer. Note how the curve C1 stops short of the circle, yet M̃1 continues inward to
completely describe the triangle, which indicates an occlusion.

In contrast to the model of [7], the proposed model utilizes curves instead of masks
to describe layer segmentation and support. Curves have been proven to be particularly
suited to the problem of segmentation while their evolution has been shown to yield sen-
sible curve deformations making them ideal for facilitating flexible layers. Thus, through
the introduction of the curves C, we leverage a proven solution to the subproblem of
segmentation within layered decomposition, and through the introduction of the curves
M, we constrain the curves C to a well-studied and sensible family of shapes. This ap-
proach also leads us to develop a completely maximum likelihood solution. In contrast to



generalized expectation maximization, our method does not rely on the maintenance of
distributions over time.

2.1 Dynamic Layered Model
Using the function F defined above as an observation model, we define the likelihood of
an observed set of images as P(I|{Σt}T

t=1), where I is defined as {It}T
t=1, a set of frames

in a video sequence. We make a Markov assumption on the states Σt and consider each It

to be conditionally independent given Σt , allowing us to factor the distribution,

P(I|{Σt}T
t=1) =

[

T

∏
t=2

P(It |Σt)P(Σt |Σt−1)

]

P(I1|Σ1)P(Σ1), (2)

where P(It |Σt) is taken to be the observation model,

P(It |Σt) =
1
Z

exp

[

−
1

2σ

∫

Ω
(F(~r)− I(~r))2d~r

]

, (3)

and P(Σt |Σt−1) is taken to be the state dynamics model,

P(Σt |Σt−1) = P(Gt |Gt−1) =
l−1

∏
i=0

exp
[

− 1
2σg

(~gi,t −~gi,t−1)T (~gi,t −~gi,t−1)
]

2πσg
, (4)

To ensure that the posterior distribution P(gi,t) remains Gaussian, we assume that P(~gi,1) =
δ (~r−~gi,1). We also assume that each f i and Mi are fixed, independent of time.

3 Tracking via the Layered Model
To perform tracking via inference in the given probabilistic model, one must select an
initial parameterization of F , or model state Σ1, and evolve that state so as to maximize
its likelihood given a series of observations I. To do so, we treat this task as a filter-
ing problem, assuming a causal series of observations, and adjusting each parameter set
{~gi,t ,Ci,t}l−1

i=0 in turn while recursively updating each { f}l−1
i=0 accordingly with the new

imagery.

3.1 Initialization
For this work, we assume a given initial segmentation as sufficient information to seed the
algorithm. An initial segmentation consists of l−1 disjoint curves representing the initial
visible regions of each layer to be tracked and an accompanying input image I1. Each
curve defines the state information C and M and the image information enclosed by each
curve defines each F. The state information G is defined to be zero, initially, essentially
fixing a series of independent coordinate systems for each layer.

3.2 Tracking
Upon the arrival of each new observation It , we update the layered approximation to
maximize the log likelihood of the current observation given the previous state. In doing



so, we also solve for the track point of each layer. Using the definitions we have presented
up until now, this process reduces to the minimization of the following energy with respect
to G,C, and F,

E(G,C,F) =
1

2σ

∫

Ω
(F(~r)− It(~r))2d~r +

l−1

∑
i=0

1
2σg

(~gi,t −~gi,t−1)T (~gi,t −~gi,t−1), (5)

where the first term of this energy forces the approximation F to match the current obser-
vation It while the second term enforces a penalty on large track signal jumps from frame
to frame weighted by the model parameter σg.

In the derivation that follows, the updates on each parameter set G,C,F of F are
derived on a layer by layer basis to minimize this energy. In the cases of G and F, a
closed-form minimization is performed, but in the case of C and M, which are curves, we
apply gradient descent.

3.2.1 Solving for~gi,t

Due to the fact that we make no assumptions about the functions f (smoothness, etc),
the landscape of E is possibly complex with many local minima with respect to each~gi,t .
Additionally, depending on the value of the externally defined σg, the minimizer~gi,t will
always lie within a set distance of ~gi,t−1 ∈ Ω, defining a region Ω′. Thus, we minimize E
with respect to~gi,t through direct search over Ω′,

~gi,t = argmin
~gi,t

[

∫

Ω
(F(~r,τ)− I(~r,τ))2d~r +

1
2σg

(~gi,t −~gi,t−1)T (~gi,t −~gi,t−1)

]

(6)

3.2.2 Solving for Ci,t

To solve for Ci,t we perform gradient descent starting from the translated curve M̃i as an
initial guess. In doing so, we constrain the curve Ci,t to lie in the local neighborhood of
M̃i, enforcing the constraint that the shape of layer i’s visible region is within a set distance
of the underlying support of that layer. The size of this neighborhood is determined by
the number of gradient descent iterations we perform on Ci,t , n. Additionally, by evolving
Ci,t according to a local flow, we simulate the event of an occlusion or shape change of
a layer: starting from the initial layer support Mi, Ci,t must move pixel by pixel either
inwards or outwards along its normals as exactly would be seen during an occlusion or
shape change of the layer. The mirroring of this physical process in our inference step,
we believe, justifies our technique of providing a shape constraint within our model.

To perform gradient descent on Ci,t , we find an energy-minimizing flow on Ci,t by
taking the first variation of the energy E with respect to Ci,t . For the sake of exposition,
we begin with the simple case when l = 2 where only one curve is present within the
model. In this case, the energy E simplifies down to a competition between two quadratic
terms:

E(C) =

∫

C1,t
in

( f 1(~r−~g1,t)− It(~r))2d~r +

∫

C1,t
out

( f 0(~r−~g0,t)− I(~r))2d~r (7)

Applying Green’s theorem and taking the first variation of this simplified energy with
respect to C1 gives the following flow for the curve,

∂C1,t(τ)

∂τ
= ~N[( f 1(~r +~g1,t)− It(~r))2 − ( f 0(~r +~g0,t))− It(~r))2], (8)



where τ is the typical artificial time parameter used in conjunction with gradient descent
and ~N is the normal of the curve C1,t . The flow (8) is related to that proposed by Chan and
Vese [2], but is unique with its more specific appearance model. Heuristically, this flow
expands C1,t along its normal wherever It is more similar to layer one than layer zero and
vice versa. Note that no regularizing terms are present in this flow: we do not expect the
visible region of an object to have any special properties, though it makes sense to assume
so for the layer support Mi.

In the general case where l > 2, the energy E simplifies into a competition between
l −1 curves:

E(C) =
l−1

∑
i=1

∫

Ci,t
in

( f i(~r−~gi,t)− It(~r))2d~r +

∫

⋂l−1
i=1 Ci,t

out

( f 0(~r−~g0,t)− It(~r))2d~r, (9)

where
⋂l−1

i=1 Ci,t
out , defines the region(s) in Ω exterior to all curves in the model. To deter-

mine the minimizing curves C, the variation of each curve must be taken and gradient
descent carried out while enforcing the constraint that all C must be mutually disjoint.
Several researchers have studied this problem and many solutions exist to satisfy this
constraint including the addition of an additional energy term with Lagrange multiplier
[16] or utilizing a modified level set representation [11]. However, these solutions result
in the same type of flow as in the simplified, two layer case where all curves move along
their normals, competing against one another according to a quadratic matching term with
It .

3.2.3 Solving for f i

To solve for an updated version of each f i, we take the derivative of the energy, set to
zero, and solve for f i. Note that according to our dynamical model, f i is assumed to be
independent of time. Thus, the error minimizing value for f i is computed to be a time
average of all observed data within the bounds of each {Ci,k}t

k=1,

f i(~r) =
∑t

k=1 Ik(~r−~gi,k)H i,k(~r−~gi,k)

∑t
k=1 H i,k(~r−~gi,k)

, (10)

where we define H i,k to be the Heaviside function indicating the enclosed region of the
curve Ci,k,

H i,k(~r) =

{

1, ~r ∈Ci,k
in

0, otherwise
(11)

3.3 Flexible Layers via Appearance Prediction
Due to the construction of the layered observation model where layers occlude one an-
other and have flexible support, it may be impossible to observe values for the appearance
functions F in the given data. For instance, though each observation It has support over
Ω, the layer appearance functions F initially contain information only on the supports
defined by M which are typically a strict subset of Ω. As such, any value of f i beyond
this support has yet to be observed and is considered unknown information. Information
in the background may also be unknown due to occluding foreground layers.

Unfortunately, while solving for Ci,t , an estimate of this unknown information is nec-
essary for inference as it is possible for Ci,t to grow outward beyond Mi (in the case of



Figure 2: Flexible layers are facilitated by closest-known-value prediction of unknown
appearance that allow natural non-rigid layer deformations including the swinging of the
worker’s legs and torso movement. This leads to improved layer segmentation over using
no prediction.

layer shape change) or away from occluded background regions (in the case where a layer
translates away from its initial position). We handle this problem while at the same time
implicitly imposing a shape constraint on the model’s appearances and supports by adher-
ing to the closest-known-value principle: we define each unknown value f i(~r) to be equal
to the closest known, or observed, value f i to~r,

f i′(~r) =

{

f i(~r), ∑t
k=1 H i,k(~r) > 0

f i(argmin~x∈Mi ‖~x−~r‖),otherwise
(12)

This technique is often used in the active contour community to facilitate what are known
as velocity or data extensions whenever information is required off of an interface to
evolve a higher-dimensional embedding function. We use this technique, here, to enforce
two assumptions: (1) Initially unobserved information due to occlusion is expected to be
equal to its closest known neighbor and is therefore geometrically consistent and (2) when
layers change shape, we expect edge appearance information to be attached to the edges
of the shape. Through this prediction technique, many common shape and appearance
changes can be handled (see Figure 2).

4 Results

4.1 Experimental Setup
For comparison purposes, we implemented a version of the tracker proposed by Tao,
Sawhney, and Kumar as the baseline tracker. We then extended this implementation so
as to include the active contour model we have presented, leading to a change regarding
only the layer segmentation calculation and unknown appearance information. All other
inference steps and model parameters remained fixed. Because our focus is on tracking,
we used a consistent hand segmentation for initialization of both algorithms, though both
can be initialized automatically with no drawbacks [8].

All experiments were carried out by running both the trackers on seven 128x128 video
sequences. On average, each video sequence consisted of 300 frames or 10 seconds of



Figure 3: Tracking and segmentation results on video 5 from Table 1. The red line marks
the layer segmentation curve (C1) in the first row and the 50% probability isocontour of
the layer segmentation in the second row. The active contour tracker maintains an accurate
layer segmentation and track signal in the presence of clutter and similar moving targets.

Figure 4: Example of tracking a construction worker with a left-panning camera and
changing lighting conditions. Here, the final appearance, or panorama, of the background
layer is overlaid with layer one’s visible region indicated by the curve C1 (red) from
frames 12, 109, 228, and 387 and track signal (green). The bottom two rows give the
baseline tracker’s track signal, the red contour indicating the 50% probability isocontour
of the layer segmentation and the last row indicating the likelihood of each pixel belonging
to the foreground layer. The active contour tracker maintains a correct layer segmentation
and an accurate track signal.

imagery. To generate ground truth track signals for comparison, a hand-picked series of
“correct” track points were chosen on each frame for each layer on each video. Perfor-
mance results were generated by comparing the tracker’s output track signals for each
layer, qt

x,y, against the hand-picked track points, or ground truth signal rt
x,y.

4.2 Analysis
A quantitative comparison between the layered active contour tracker and the baseline
tracker is given in Table 1 using the performance metrics described above on a single
foreground layer’s track signal. Unlike the baseline tracker, the active contour tracker
maintained track through all seven sequences. In the cases both trackers maintained track,
the active contour tracked with less average error.



Figure 5: Tracking and segmentation results of tracking a boat in the open ocean. As the
boat sails perpendicular to the line of sight, it is almost totally obscured by a passing swell
of water for approximately 100 frames. The red line marks the layer segmentation curve
(C1) in the second row and the 50% probability isocontour of the layer segmentation
in the third row. The green cross marks the track point that, for both trackers, stays
on target. The active contour maintains a correct layer segmentation even through the
massive occlusion.

Tracker Performance:
Layered Active Contour vs Baseline Tracker

Videos

Active % 100% 100% 100% 100% 100% 100% 100%
Contour ε 1.25 0.68 0.81 1.66 1.97 0.76 1.03

Baseline
% 78% 100% 100% 100% 49% 97% 100%
ε LT 0.71 0.85 3.97 LT 0.9 1.23

Table 1: Percent of time on track (%) and mean track error (ε) of the layered active
contour model versus the baseline layered tracker. LT Indicates total track loss.

The most clear advantage the active contour had was on video 5. Here, a track subject
moves amongst a great deal of clutter and dust, with similar targets in proximity to the
tracking subject (Figure 3). The more accurate active contour segmentation (as opposed
to a mask) allowed the tracker to avoid learning an incorrect layer appearance and thus
handle the ambiguous case of crossing workers. In each of the other videos, the active
contour maintains an accurate segmentation and track signal (Figures 4 and 5).

5 Conclusions
In this paper, we have developed a tracker based upon a layered active contour model as
an extenstion to [8]. In place of representing layer segmentation as a series of masks, we
utilized curves that are evolved to fit data. We showed that as a result of this extension, a
general shape prior is introduced into the model and a natural way of handling non-rigid
layer deformations is introduced through the prediction of unknown appearance informa-
tion. Finally, we presented results on several difficult video sequences demonstrating the
benefits of this addition to the model.
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