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Abstract

We present an efficient method of fitting a set of local feature models
to an image within the popular Active Shape Model (ASM) framework [3].
We compare two different types of non-linear boosted feature models trained
using GentleBoost [9]. The first type is a conventional feature detector classi-
fier, which learns a discrimination function between the appearance of a fea-
ture and the local neighbourhood. The second local model type is a boosted
regression predictor which learns the relationship between the local neigh-
bourhood appearance and the displacement from the true feature location.
At run-time the second regression model is much more efficient as only the
current feature patch needs to be processed. We show that within the local
iterative search of the ASM the local feature regression provides improved
localisation on two publicly available human face test sets as well as increas-
ing the search speed by a factor of eight.

1 Introduction
We describe a method of fitting a model of an object class to new images containing un-
seen examples. In this paper the class of objects is the human face, however the method
can be applied to any type of object with corresponding features between different exam-
ples, for instance most types of medical images and many man-made objects.

This model based approach to computer vision requires a labelled set of training ex-
amples, with corresponding features between images (see Figure 1 for examples from our
human face training set). There are many different types of models, most of which encode
the appearance variation around or within the labelled region and also encode the shape
variation of the feature locations across the training set [2, 3, 4, 5, 7].

This paper uses the Active Shape Model (ASM) framework due to Cootes et al. [3].
The ASM models shape variation across the training set with a statistical shape model
and an individual model for each local feature. At run-time each local model updates
its estimate of the best local match and the shape model is fitted to the full set of point
estimates to eliminate false positive matches.

The original ASM paper [3] used local eigen patches [15] to model each feature.
However in this paper we use non-linear boosted features trained using GentleBoost [9].
We investigate local feature detection using boosted features and also boosted regression,
which aims to predict local feature points without the need for a sliding window search in
the local neighbourhood. The boosted regression approach is shown to out perform local



feature detection when applied to the publicly available BIOID [10] and XM2VTS [13]
data sets. The boosted regression approach is extremely fast, able to preform local search
at > 60 frames per second and also able to achieve results comparable to other published
methods [4].

2 Background
Active shape models are a method of modelling shape variation across a training set of
labelled examples (see Cootes et al. [3]). The shape model can be fitted to a set of feature
detections to remove outliers. There are various other shape constraint methods, such as
the tree structure used in the Pictorial Structure Matching method due to Felzenszwalb and
Huttenlocher [7] or the softer shape model constraint used by Cristinacce and Cootes [4]
which take into account the local feature responses when fitting the shape model. How-
ever the ASM is a simple method which we use here to compare the performance of local
regression versus detection models.

The choice of possible feature detection methods to use in the ASM is large. For
example normalised correlation patches have been shown to be successful when combined
with a generative model of appearance [4]. Other varieties of feature detectors are Local
Binary Patterns [1], mutual information [5], Boosted Haar Wavelets [17] and K-Nearest
Neighbour Classifiers [16]. The original ASM algorithm used local eigen models [15], but
here we use discriminative haar wavelets trained using GentleBoost [9], as this technique
has shown to work extremely well for whole face detection [12].

An alternative to feature detection methods for local search are regression techniques.
For example the well known Active Appearance Model AAM algorithm [2] fits a de-
formable generative model to a patch of the image and then performs linear regression
on the texture residual to update the internal model parameters and thus perform a local
search. The AAM models the whole object, whereas our proposed method uses local
features.

Another example of feature finding using a regression method is Zheng et al. [19],
who use Rankboost [8] to rank the possible image warpings from the mean shape to the
an unseen image and thus compute feature points. They present good results on manually
cropped Echo Cardiograms and Face Photographs. Everingham et al. compare Kernel
Ridge Regression with a Bayesian Classifier approach, but report better results with the
simple classifier method for the task of eye finding [6].

A recent approach to using local regression models is described by Wimmer et al. [18],
who train model trees to regress from local haar wavelet features to a objective function
designed to peak at the true feature location. At run-time this allows the best matching
location to be predicted for each feature. Langs et al. [11] use canonical correlation
analysis to perform an AAM style search with filter responses located at individual feature
points. Seise et al. [14] use the ASM framework in conjuction with a Relevance Vector
Machine (RVM) regressor to update each feature location.

Our approach is similar to the approach of Wimmer and Seise, but uses GentleBoost
as the regression function to predict the current displacement for each feature. We make a
comparison between local regression methods and feature classifiers trained on the same
data, both using the GentleBoost framework [9]. In Section 3 we describe our implemen-
tation in more detail and in Section 4 show that the regression method gives improved



localisation performance, compared to the boosted classifier, but at much lower computa-
tional cost.

3 Methodology

(a) Training Im 1 (b) Training Im 2 (c) Training Im 3 (d) Training Im 4

Figure 1: Manually Labelled Training Images

3.1 Active Shape Model
The Active Shape Model (ASM) was introduced by Cootes et al. [3] as a method of
fitting a set of local feature detectors to an object and simultaneously taking into account
global shape considerations. The allowable shape deformations are learnt from a manually
labelled training set (see Figure 1) to produce a linear shape model with the following
form:-

x = x̄+Psbs (1)

Where x̄ is the mean shape, Ps is a set of orthogonal modes of variation and bs is a set
of shape parameters. Given a set of hypothesised feature points Y in the image plane the
shape model parameters bs can be determined by minimising

|Y−Tt (x̄+Psbs)| (2)

By placing constraints on the the allowable shape parameters bs the shape model
estimate of the current feature points Tt (x̄+Psbs) are constrained to form a plausible
shape.

The shape model is active in the sense that feature detectors are applied to search in
the local neighbourhood of each point and the best match of each detector is recorded.
Assuming the majority of the detections are correct, the shape model can be fitted to this
set of points and outlier detections discarded. This constraint on feature matching has
been shown to improve results compared to merely taking the best unconstrained fit of
each feature [3].

3.2 Boosted Feature Detection
Any set of feature detectors can be used in the ASM framework described above. The
original algorithm [3] used eigen model [15] profiles of the texture about each of the in-
dividual feature points. In this work we choose boosted feature detectors, which have



a similar formulation to the well known Viola and Jones face detector [17]. The train-
ing method we use is GentleBoost [9], which has shown to give superior performance
compared to the original AdaBoost algorithm for the task of face detection [12].

Algorithm 1 Gentle Boost Training Algorithm - Classification [9]

1. Start with weights wi = 1/N, i = 1,2, ...,N, F(x) = 0 and yi = 1 for positive exam-
ples, yi = −1 for negative examples.

2. Repeat for m = 1,2, ...M:

(a) Fit all the regression functions fm(x) by weighted least squares of yi to xi with
weights wi.

(b) Select the fm(x) with least weighted error ∑N
i=1(wi(yi − fm(xi)))2

(c) Update F(x) ← F(x)+ fm(x)

(d) Update wi ← wiexp(−yi fm(xi)) and re-normalise

3. Output the classifier sign [F(x)] = sign
[
∑M

m=1 fm(x)
]

The GentleBoost classifier training procedure is described in Algorithm 1. The aim of
the algorithm is to learn a discrimination function between a set of positive and negative
examples. Where positive examples are image patches centred on the correct feature
locations and negative examples are nearby examples displaced from the true locations,
see Figure 2.

Pos Egs Neg Egs

Figure 2: Positive and Negative Examples for right eye detector

Following the notation in Algorithm 1, each positive training patch xi has label yi =+1
and each negative patch has label yi = −1. To train using GentleBoost it is necessary to
select a family of functions f (x) which take an image patch xi and attempt to predict
the classification yi for a given set of training weights wi. In this paper f (x) is a binned
histogram of responses from a haar wavelet (we use the same set as [17]). Each f (x) is
trained by computing the weighted mean of target values yi in each histogram bin. The
error for each f (x) is the weighted sum of square differences between the target value
yi and the mean of the selected bin determined by the wavelet response to patch xi. The
GentleBoost training algorithm selects a set of weak classifier functions and outputs a



strong classifier, as described in Algorithm 1. The training algorithm is computationally
expensive, as the weak classifier functions f (x) have to be retrained at every iteration with
new weights wi.

There are also several parameters that need to be set before training can take place,
namely the resolution of the image patch, which determines the number of potential haar
wavelet weak classifiers f (x), the number of training rounds M, the number of histogram
bins hb and the number of training example patches N. With 21x21 pixel image patches,
N = 179,545 ( 1205 positive patches, 178,340 negative patches), M = 200, hb = 25 the
training for each patch completes in ∼ 20hrs on a single node of a 64bit multi-processor
cluster running Linux. The feature models are trained independently therefore the whole
model can be built in ∼ 20hrs, if enough nodes are available. The parameters above
are unlikely to be optimal. For example, it may well be possible to improve the results,
by increasing the number of training rounds M or increasing the size of the training set,
which currently only consists of 1205 face images (see Figure 1).

3.3 Boosted Feature Regression
In the feature detection approach described in Section 3.2 the model is trained on positive
examples centred on a small neighbourhood around manually labelled feature locations.
Negative examples are feature patches displaced from the true locations (see Figure 2).

However an obvious problem with feature detector training is where to draw the
boundary between positive examples and nearby false examples. In Section 3.2 we take a
conservative approach and only treat image patches centre on the true feature as positive
examples. Patches between 1 pixel and 3 pixels away are treated as ambiguous, while
patches greater than 5 pixels away are classed as false positives (a similar approach is
adopted in [6]).

This works reasonably well, but is arbitrary and also throws away potentially useful
information, such as the distance of each patch from the true positive. An alternative
technique which makes use of this information is regression, which learns the relationship
between the displacement to the true feature location and the textural appearance of the
local neighbourhood around each feature point.

Algorithm 2 Gentle Boost Training Algorithm - Regression [9]
1. Start with input values xi and target values yi for i = 1,2, ...,N and F(x) = 0 and

small positive constant α .

2. Repeat for m = 1,2, ...M:

(a) Fit the regression function fm(x) by least squares of yi to xi.

(b) Select the fm(x) with least error ∑N
i=1(yi − fm(xi))2

(c) Update F(x) ← αF(x)+ fm(x)

(d) Update the residual target value yi ← yi − fm(xi)

3. Output the regression function F(x) = ∑M
m=1 fm(x)

We use the GentleBoost logistic regression method described by Friedman et al. [9]



(see Algorithm 2) which has very similar form to the GentleBoost classification training
method use in Section 3.2. The same image patches xi are used as in the classification
training, however instead of yi being class labels {−1,+1} they are local displacement
values in the training image frame (suitably scaled - see Figure 3). The regression training
therefore uses the whole training data available, whilst the classification training discards
some ambiguous patches (marked with an X in Figure 3).

Image
Regression -4 -3 -2 -1 0 +1 +2 +3 +4

Class -1 -1 X X +1 X X -1 -1

Figure 3: Examples of training patches for right eye from one of the training images (de-
picting translation in the x-coordinate). Regression training values are the displacement
from the centre of the patch to the true eye pupil location (shown by a white cross). Clas-
sification training values are -1 for negative examples, +1 for positive examples, images
marked with a X are ignored during classifier training

The GentleBoost regression algorithm then proceeds as described in Algorithm 2.
The Haar wavelet functions f (x) are fitted to the weighted training patches xi with dis-
placement yi. A function f (x) is selected at each stage, the residual displacements yi are
adjusted and after M rounds a strong regressor function F(x) is output.

Note that in Algorithm 1 the weights on each training example wi are updated between
training rounds. In Algorithm 2 the target values yi vary between boosting rounds and the
training examples have equal weight. Another important difference between the classifi-
cation algorithm and the regression method is that the regression requires two models per
feature point to predict the x and y displacements for each patch. The training time for
each regression model is also increased slightly due to the extra training samples close
to the true feature points being included in the training set (which are discarded during
classifier training).

An additional parameter of the regression training algorithm is α which represents
the learning rate. This can be any value in the approximate range [0.1,1.0] and needs to
be chosen apriori. The value can be shown to be equivalent to the shrinkage parameter
in Lasso Regression [9]. Small values of α result in slower training, but more diverse
feature selection. We set α = 0.25 in our experiments.

3.4 Summary of Method
At run-time the search proceeds as follows:-

1. Find initial feature points - for example using a global detection method

2. Iterate the following:-

(a) Search around the current feature location with a feature detector - Or alter-
natively predict the improved feature location using boosted regression

(b) Fit the shape model to the current set of feature locations to remove outliers

Until Converged.



4 Experiments

4.1 Test Criteria
The models described in Section 3 are applied to two publicly available test sets, with
manually labelled ground truth, namely the BIOID [10] and XM2VTS [13] data sets.
The criteria for success is the distance of the points computed using automated methods
compared to manually labelled ground truth. The distance metric is shown in Equation 3.

me = 1
ns ∑i=n

i=1 di (3)

Here di are the Euclidean point to point errors for each individual feature location and
s is the ground truth inter-ocular distance between the left and right eye pupils. n = 17 as
only the internal feature locations around the eyes, nose and mouth are used to compute
the distance measure. The five feature points on the edge of the face (see Figure 1) are
ignored for evaluation purposes, due to their high variability between different human
annotators.

4.2 Full Search Results
The fully automatic search is investigated on the two faces test sets. Three separate pro-
cedures are investigated as follows:-

• AVG - Average points within the global Viola and Jones face detector (dashed line)

• Det-ASM - Detection Features and Active Shape Model, initialised with the average
points (dotted line)

• Reg-ASM - Regression Features and Active Shape Model, initialised with the av-
erage points (solid line)
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Figure 4: Cumulative distribution of point to point error measure on XM2VTS and BIOID
test sets when using face detection to initialise the local search

Figure 4 shows that the Reg-ASM and Det-ASM give similar results on both the
BIOID and XM2VTS data sets. Both local search methods combined with the ASM give



a large improvement relative to the average points found within the global face detector
window. For example on the BIOID data set (see Figure 4(a) - dashed line) 75% of faces
have a point to point error me < 0.15 using the average points. However after the local
ASM search is applied 95% of faces are found at this accuracy limit (see solid line). The
Reg-ASM method performs slightly better than the Det-ASM on both data sets (compared
solid+dotted lines in Figure 4).

The results in Figure 4 are comparable with the authors previous results published
on the two data sets. For example using the same error measure on the BIOID data set
the Constrained Local Model (CLM) algorithm [4] gives a 90% success rate at me < 0.1
compared to 95% using the prorposed Reg-ASM algorthim. For lower values of me the
CLM is more accurate, however the Reg-ASM and Det-ASM methods described here are
initialised using the average points from the face detector. In [4] the Pictorial Structure
Matching(PSM) algorithm [7] is used as part of a three stage method. The Reg-ASM
local search is also much more efficient than the CLM algorithm (see Section 4.4).

4.3 Displacement Results
In order to determine the range of convergence of the Reg-ASM and Det-ASM the track-
ing methods are systematically displaced from the true feature locations in the eight pos-
sible compass directions, by a percentage of the inter-ocular distance and the shape reset
to the mean of the statistical shape model.

This gives a total of 8 starting search locations per image, to start the Reg-ASM and
Det-ASM algorithms, at each of five possible displacements of 10%, 20%, 30%, 40% and
50% of the inter-ocular distance. The rate of convergence for the Reg-ASM and Det-ASM
given a point to point error limit of me < 0.15, for this range of displacements is shown
in Figure 5.
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Figure 5: Range of convergence for regression an detection methods on XM2VTS and
BIOID test sets

Figure 5 shows that the Reg-ASM has a wider range of convergence compared to
the Det-ASM on both the BIOID and XM2VTS data sets. This is possibly due to the
regression prediction for each point (in the Reg-ASM) being able to jump over false min-
ima which may be found by the Det-ASM search. However both algorithms have some
in-built ability to avoid false minima due to the ASM shape fitting step which removes
outlying predictions for individual feature points.



4.4 Timings
The local search time using the Reg-ASM and the Det-ASM methods is dependent on the
search image and the starting displacement. However both algorithms converge in fewer
than 5 iterations in most cases. Therefore the search speed is dependent on the time for
one iteration of the ASM.

In our implementation one iteration of the Reg-ASM takes ∼3ms compared to ∼ 25ms
with the Det-ASM1, using a C++ implementation on a P4 3GHz processor. Therefore the
Reg-ASM is approximately eight times quicker then the Det-ASM. If 1-5 iterations are
required when tracking a face with the Reg-ASM in a video sequence the frame rate will
be approximately 60-300 frames per second.

(a) Start Pts (b) After It 4 (c) After It 8 (d) Final Pts

Figure 6: Example of Iterative Reg-ASM Search on BIOID image

5 Conclusions
We have compared two local feature updates methods within the Active Shape Model
framework. The boosted regression approach is shown to have a wider range of conver-
gence compared to the boosted classifier method on two publicly available face data sets.
The boosted regression method is also more computationally efficient by a factor of eight,
which makes it suitable for use in real time systems.

Future work will involve building larger models with more data and different data
sets. We are particularly interested in applying the boosted regression approach to high
dimensional medical images, as in more than two dimensions the feature detection search
at run-time becomes prohibitively expensive. We may also apply the regression update
step in other formulations such as the AAM.

The boosted regression feature prediction method described is an extremely efficient
local search algorithm (> 60 frames per second), which improves on standard boosted
feature detection approaches. We anticipate that this form of boosted regression update
will be useful in other areas of computer vision.

1Note it may be possible to improve the efficiency of the Det-ASM by introducing a cascade structure for
each classifier as in [17]. However the fact that the classifier has to search the local neighbourhood will always
make it slower than the regression model, if both methods use the same number of weak learners.
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