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Abstract

3D imaging LiDAR systems have the potential to acquire raljered 3D
image data; that is rather than store a single depth valuacat @xel, it is pos-
sible to store the range to more than one surface within tked piew direction.
Multiple returns are possible at a single pixel when imaghrgugh transparent
surfaces, for example when acquiring depth images of camsilatings that have
windows, in which case it is possible to record both exteamal internal struc-
ture. Multiple returns are also possible when the pixel figldiew encompasses
more than one opaque surface. However, to build such nayléred 3D images,
we need to think of new ways of processing the LiDAR data.

In this paper, we present a unified theory of pixel proces&nguch data.
This is based on a reversible jump Markov chain Monte CariMRMC) me-
thodology extended to include spatial constraints by a afRandom Field
with a Potts prior model. We consider two distinct propossiributions, based
on spatial mode jumping and spatial birth/death processgzectively. We also
include a delayed-rejection step in the RIMCMC algorithrmtprove the esti-
mates of the range and reflectance of each surface element&dodology is
demonstrated on both photon count and burst illuminati@AR data.

1 Introduction

Our intention is to characterise completely all the 3D stefaviewed by a Light Detection
and Ranging (LIDAR) system. LIiDAR works on the principle ohe-of-flight, that is the
range to the surface can be computed by measuring the go-tetie of a laser signal when
it impinges on a surface in the field of view (FOV). Howeverrdh is no reason why we
cannot measure range to more than one surface along the seehéigdd of view, if there
are transparent surfaces or simply more than one surfabatif©OV. Moreover, most scenes
contain spatial patterns that have strong dependenciesbetdifferent pixels. Some pixel
configurations are more likely than others since multiptanes can be concentrated in cer-
tain regions and completely absent in others. There are measons why this occurs, for
example, when mapping the pixels to landscape patternqixedis identified as 'water’, it
will be most likely surrounded by the same class of pixel tiker, different parts of an object



are related through geometric constraints. If these dpateractions can be modelled, the
classification accuracy can be improved [11].

Many spatial problems are inherently multivariate, in timatre than one variable is mea-
sured at each spatial location. Multivariate data analgtsvs users to display many dif-
ferent spatial data layers. Mardia [8] introduced a muttate Markov random field (MRF)
model for image processing although this work receivetelisittention, due primarily to
computational difficulties. Current interest in the anaysf multivariate lattice data has
been concentrated on remotely sensed data, especiallispadtral images [9], for target
detection, scene classification and segmentation.

Often, this multivariate data arises from a time series chsneements. Burst lllumina-
tion Laser (BIL) [1] and Time Correlated Single Photon Caong{TCSPC) [7] are examples
of 3D LiDAR techniques that can acquire both depth and reftent images of objects. Fig. 1
shows an example of a single frame acquired with a BIL systaraehistogram of integrated
intensities from one pixel of Fig. 1(a). As the timing of thentera shutter is varied on the
returned pulse, so the intensity rises and falls dependinthe depth of the observed sur-
faces. Fig. 2 shows a small section of a TCSPC pixel image hiciwthe multiple returns
at each pixel are clearly visible as distinct peaks in thetghdistograms. Briefly, each
pixel records a multivariate measurement which can be dernsil as an observed photon or
intensity histogram which in turn is considered as a sampke mon-normalized statistical
mixture distribution. The returns present come not onlyrfithe first surface encountered by
the projected laser signal, but also from subsequent sgfacits path. A simple approach
to the problem would be to treat the time series of obsematat a given image pixel as
independent and identically distributed to that for allestpixels, and to analyse them with
an appropriate model to understand the underlying theotlgenflata points. To model such
data one can use a parametric approach [7] making use of @pammixture distributions
and then use the techniques described therein to obtainagss of the different parameters.
However, such an approach can give suboptimal results bedaneglects the correlations
between the parameters in neighbouring pixels. The cattoity of this paper is to incorpo-
rate such spatial constraints in the context of RIMCMC pixetessing.
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Figure 1: (a) Single frame BIL image of a trig. point at distarof 6.6km (b) Variation of
pixel intensity on the trig point as a function of distancenfra BIL system (blue) and final
fit from RIMCMC estimation (red)

Spatial dependencies have been introduced in a mixtunéoditibn to take into account
spatial heterogeneity using a Bayesian approach [2, 5]. edeny the assumption is that the
different observations come from a unigque mixture distiduin which the number of com-



ponents and some of the parameters (maybe all) are varlatiteese approaches, the spatial
dependencies were introduced either through the weightiseofixture distribution [2] or
through the different allocation variables [5]. Postefiderence was performed using RIM-
CMC algorithms. Initially, one may consider applying a nuatiate MRF to model the
spatial dependencies among the different parameters dfiffieeent mixture distributions.
However, it is not clear how to use these structures in a bkridimension setting where the
different peaks are continuously created or deleted t@bexplore the space of solutions.

Hence, we consider a complex scenario where spatial inienais present. To analyse
TCSCP and BIL data, we incorporate spatial constraints imlki#ayered image for the first
time. Each pixel is a multivariate record, so we use a mixtlistribution for each pixel
instead of a “global mixture” [5] that includes all the pddsireturns. To explore the space
of solutions, we apply to single pixels a Bayesian statitapproach based on RIMCMC
techniques [10] to assess the number, positions and aigditaf the returned signals from
target surfaces [7]. We also include spatial dependencsden pixels that are based on
the number of elements of the mixture through the prior ithigtion as in [6]. However,
the major contribution of this paper is to incorporate twavmaoves within the RIMCMC
algorithm, “spatial mode jumping” and a spatial birth/deptocess that incorporates spatial
information in what is now a mixture of proposal distributio We also introduce a delayed-
rejection step [4] for variable-dimension setting to allawind of learning process.

2 Modd

Consider a rectangular grid of pixels, labelad= 1,2,... N. At each pixel, a multivariate
measurement™ = (y1,¥»,...,Y;) is available. Each multivariate measurement is a histogram
of photon counts or intensities in whigfl' is the value recorded in channeli = 1,...,t.
The exact temporal form of the photon count and the intersigjograms are unknown,
as they depend respectively on the detector response aretaatutter (time-gate). To
interpret such data we follow initially the same approacfrad-or the TCSPC data, we have
used the parametric form of the expected temporal variatiohe photon count distribution,
employing four piecewise exponential functions. In thigdst we assume that the shape
parameters of the returned pulses are fixed and known fromsiruimental response. For
BIL data, we use a look-up table of an instrumental functiointerpret the histogram of
intensities. This is acquired from the response of the Bltesy to a Lambertian reflecting
surface at a similar range to the object of interest.

Since our methodology is general, and can be applied to alsg@®liDAR system, we
use the notatiorfo, when referring to the LIDAR operating model. Furthermoreyesal
signals can be present in the same histogram and these witidegved against a finite back-
ground level By, whose expected value is considered as a constant acrake aliannels.
The observed histogram in pixed, .Zm(i, km, Bm, o, Bm), can be considered as a sample of
a statistical mixture distribution with density

Km
Fm(i, km, Bm toy, Bm) = Z Bmi- fop(iatomj) +Bm 1)
=1

wherekn, is the number of peak@m = (B, B2, - - -, Bmk,,) 1S a vector of amplitude factors
andto,, = (to,y,to,p- - - loy,) iS @ vector of the time of the peak maxima.



If the time resolution is sufficiently fine, the recorded \v&yfl' can be considered to be a
random sample of a Poisson distribution with intensity é€ea#m(i, km, Bm, to,,, Bm), Which
depends on the different model parameters.

y{ﬂ ~ POiSSO[Qym(i y km’ Bm,tom» Bm)) (2)

To construct a likelihood function, we make two further amptions. First, the obser-
vations in each channelof the histogram are conditionally independent given tHee/af
the parameters. Second, the spatial dependencies ardeddiu Bayes’ equation through
parameters representing spatial interactions. Hencedliffeenty = (y,y?,....yN), are
spatially independent given the parameters. The liketifoo the total array is expressed by
the following equation

N imax H i
L(Y| k, Q, T’ B) = |_| |_l eiym(ivkm~,Bm7tOm’Bm) ym(l ? krﬂa Bm; tOm) Bm)ym
m=1li= y{n

wherek = (kg,...,kn), Q= (B1,...,Bn), T = (tol,...,toN) andB = (By,...,By).

(3)

3 Bayesian Inference

The objective is inference about the parameters of Eq. 3 taimlccurate estimates of the
number of peaks, position, amplitude and background ofeh@med signals. If we do not
have any spatial contextual information then these unksoane regarded as drawn from
independent prior distributions with full joint prior digltution

n(km,ﬁ,to,m:( L )( L )ka(Bm|C7d) ﬁfewmna,b) )

kmax imax

wherefg is the probability density function (pdf) of a gamma distitibn.

We consider that observations that correspond to nearbyitos are more likely to have
similar numbers of peaks than observations from locatibatdre far apart. Therefore, we
generalise the prior distribution given by Eq. 4 includingeaalty function, the Potts model,
that discourages adjacent pixels from having different lners of peaks. The Potts model is
a generalisation of the Ising model explained in [5] in whilse random variable is allowed
to have more than two different values. The Potts model har beed previously in image
processing applications and in disease mapping applitatio model allocation variables.
We follow the formulation [5] in whictk is modeled jointly

pi(kly) De? VK (5)

whereU (k) = ¥ onr | [km = k] are the number of like-labeled neighbouring pairs in the
configurationk = (kg, ko, ...,ky). The parameteg is nonnegative and controls the amount
of “smoothing”, that isy = 0 corresponds to a priori spatial independence of the nuwtber
peaks and ag/ — « we favour patterns where the number of peaks in neighboyiixejs
tend to be similar.

The full joint prior distribution incorporating spatial nstraints can be modeled as

N
f(kaQaTvB) = p]_(k“ll) X |—| n(kl’T‘thvtOmvBm) (6)
m=1



Using equations 3, 6 and Bayes' theorem the target distoibatan be expressed as
m(k, Q,T,BlY) OL(YkQ,T,B)f(k Q,T,B) (7

since we just have to know the posterior distribution up t@@arralizing constant.

Simulation from the joint probability distribution is diffult. Therefore, we update the
different parameters using their respective full conditildistributions. We define a Markov
random field with a second-order neighbourhood. The Hamme@lifford theorem [3]
ensures that we can use the full conditional distributioBaf5.

Prolkn] ) Dexp(@ Y 1k = ko) ®)
m'e om
wheredy, denote the neighbours af. In this way, a rather complex multivariate probability
distribution of a MRF can be obtained by successive sinutatifrom the full conditional
distributions.

4 DataAnalysis

The Bayesian models used in this work are too complex to benabhe to analytical cal-
culations. RIMCMC techniques [5] allow us to infer the numipesitions and amplitudes
of the returned signals from target surfaces. We allow mbedaeen state spaces with dif-
ferent dimensionality, which in our case corresponds toghmy the number of viewed sur-
faces. When the dimension is fixed, parameter moves imprevparameter estimates, cor-
responding to surface range (time of arrival), reflectamrep{itude) and background level.
RJIJMCMC is our preferred method for updating beliefs in resgoto new information and
incorporates prior knowledge. RIMCMC techniques allowasxplore the full posterior
distribution of the parameters of the mixture distributimEqg. 1, given the data valués
supplied by the different LiDAR histograms. The parameseesestimated from the values
of a Markov chain whose limiting distribution is a targettdisution . 1T arises from the
posterior distribution defined by Eq. 7. We use simpler wersiof it involving only full con-
ditional distributions. The Markov chain constructed ilwes moves of various types. These
are: (a) updates to parameté&dsT,B, (b) the random birth of a peak, (c) death of a peak,
(d) the random splitting of a peak into two peaks and (e) nmergif two peaks into a single
peak. Movements (b), (c), (d) and (e) are governed by a piliyadxplained in [10]. The
implementation of these moves is described in [7].

Our approach also includes a delayed-rejection stage iRIMCMC algorithm as pro-
posed in [4] in order to improve the mixing of the Markov champroving the estimates of
the different parameters. In the delayed-rejection sisaiéa candidate move is rejected, we
make another attempt to move using a second proposal insfaaching to the next tran-
sition. There is no restriction on the number of stages usetlye use only two stages to
reduce the computational load. Using delayed-rejectimeet different acceptance probabil-
ities have to be calculated. Using Green and Mira’s notdddiior general state spaces, to
move from a state to a statexx, we propose to draw a random numherfrom a known
densityg:. The new stagexis calculated agx= h; (x,u;). The reversed move, fromx to
X, is performed by drawing; from g} and calculatingc = h; (xx u;) whereh; andh; are
deterministic mappings. The acceptance probability af finst stage is given by

TI(xx) gy () | 8(xx Uy)
n(X)g1(u1) | 6(x,us) } )

a1(X,Xx) = min{l,



If this candidate move is rejected, a new move to stageproposed in a similar way to
the previous candidate move; this move is accepted or egjetith a probability given by

(2)§1 (01)G2(02){1 — a1(z,xx")} | 8(z, 01, G)
1(X)g1 (U1)G2(u2) {1 — a1 (X, xx)} | d(X, U1, Up) } (10)

wherez = h2+(x, uz,Uz) andx = h; (z,0y, 0z). The valuesur, (i anduy are drawn frongz, >
andg, respectively.

To obtain the numerator of the second acceptance prolyabiét need to calculate a
third acceptance probabilitg; (z, xx*), corresponding to a fictional stationary Markov chain
started inz which proposes a move i&x at the first stage, rejects it and accepts a second
stage move tx. Although this chain is not really implemented, it is needeensure the
reversibility condition and therefore preserve the staiy distribution. The expression of
the acceptance probability of the virtual stage is ideht#hat of Eq. 9 with an appropriate
change of variables.

In practice, in a 3D secene, objects that have the sameuatsiltend to cluster in space.
Hence, groups of pixels with the same number of peaks andasipérameter values are
expected to occur together. Spatial interactions for mostare also expected to occur.
However, only spatial interactions for the number of peaksrapresented in the prior. Fur-
thermore, the Potts model constrains the number of peak®uwuitconsidering the relative
positions and amplitudes of the current pixel with respedts neighbouring pixels. Since
such contextual information is not available in the priog mvay force situations in which the
state space is not explored properly. Therefore, we suggesiposal distribution for position
moves which can exploit the fact that we expect data to shavelated positions. Thus, we
have incorporated two new moves, called “spatial mode jagipand a spatial birth/death
process, within the RIMCMC algorithm described in [7]. Thpdtial mode jumping” move
proposes an update to the position of a peak in pixeb that its position corresponds to a
random perturbation of the position of a peak in pirélwith some probability. The spa-
tial birth/death move penalises the creation or removal péak given the information of
the neighbourhood of the pixel. In the spatial birth procéss proposed values for the am-
plitude and the position of the new peak are drawn from twotuné distributions whose
elements incorporate spatial information from neighbogipixels in a similar way to that
of “spatial mode jumping”. For a death, one of the currentgda chosen at random to be
removed. Furthermore, the birth and death moves incompardelayed-rejection step which
learns from the previous rejected value and therefore alkmme kind of learning. To model
these moves, we use a mixture of proposal distributionswtaikes account of the current
values of the actual peak and the second-order neighbouring pixels (to reduce algori
complexity) given by the following expression

02(X,2) = min{l

kmax
Q) = Wm-am(-) + Y Wi (21 Vit -q?(~)> (11)
1€0m t=

whereq! andg? are proposal distributions whose expressions depend omdve we are
performing, kmax is the maximum number of peaks amdand v are weights that satisfy
zlg:lvw =1 andzf‘;"’;x Vit = 1 respectively. These weights define positive probalslitiesuch
a way that at each step one of the proposals is selected auwgoodhese probabilities. The
first term of Eq. 11 ensures that a standard independent picet is going to be proposed
when no peaks are available in the neighbourhing pixels. sEeend term includes spatial
information in the proposal distribution.



5 Experimental Results
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Figure 2: Subimage array of photon count histograms (in)tthe structure of Fig. 4(a) and
final fit without spatial constraintg = 0 (red), withgy = 0.5 (green) andy = 10 (black). The
vertical axis represent photon counts (in log scale for eaience) whereas the horizontal
left axis represents different smoothing parameter valgesand the horizontal right axis
represents temporal channels.

In this experiment, we analyse TCSPC and BIL images thatespond to a pixel ar-
ray of 50 by 50 histograms of photon counts and reflectantesfity values respectively.
The results correspond to 1000 sweeps of the algorithm ibescin section 4. We in-
fer the number of peaks as that corresponding to the highajinal posterior probability,

k = argmax gk|y). Once we determine the number of peaks, we extract estirobitiee pa-
rameters fronp(@|k,y) by settingp(glk = k,y). The values of the parameters are estimated
as the mean values of the samples that correspond to suchragtar subspace. The TCSPC
histograms come from the structure shown in Fig. 4(a). Tata tias been analysed with the
following values for the parametgr = {0.5,5, 10} of the Potts model defined by Eq. 5. The
maximum number of peaks in this experiment was set to 10 andhitial number of peaks
was selected randomly. Fig. 2 shows an example of subimag@dyp 3 pixels acquired
by TCSPC as well as the final fit obtained with and without spatbnstraints. Fig. 3 3(a)
and 3(b) display the estimated number when no spatial @inttrare considered of peaks
and when the smoothing parameter is equapte: 10 respectively. As can be seen when
using a Potts model the algorithm tends to form clusters,ishareas with the same number
of estimated peaks are connected by paths from neighbowigblour.



(a) No spatial constraints (b) y =10

Figure 3: Estimated number of peaks of the TCSPC data usinCRIC

Fig. 4(c) and 4(d) show three layer representations of aestemwhich a porcelain cat
is placed inside a greenhouse structure. The surface datepiresented as point clouds
without and with spatial constraintsy = 10. The different surfaces are difficult to perceive
with this representation due to the display facilities oftla, which was used for code
development. However, the shape of the toy cat is discerrdabd is shown without the
other layers in Fig. 4(b). Initially one may think that thenniber of maximum returns is
restricted to 2. Nevertheless, one pixel may have up to 9rreturhe reason of this is due
to two main factors. First, our system presents multipléa paeflections due to arrangement
of the experiment. Second, the beam is impinging on a targetsurfaces distributed in
depth. Increasing the smoothing parameter enforces pamegg number of surface returns
between adjacent pixels; increasing this value furthemsdlaat the posterior distribution is
dominated by the prior information. On the other hand, #aleturns will not be removed
if the smoothing parameter is very small. As can be seen frigmdic) and 4(d), the spatial
constraints used “kill” those returns which do not followyaspatial pattern.

The performance of the model is also illustrated on BIL d@tse data set chosen is that
corresponding to a UK Ordinance Triangulation Point (tradnp), imaged at a distance of
approximately @kmfrom the sensor, shown in Fig. 4(e). As such the LIiDAR dateeiy/ v
different from that acquired in a laboratory setting, asl#ser is subject to sever turbulence
effects. This data presents only one unique return bechessutfaces are opaque.. There-
fore, only one peak and background returns were considérkd.spatial information was
incorporated through the proposal distributions and swadilles of the smoothing parameter
¢ ={0,0.5} are considered. Thg = {0.5} value helps to “smooth” the number of peaks in
several places where previously it was considered therenlgitackground. If the smooth-
ing parameter is increased, the results obtained are sitniklose obtained witlyy = 0.5.
Fig. 4(f) shows a depth reconstruction of the trig. point.

6 Conclusions

We have described the development and application of RIM@Bniques incorporating
spatial contextual information to process time-of-flighiDAR data. This spatial information
is incorporated on the prior distribution through a Markcandom Field on the number of

10nly one spatial-constrained multilayered image is showntdpaper length limitations
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Figure 4: (a) Image of complex multiple return structure posed of a toy cat and a semi-
transparent toy greenhouse (b) Mesh of the toy cat of (a)irddlawith a TCSPC system
(c) and (d) Multiple-layer structure of the experiment (ajhano spatial constraints and
smoothing parametep = 20 (e) Details from a trig point (distance 6.6km) (f) Depth
image obtained with a BIL system using RIMCMC with spatiaisteaints

peaks, and on the proposal distribution through the dewedop of two new moves: the
spatial mode jumping and the spatial birth/death procesBeis spatial information can be



used to reduce the influence of clutter of unknown origin loyislating possible false returns.
Further, we have described a delayed-rejection stage valimlus us to perform rudimentary
learning and therefore improve the performance of thisestag

Our techniques are generally applicable, and have beenrdgrated on LiDAR data us-
ing both single photon counting and variable temporal ggiinextract range measurements.
The results are excellent, and show that it is possible tolvesnultiple returns and hence
characterise objects distributed in 3D space, extractiegihderlying spatial structure. For
TCSPC LiDAR data, the imaging of multiple surfaces showsgabdity well in advance of
most 3D LiDAR systems. For BIL data, the detailed and aceuratging of a the trig point
concrete surface and hill grass and earth through a turboledium at several Km is also a
significant achievement.
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