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Abstract

3D imaging LiDAR systems have the potential to acquire multi-layered 3D
image data; that is rather than store a single depth value at each pixel, it is pos-
sible to store the range to more than one surface within the pixel view direction.
Multiple returns are possible at a single pixel when imagingthrough transparent
surfaces, for example when acquiring depth images of cars orbuildings that have
windows, in which case it is possible to record both externaland internal struc-
ture. Multiple returns are also possible when the pixel fieldof view encompasses
more than one opaque surface. However, to build such multi-layered 3D images,
we need to think of new ways of processing the LiDAR data.

In this paper, we present a unified theory of pixel processingfor such data.
This is based on a reversible jump Markov chain Monte Carlo (RJMCMC) me-
thodology extended to include spatial constraints by a Markov Random Field
with a Potts prior model. We consider two distinct proposal distributions, based
on spatial mode jumping and spatial birth/death processes respectively. We also
include a delayed-rejection step in the RJMCMC algorithm toimprove the esti-
mates of the range and reflectance of each surface element. Our methodology is
demonstrated on both photon count and burst illumination LiDAR data.

1 Introduction

Our intention is to characterise completely all the 3D surfaces viewed by a Light Detection
and Ranging (LiDAR) system. LiDAR works on the principle of time-of-flight, that is the
range to the surface can be computed by measuring the go-return time of a laser signal when
it impinges on a surface in the field of view (FOV). However, there is no reason why we
cannot measure range to more than one surface along the same pixel field of view, if there
are transparent surfaces or simply more than one surface in that FOV. Moreover, most scenes
contain spatial patterns that have strong dependencies between different pixels. Some pixel
configurations are more likely than others since multiple returns can be concentrated in cer-
tain regions and completely absent in others. There are manyreasons why this occurs, for
example, when mapping the pixels to landscape patterns, if apixel is identified as ’water’, it
will be most likely surrounded by the same class of pixel. Further, different parts of an object



are related through geometric constraints. If these spatial interactions can be modelled, the
classification accuracy can be improved [11].

Many spatial problems are inherently multivariate, in thatmore than one variable is mea-
sured at each spatial location. Multivariate data analysisallows users to display many dif-
ferent spatial data layers. Mardia [8] introduced a multivariate Markov random field (MRF)
model for image processing although this work received little attention, due primarily to
computational difficulties. Current interest in the analysis of multivariate lattice data has
been concentrated on remotely sensed data, especially multispectral images [9], for target
detection, scene classification and segmentation.

Often, this multivariate data arises from a time series of measurements. Burst Illumina-
tion Laser (BIL) [1] and Time Correlated Single Photon Counting (TCSPC) [7] are examples
of 3D LiDAR techniques that can acquire both depth and reflectance images of objects. Fig. 1
shows an example of a single frame acquired with a BIL system and a histogram of integrated
intensities from one pixel of Fig. 1(a). As the timing of the camera shutter is varied on the
returned pulse, so the intensity rises and falls depending on the depth of the observed sur-
faces. Fig. 2 shows a small section of a TCSPC pixel image, in which the multiple returns
at each pixel are clearly visible as distinct peaks in the photon histograms. Briefly, each
pixel records a multivariate measurement which can be considered as an observed photon or
intensity histogram which in turn is considered as a sample of a non-normalized statistical
mixture distribution. The returns present come not only from the first surface encountered by
the projected laser signal, but also from subsequent surfaces in its path. A simple approach
to the problem would be to treat the time series of observations at a given image pixel as
independent and identically distributed to that for all other pixels, and to analyse them with
an appropriate model to understand the underlying theory ofthe data points. To model such
data one can use a parametric approach [7] making use of appropriate mixture distributions
and then use the techniques described therein to obtain estimates of the different parameters.
However, such an approach can give suboptimal results because it neglects the correlations
between the parameters in neighbouring pixels. The contribution of this paper is to incorpo-
rate such spatial constraints in the context of RJMCMC pixelprocessing.

(a) (b)

Figure 1: (a) Single frame BIL image of a trig. point at distance of 6.6km (b) Variation of
pixel intensity on the trig point as a function of distance from a BIL system (blue) and final
fit from RJMCMC estimation (red)

Spatial dependencies have been introduced in a mixture distribution to take into account
spatial heterogeneity using a Bayesian approach [2, 5]. However, the assumption is that the
different observations come from a unique mixture distribution in which the number of com-



ponents and some of the parameters (maybe all) are variable.In these approaches, the spatial
dependencies were introduced either through the weights ofthe mixture distribution [2] or
through the different allocation variables [5]. Posteriorinference was performed using RJM-
CMC algorithms. Initially, one may consider applying a multivariate MRF to model the
spatial dependencies among the different parameters of thedifferent mixture distributions.
However, it is not clear how to use these structures in a variable-dimension setting where the
different peaks are continuously created or deleted to better explore the space of solutions.

Hence, we consider a complex scenario where spatial interaction is present. To analyse
TCSCP and BIL data, we incorporate spatial constraints in a multi-layered image for the first
time. Each pixel is a multivariate record, so we use a mixturedistribution for each pixel
instead of a “global mixture” [5] that includes all the possible returns. To explore the space
of solutions, we apply to single pixels a Bayesian statistical approach based on RJMCMC
techniques [10] to assess the number, positions and amplitudes of the returned signals from
target surfaces [7]. We also include spatial dependencies between pixels that are based on
the number of elements of the mixture through the prior distribution as in [6]. However,
the major contribution of this paper is to incorporate two new moves within the RJMCMC
algorithm, “spatial mode jumping” and a spatial birth/death process that incorporates spatial
information in what is now a mixture of proposal distributions. We also introduce a delayed-
rejection step [4] for variable-dimension setting to allowa kind of learning process.

2 Model

Consider a rectangular grid of pixels, labeledm= 1,2, . . . ,N. At each pixel, a multivariate
measurementym = (y1,y2, . . . ,yt) is available. Each multivariate measurement is a histogram
of photon counts or intensities in whichym

i is the value recorded in channeli, i = 1, . . . , t.
The exact temporal form of the photon count and the intensityhistograms are unknown,
as they depend respectively on the detector response and camera shutter (time-gate). To
interpret such data we follow initially the same approach as[7]. For the TCSPC data, we have
used the parametric form of the expected temporal variationof the photon count distribution,
employing four piecewise exponential functions. In this study, we assume that the shape
parameters of the returned pulses are fixed and known from an instrumental response. For
BIL data, we use a look-up table of an instrumental function to interpret the histogram of
intensities. This is acquired from the response of the BIL system to a Lambertian reflecting
surface at a similar range to the object of interest.

Since our methodology is general, and can be applied to any pulsed LiDAR system, we
use the notationfop when referring to the LiDAR operating model. Furthermore, several
signals can be present in the same histogram and these will beobserved against a finite back-
ground level,Bm, whose expected value is considered as a constant across allthe channels.
The observed histogram in pixelm, Fm(i,km,βm, t0m,Bm), can be considered as a sample of
a statistical mixture distribution with density

Fm(i,km,βm, t0m,Bm) =
km

∑
j=1

βm j · fop(i, t0m j)+Bm (1)

wherekm is the number of peaks,βm = (βm1,βm2, . . . ,βmkm) is a vector of amplitude factors
andt0m = (t0m1, t0m2, . . . , t0mkm

) is a vector of the time of the peak maxima.



If the time resolution is sufficiently fine, the recorded value ym
i can be considered to be a

random sample of a Poisson distribution with intensity equal to Fm(i,km,βm, t0m,Bm), which
depends on the different model parameters.

ym
i ∼ Poisson(Fm(i,km,βm, t0m,Bm)) (2)

To construct a likelihood function, we make two further assumptions. First, the obser-
vations in each channeli of the histogram are conditionally independent given the value of
the parameters. Second, the spatial dependencies are included in Bayes’ equation through
parameters representing spatial interactions. Hence, thedifferent Y = (y1

,y2
, . . . ,yN), are

spatially independent given the parameters. The likelihood for the total array is expressed by
the following equation

L(Y|k,Ω,T,B) =
N

∏
m=1

imax

∏
i=1

e−Fm(i,km,βm,t0m,Bm) Fm(i,km,βm, t0m,Bm)ym
i

ym
i !

(3)

wherek = (k1, . . . ,kN), Ω = (β1, . . . ,βN), T = (t01, . . . , t0N) andB = (B1, . . . ,BN).

3 Bayesian Inference

The objective is inference about the parameters of Eq. 3 to obtain accurate estimates of the
number of peaks, position, amplitude and background of the returned signals. If we do not
have any spatial contextual information then these unknowns are regarded as drawn from
independent prior distributions with full joint prior distribution

π(km,β , t0,B) =

(

1
kmax

)(

1
imax

)k

fG(Bm|c,d)
k

∏
j=1

fG(βm j|a,b) (4)

where fG is the probability density function (pdf) of a gamma distribution.
We consider that observations that correspond to nearby locations are more likely to have

similar numbers of peaks than observations from locations that are far apart. Therefore, we
generalise the prior distribution given by Eq. 4 including apenalty function, the Potts model,
that discourages adjacent pixels from having different numbers of peaks. The Potts model is
a generalisation of the Ising model explained in [5] in whichthe random variable is allowed
to have more than two different values. The Potts model has been used previously in image
processing applications and in disease mapping applications to model allocation variables.
We follow the formulation [5] in whichk is modeled jointly

p1(k|ψ) ∝ eψ·U(k) (5)

whereU(k) = ∑m∼m′ I [km = km′ ] are the number of like-labeled neighbouring pairs in the
configurationk = (k1,k2, . . . ,kN). The parameterψ is nonnegative and controls the amount
of “smoothing”, that is,ψ = 0 corresponds to a priori spatial independence of the numberof
peaks and asψ → ∞ we favour patterns where the number of peaks in neighbouringpixels
tend to be similar.

The full joint prior distribution incorporating spatial constraints can be modeled as

f (k,Ω,T,B) = p1(k|ψ)×
N

∏
m=1

π(km,βm, t0m,Bm) (6)



Using equations 3, 6 and Bayes’ theorem the target distribution can be expressed as

π(k,Ω,T,B|Y) ∝ L(Y|k,Ω,T,B) f (k,Ω,T,B) (7)

since we just have to know the posterior distribution up to a normalizing constant.
Simulation from the joint probability distribution is difficult. Therefore, we update the

different parameters using their respective full conditional distributions. We define a Markov
random field with a second-order neighbourhood. The Hammersley-Clifford theorem [3]
ensures that we can use the full conditional distribution ofEq. 5.

pm(km| . . .) ∝ exp(ψ ∑
m′∈ δm

I [km = km′ ]) (8)

whereδm denote the neighbours ofm. In this way, a rather complex multivariate probability
distribution of a MRF can be obtained by successive simulations from the full conditional
distributions.

4 Data Analysis

The Bayesian models used in this work are too complex to be amenable to analytical cal-
culations. RJMCMC techniques [5] allow us to infer the number, positions and amplitudes
of the returned signals from target surfaces. We allow movesbetween state spaces with dif-
ferent dimensionality, which in our case corresponds to changing the number of viewed sur-
faces. When the dimension is fixed, parameter moves improve the parameter estimates, cor-
responding to surface range (time of arrival), reflectance (amplitude) and background level.
RJMCMC is our preferred method for updating beliefs in response to new information and
incorporates prior knowledge. RJMCMC techniques allow us to explore the full posterior
distribution of the parameters of the mixture distributionof Eq. 1, given the data valuesY
supplied by the different LiDAR histograms. The parametersare estimated from the values
of a Markov chain whose limiting distribution is a target distribution π. π arises from the
posterior distribution defined by Eq. 7. We use simpler versions ofπ involving only full con-
ditional distributions. The Markov chain constructed involves moves of various types. These
are: (a) updates to parametersΩ,T,B, (b) the random birth of a peak, (c) death of a peak,
(d) the random splitting of a peak into two peaks and (e) merging of two peaks into a single
peak. Movements (b), (c), (d) and (e) are governed by a probability explained in [10]. The
implementation of these moves is described in [7].

Our approach also includes a delayed-rejection stage in theRJMCMC algorithm as pro-
posed in [4] in order to improve the mixing of the Markov chain, improving the estimates of
the different parameters. In the delayed-rejection strategy, if a candidate move is rejected, we
make another attempt to move using a second proposal insteadof turning to the next tran-
sition. There is no restriction on the number of stages used,but we use only two stages to
reduce the computational load. Using delayed-rejection, three different acceptance probabil-
ities have to be calculated. Using Green and Mira’s notation[4] for general state spaces, to
move from a statex to a statexx, we propose to draw a random numberu1 from a known
densityg1. The new stagexx is calculated asxx= h+

1 (x,u1). The reversed move, fromxx to
x, is performed by drawingu′1 from g′1 and calculatingx = h−1 (xx,u′1) whereh+

1 andh−1 are
deterministic mappings. The acceptance probability of this first stage is given by

α1(x,xx) = min

{

1,

π(xx)g′1(u
′
1)

π(x)g1(u1)

∣

∣

∣

∣

δ (xx,u′1)
δ (x,u1)

∣

∣

∣

∣

}

(9)



If this candidate move is rejected, a new move to statez is proposed in a similar way to
the previous candidate move; this move is accepted or rejected with a probability given by

α2(x,z) = min

{

1,

π(z)g̃1(ũ1)g̃2(ũ2){1−α1(z,xx∗)}
π(x)g1(u1)g2(u2){1−α1(x,xx)}

∣

∣

∣

∣

δ (z, ũ1, ũ2)

δ (x,u1,u2)

∣

∣

∣

∣

}

(10)

wherez= h+
2 (x,u1,u2) andx = h−2 (z, ũ1, ũ2). The values ˜u1, ũ2 andu2 are drawn from ˜g1, g̃2

andg2 respectively.
To obtain the numerator of the second acceptance probability we need to calculate a

third acceptance probability,α1(z,xx∗), corresponding to a fictional stationary Markov chain
started inz which proposes a move toxx at the first stage, rejects it and accepts a second
stage move tox. Although this chain is not really implemented, it is neededto ensure the
reversibility condition and therefore preserve the stationary distribution. The expression of
the acceptance probability of the virtual stage is identical to that of Eq. 9 with an appropriate
change of variables.

In practice, in a 3D secene, objects that have the same attributes tend to cluster in space.
Hence, groups of pixels with the same number of peaks and similar parameter values are
expected to occur together. Spatial interactions for positions are also expected to occur.
However, only spatial interactions for the number of peaks are represented in the prior. Fur-
thermore, the Potts model constrains the number of peaks without considering the relative
positions and amplitudes of the current pixel with respect to its neighbouring pixels. Since
such contextual information is not available in the prior, we may force situations in which the
state space is not explored properly. Therefore, we suggesta proposal distribution for position
moves which can exploit the fact that we expect data to show correlated positions. Thus, we
have incorporated two new moves, called “spatial mode jumping” and a spatial birth/death
process, within the RJMCMC algorithm described in [7]. The “spatial mode jumping” move
proposes an update to the position of a peak in pixelm so that its position corresponds to a
random perturbation of the position of a peak in pixelm′ with some probability. The spa-
tial birth/death move penalises the creation or removal of apeak given the information of
the neighbourhood of the pixel. In the spatial birth process, the proposed values for the am-
plitude and the position of the new peak are drawn from two mixture distributions whose
elements incorporate spatial information from neighbouring pixels in a similar way to that
of “spatial mode jumping”. For a death, one of the current peaks is chosen at random to be
removed. Furthermore, the birth and death moves incorporate a delayed-rejection step which
learns from the previous rejected value and therefore allows some kind of learning. To model
these moves, we use a mixture of proposal distributions which takes account of the current
values of the actual peakm and the second-order neighbouring pixels (to reduce algorithm
complexity) given by the following expression

Q(·) = wm ·q1
m(·)+ ∑

l∈δm

wl

(

kmax

∑
t=1

νlt ·q
2
t (·)

)

(11)

whereq1 andq2 are proposal distributions whose expressions depend on themove we are
performing,kmax is the maximum number of peaks andw and ν are weights that satisfy
∑9

l=1wl = 1 and∑kmax
t=1 νlt = 1 respectively. These weights define positive probabilities in such

a way that at each step one of the proposals is selected according to these probabilities. The
first term of Eq. 11 ensures that a standard independent pixelmove is going to be proposed
when no peaks are available in the neighbourhing pixels. Thesecond term includes spatial
information in the proposal distribution.



5 Experimental Results

Figure 2: Subimage array of photon count histograms (in blue) of the structure of Fig. 4(a) and
final fit without spatial constraintsψ = 0 (red), withψ = 0.5 (green) andψ = 10 (black). The
vertical axis represent photon counts (in log scale for convenience) whereas the horizontal
left axis represents different smoothing parameter values, ψ, and the horizontal right axis
represents temporal channels.

In this experiment, we analyse TCSPC and BIL images that correspond to a pixel ar-
ray of 50 by 50 histograms of photon counts and reflectance/intensity values respectively.
The results correspond to 1000 sweeps of the algorithm described in section 4. We in-
fer the number of peaks as that corresponding to the highest marginal posterior probability,
k̂ = argmax p(k|y). Once we determine the number of peaks, we extract estimatesof the pa-
rameters fromp(φ |k,y) by settingp(φ |k = k̂,y). The values of the parameters are estimated
as the mean values of the samples that correspond to such a parameter subspace. The TCSPC
histograms come from the structure shown in Fig. 4(a). This data has been analysed with the
following values for the parameterψ = {0.5,5,10} of the Potts model defined by Eq. 5. The
maximum number of peaks in this experiment was set to 10 and the initial number of peaks
was selected randomly. Fig. 2 shows an example of subimages of 3 by 3 pixels acquired
by TCSPC as well as the final fit obtained with and without spatial constraints. Fig. 3 3(a)
and 3(b) display the estimated number when no spatial constraints are considered of peaks
and when the smoothing parameter is equal toψ = 10 respectively. As can be seen when
using a Potts model the algorithm tends to form clusters, that is, areas with the same number
of estimated peaks are connected by paths from neighbour to neighbour.



(a) No spatial constraints (b) ψ = 10

Figure 3: Estimated number of peaks of the TCSPC data using RJMCMC

Fig. 4(c) and 4(d) show three layer representations of a scene in which a porcelain cat
is placed inside a greenhouse structure. The surface data are represented as point clouds
without and with spatial constraints1 ψ = 10. The different surfaces are difficult to perceive
with this representation due to the display facilities of Matlab, which was used for code
development. However, the shape of the toy cat is discernible and is shown without the
other layers in Fig. 4(b). Initially one may think that the number of maximum returns is
restricted to 2. Nevertheless, one pixel may have up to 9 returns. The reason of this is due
to two main factors. First, our system presents multiple path reflections due to arrangement
of the experiment. Second, the beam is impinging on a target with surfaces distributed in
depth. Increasing the smoothing parameter enforces corresponding number of surface returns
between adjacent pixels; increasing this value further means that the posterior distribution is
dominated by the prior information. On the other hand, “false” returns will not be removed
if the smoothing parameter is very small. As can be seen from Fig. 4(c) and 4(d), the spatial
constraints used “kill” those returns which do not follow any spatial pattern.

The performance of the model is also illustrated on BIL data.The data set chosen is that
corresponding to a UK Ordinance Triangulation Point (trig point), imaged at a distance of
approximately 6.6km from the sensor, shown in Fig. 4(e). As such the LiDAR data is very
different from that acquired in a laboratory setting, as thelaser is subject to sever turbulence
effects. This data presents only one unique return because the surfaces are opaque.. There-
fore, only one peak and background returns were considered.The spatial information was
incorporated through the proposal distributions and smallvalues of the smoothing parameter
ψ = {0,0.5} are considered. Theψ = {0.5} value helps to “smooth” the number of peaks in
several places where previously it was considered there wasonly background. If the smooth-
ing parameter is increased, the results obtained are similar to those obtained withψ = 0.5.
Fig. 4(f) shows a depth reconstruction of the trig. point.

6 Conclusions

We have described the development and application of RJMCMCtechniques incorporating
spatial contextual information to process time-of-flight LiDAR data. This spatial information
is incorporated on the prior distribution through a Markov Random Field on the number of

1Only one spatial-constrained multilayered image is shown dueto paper length limitations



(a)

0

20

40

60

0
20

40
60

179

178

177

176

175

174

Rows

D
ep

th
 (

cm
)

(b)

0 10 20 30 40 500
50

4500

4000

3500

3000

2500

2000

1500

1000

500 

0   

(c)

0 10 20 30 40 500

50
2400

2200

2000

1800

1600

1400

1200

1000

(d)

(e)

25

30

35

40

45

5

10

(f)

Figure 4: (a) Image of complex multiple return structure composed of a toy cat and a semi-
transparent toy greenhouse (b) Mesh of the toy cat of (a) obtained with a TCSPC system
(c) and (d) Multiple-layer structure of the experiment (a) with no spatial constraints and
smoothing parameterψ = 20 (e) Details from a trig point (distance∼ 6.6km) (f) Depth
image obtained with a BIL system using RJMCMC with spatial constraints

peaks, and on the proposal distribution through the development of two new moves: the
spatial mode jumping and the spatial birth/death processes. This spatial information can be



used to reduce the influence of clutter of unknown origin by eliminating possible false returns.
Further, we have described a delayed-rejection stage whichallows us to perform rudimentary
learning and therefore improve the performance of this stage.

Our techniques are generally applicable, and have been demonstrated on LiDAR data us-
ing both single photon counting and variable temporal gating to extract range measurements.
The results are excellent, and show that it is possible to resolve multiple returns and hence
characterise objects distributed in 3D space, extracting the underlying spatial structure. For
TCSPC LiDAR data, the imaging of multiple surfaces shows a capability well in advance of
most 3D LiDAR systems. For BIL data, the detailed and accurate imaging of a the trig point
concrete surface and hill grass and earth through a turbulent medium at several Km is also a
significant achievement.
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