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Abstract

Traditional egomotion estimation algorithms have largely depended on deter-
ministic feature correspondences to infer information about the camera and
have been oblivious to the scene geometry by treating scenes with varying
projectivities uniformly. This paper builds on the statistical framework of
the joint feature distribution (JFD) which models the joint probability distri-
butions of the positions of corresponding features in different images. This
framework explicitly gives probabilistic correspondence search regions that
can be stably estimated for the whole range of planar, shallow and deep
scenes using relatively few correspondences. These joint probability dis-
tributions are constrained by the epipolar constraint to yield a distribution
over all feasible egomotions. The paper also compares the proposed method
against existing well-known methods and quantifies the improvements in the
egomotion estimates.

1 Introduction
Egomotion estimation is a critical step while analyzing scenes from moving cameras. The
aim of egomotion computation is to estimate translation and rotation, i.e. external camera
parameters, the camera undergoes while capturing the sequence of images. An array of
methods to estimate egomotion of moving cameras with respect to both stationary and
dynamic scenes using a deterministic framework have been proposed. Tian et. al [15] and
Armangue et. al [1] summarize these methods and group them based on their underlying
principles.

Kanatani’s method [7] based on the epipolar constraint has been the basis for several
linear egomotion algorithms. The Essential matrix which serves as the support for the
epipolar constraint faithfully captures the epipolar geometry between the camera views
and can be estimated using the linear 8 point algorithm [5], or the state of the art 5 point
algorithm [11] [9].

The above mentioned methods directly use feature correspondences between images
and use these matches to robustly estimate the Essential matrix. However, given the va-
garies in scene structure, extracting dense feature correspondences between images is not
always possible. This paper builds on the premise that robust egomotion estimation does
not have to rely on dense, deterministic image correspondences. Instead, a probability
distribution of the uncertainties in correspondences would be sufficient. This paper uses
the joint feature distributions (JFD) [17] to build these probability distributions. The JFD
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Figure 1: Joint Feature Distribution (JFD) and Epipolar line : (a) shows the point under
consideration marked in red. (b) shows the corresponding epipolar line (calculated using
the ground truth data) and probability distribution of the point correspondence using JFD,
(c) the iso-contour plot of the probability distribution and the epipolar line overlaid on the
second image.

is used to predict feature correspondences between images. Probability distribution for
the Essential matrix is computed from the JFD by evaluating how well each tentative
Essential matrix’s epipolar lines fit the feature correspondence distribution.

The motivating application for this paper is to estimate the motion of a vehicle using a
rigidly attached camera. In some cases this task becomes difficult as multiple hypotheses
may fit the epipolar geometry for e.g. the camera view may be of shallow scene or a deep
scene or a largely planar scene. If an incorrect hypothesis is chosen, the estimated motion
can break and lead to an incorrect state from which the motion estimate is unlikely to
recover. The uncertainty estimates from the joint feature distributions provide us with a
mechanism to choose the best hypothesis from the space of available choices.

The paper is organized as follows. Section 2 motivates the requirement to represent
the correspondence information probabilistically and later describes our chosen method
of probabilistic representation. Section 3 goes on to describe the method used to extract
egomotion information from this probabilistic representation. Section 4 compares and
contrasts our approach with other known methods in literature. The paper ends with a
summary on future work.

2 Probabilistic Correspondence
Estimation of the correspondences of features between images is a difficult task. Tra-
ditionally, a feature detector (e.g. the Harris corner detector [4]) is used to find points
whose correspondence is most easily established. Then, matching techniques are used to
find probable matches between the feature points in both images (e.g. normalized cross
correlation, or SIFT features [10]).

Most feature extraction and subsequent matching process are hindered by noise, scale,
orientation changes, aperture effect, and repetitive scene structure. The ambiguities aris-
ing from these effects would cause feature based matching techniques to reject true feature
points as weak ones or as outliers. A probability distribution gives us a mechanism for
representing this ambiguity.

There is a good deal of literature regarding representing these ambiguities explicitly
using probabilistic methods. For the purpose of computing optical flow [2] estimates
traditional flow vectors at each point, by first estimating flow probability distributions,
and then combining this information using spatiotemporal support regions. For the same



problem [14] creates a probability distribution over the optical flow by assuming image
gradients are corrupted by a Gaussian noise model. These distributions are then used
to estimate optical flow vectors with higher accuracy. Object tracking has also been ad-
dressed [13] using the probabilistic notions of correspondence. In [3] the authors proposes
a method to compute correspondence probability distributions using Gabor filters that are
tuned to different orientations and scales. They use the fact that for a given filter, matching
points will have matching phase. They further illustrate the application of this approach
to the problem of egomotion estimation. However, their method is only suitable for sit-
uations with limited rotation or scale change and does not have a mechanism to counter
the effects of varying projectivities in a scene. Also, in presence of regularly repetitive
texture, the responses of the Gabor filter bank are identical at multiple places and this
would lead to problems during the egomotion estimation phase.

Joint Feature distribution (JFD) [17] allows statistical representation of feature corre-
spondences in different image as a probability distribution. The probability distribution
serves to capture the correspondences entirely as conditioning on a feature gives tight
probabilistic correspondence search regions for the remaining ones. As concisely stated
in [17], JFDs are descriptive statistical models rather than normative geometric ones:
they aim to summarize the observed behavior of the given training correspondences, not
to rigidly constrain them to an ideal predefined geometry.

The problem we address in this paper is egomotion estimation of a camera mounted on
a moving vehicle. This application involves situations with deep scale and steep rotation
changes. The JFD’s offer a principled mechanism to generate the joint distributions of
feature points that undergo these changes. The uncertainty distributions generated by the
JFD are then used as the input to our egomotion algorithm.

2.1 Joint Feature Distributions
Noisy image projections xi|i = 1 · · ·m of a fixed 3D feature f can be modeled as proba-
bility distributions p(xi| f ) centered on f ′s true projections. If f varies across some 3D
features with distribution p( f ), the joint feature distribution (JFD) of the resulting popu-
lation of image features is

p(x1, · · · ,xm) =
∫

p(x1, · · · ,xm| f )p( f )d f . (1)

JFDs are image-based models originally derived from 3D quantities (in this case, the
3D feature prior p( f ) and the projection models p(xi| f )), but typically estimated from
observed image correspondences.

Let x = (x,y,1) and x′ = (x′,y′,1) be the homogeneous coordinates of the correspond-
ing points (correspondences established using traditional feature detection and matching)
in the image im1 and im2. Then a joint image vector is defined as

t = x⊗x′ = (xx′,xy′,x,yx′,yy′,y,x′,y′,1). (2)

Given N correspondences between images im1 and im2 a 9 x N matrix M is obtained
by stacking the joint image vectors. Thus M = [t1 t2 ... tN]. The homogeneous scatter
matrix V is

V =
1
N ∑

p
tptT

p =
1
N

MMT .



The fundamental matrix uses just the smallest eigenvector of MMT whereas the JFD
model captures the underlying uncertainty using an appropriately-weighted average over
all of the eigenvectors ((MMT )−1). Conditioning the JFD gives compact correspondence
search regions consistent with all the likely models in the average. The JFD information
matrix that forms the basis of our probabilistic representation is W ≈ V−1. Now the
probability of a point x = (x,y,1) to correspond to x′ = (x′,y′,1) using JFD is given by

p(x,x′) = kie
−1
2 tT Wt

, (3)

where t is as defined by equation (2) and ki is a constant to normalize the distribution.

2.2 Reducing the probability distribution
The joint image vector can be reformulated as follows

t = x⊗x′

= [xx′,xy′,x,yx′,yy′,y,x′,y′,1]T9×1

=




xI3
yI3
I3




9×3

•



x′
y′
1




3×1

where I3 is a 3×3 identity matrix. Let Q = [xI3 yI3 I3]
T , thus t = Q ·x′. Using equa-

tion (3), the probability for correspondence between x and x′ is given by

p(x,x′) = kie
−1
2 x′TQTWQx′

= kie
−1
2 x′TAx′ (4)

where A = QTWQ.
Figure 1 shows the probability distribution obtained using the equation (4). It can

be noted that the probability distribution models the correspondence and the associated
uncertainty well.

3 Egomotion Estimation
Egomotion of a moving camera is in essence the relative geometry between subsequent
camera views. This geometry is well captured by the 3× 3 homogeneous Essential ma-
trix. Consider a camera with constant intrinsic matrix K observing a static scene. Two
corresponding image points x and x′are then related by a fundamental matrix F:

x′TFx = 0 (5)

A valid F must also satisfy the cubic singularity condition detF = 0. If the camera is
fully-calibrated with K as the internal camera calibration matrix, then the fundamental
matrix is reduced to an essential matrix denoted by E, and the new equation is:

K−TEK−1 = F. (6)



The Essential matrix E is a representation of the motion (translation and rotation, up to a
scale), it has only five degrees of freedoms. Consequently, to be a valid essential matrix
E, it must further satisfy two more constraints, which are characterized by

2EETE−Tr(EET)E = 0, (7)

where Tr(A) is the trace of the matrix A. The above constraints can also be satisfied
by formulating the Essential matrix in terms of the translation and rotation the camera
undergoes. A unit length vector for translation can be uniquely represented by a point on
the unit sphere. Thus it can be characterized by two parameters (α,β ).

T = [sin(α)cos(β ),sin(α)sin(β ),cos(α)]T

The rotation is represented by a vector ω = [x,y,z]T . Here the angle of rotation is θ =√
x2 + y2 + z2 and the axis of rotation is ω̂ = ω/θ = [x̂, ŷ, ẑ]T . Thus given the 5 parameters

(α,β ,x,y,z) the essential matrix can be composed as follows.

E = [T]×R(ω), (8)

where R(ω) is the rotation matrix corresponding to the rotation vector ω .

3.1 Probability of egomotion given a point
Given a correspondence probability distribution for a single point x, the probability of a
given hypothesis (α,β ,x,y,z), and hence E (by equation (8)), is taken to be maximum
probability p(x,x′) such that x and x′ satisfy the epipolar constraint, i.e. xTFx′ = 0 where
F is the fundamental matrix given by equation (6). This translates to

Px(E) = maxx′ p(x,x′) (9)
subject to xTFx′ = 0

All x′ which satisfy the epipolar constraint lie on the line given by l = Fx. Consider two
points on the epipolar line l = [l1, l2, l3].

p1 = [0,
−l3
l2

,1] p2 = [
−l3
l1

,0,1]

Any point on the epipolar line can thus be represented as

x′(t) = o+ td, (10)

where o = p2 and d = (p1− p2).
Equation (9) can be reformulated using equation (10) along with equation (4) to have

new parameterization of t which inherently incorporates the epipolar constraint. This es-
sentially converts the constrained maximization over x′ to an unconstrained maximization
over t.

Px(E) = maxt p(x,x′(t))

= maxt kie
−1
2 x′(t)TAx′(t) (11)



Maxima for the equation (11) will occur for a value of t which minimizes x′(t)TAx′(t).
Thus

t̃ = arg mint (o+ td)T A(o+ td). (12)

Minimizing the equation (12) we have t̃ =− oT Ad
dT Ad . Hence

Px(E) = kie
−1
2 x̆TAx̆, (13)

where x̆ = o− oT Ad
dT Ad d.

3.2 Probability distribution of egomotion
The probability of egomotion computed over all the points is given by combining the
information given by all points. Hence

P(E) = C
∀ points

∏
i

Pxi(E), (14)

where C is the normalizing constant for the distribution. Ideally we would like to con-
sider all the points on the image, not only the points for which the correspondence was
established during the initial JFD calculation phase in the above equation. However, em-
pirically we have found that taking even few equally spaced points on a grid results in an
accurate probability distribution of E and calculated egomotion (refer section 4).

Using equation (13) the above equation becomes

P(E) = C
∀ points

∏
i

kie
−1
2 x̆i

TAx̆i .

To estimate the egomotion Ẽ, we find the motion parameters (α,β ,x,y,z) which maximize
the P(E). Hence

Ẽ = arg maxE (C
∀ points

∏
i

kie
−1
2 x̆i

TAx̆i)

= arg maxE (
∀ points

∏
i

e
−1
2 x̆i

TAx̆i)

= arg minE (
∀ points

∑
i

x̆i
TAx̆i) (15)

In practice the optimization of the equation (15) over this 5 dimensional space is
carried out as follows.

• Evaluate P(E) at 250 random samples in 5D motion space.

• Sort in descending order and select top 50 samples.

• Use them as seed points to start nonlinear search for optimal parameter set.

• Select the parameter set which gives minimum value for P(E) from the resulting
parameter set of above nonlinear search.
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Figure 2: Comparison of (a) error in the translational and (b) error in rotational component
of the estimated egomotion using various approaches with varying amounts of noise levels
in the correspondences.

4 Experimental results
We compare the performance of the proposed approach with several well established
methods on real as well as synthetic data . The error metric for estimated translation
T with respect to the ground truth translation T̃ is computed as

eT = cos−1(T′T̃).

Similarly, the error metric for estimated rotation matrix R with respect to the ground truth
rotation matrix R̃ is computed as

eR = cos−1(
Tr(R′R̃)−1

2
).

Since the internal camera parameters are assumed to be known in all the experiments on
synthetic data, we have used normalized coordinates for the correspondences.

In general for minimization in 5D space it is hard to guarantee of convergence. How-
ever, due to the Gaussian nature of correspondence and parameterization of equation (15)
very few local minima were observed. This coupled with evenly distributed multiple seed
points in the 5D space resulted in convergence to the global minima each time in our
experiments.

4.1 Synthetic data
For synthetic data, 100 3D points were randomly selected in front of the camera covering
the field of view. These points were then projected on a image considering a unit focal
length camera at canonical position on origin. The camera undergoes T̃ translation and
R̃ rotation and the points are re-projected, using the new camera position, on the image.
The correspondences thus generated are then perturbed by zero mean Gaussian noise to
quantify the performance of various algorithms with increasing levels of noise. In our
experiments, the noise variance was varied from 2×10−3 to 12×10−3 (in units of focal
length) which approximately translates to 0.5 pixels to 2.5 pixels for a 512× 512 image
with unit focal length and 90◦ field of view.

Figure 2 shows the performance of the proposed approach on noisy data in comparison
with Kanatani-A [7], Kanatani-B [8], Jepson-Heeger [6], Prazdny [12], Triggs [16], Eight



(a) (b)

Approach Error in translation Error in rotation
Proposed approach 1.0856 0.0026
Domke’s approach 1.1786 0.3009

Eight point approach 2.9182 1.0144
(c)

Figure 3: Translation and rotational error in degrees for the estimated egomotion between
cameras of the image (a) and (b). The comparision table is shown in (c).

Point [5], and Seven Point [18] approaches. Implementation of the Kanatani-A, Kanatani-
B, Jepson-Heeger, Prazdny have been adapted from the MATLAB toolbox given by Tian
et. al [15]. The Triggs method is based on the projective factorization approach pro-
posed by [16] to calculate the projection matrices for the two cameras. These are then
decomposed to obtain the egomotion. On similar lines, the Eight point and Seven point
algorithms are used to obtain the Fundamental matrix. Since the image coordinates are
normalized in our case, we compute the Essential matrix which is then factorized to ob-
tain the solution for the egomotion. It can be observed from the comparisons in Figure
2 that the egomotion estimates using the proposed probabilistic approach performs bet-
ter then deterministic approaches which can be attributed to the ability of the probability
distribution to handle noise in the correspondences.

4.2 Synthetic and Real Images
We have used synthetic image from SOFA 1 for evaluating the performance of the pro-
posed method. The pairs of images in which the camera undergoes translation and rotation
have been selected for this set of experiments.

Besides the comparisons in Figure 2, we also compare our results with the only other
method, Domke et. al [3] that uses probabilistic correspondences for egomotion estima-
tion. We use an available implementation 2 of this method for our evaluation. The table in
the Figure 3 show some results of our experimentation. The comparisons shown are be-
tween the proposed method, Domke’s method and the linear approach. For the proposed
and linear approaches, point correspondences are obtained between images using SIFT
based matching. For the Eight point approach, fundamental matrix is calculated based on
this matches using RANSAC. Essential matrix obtained from the fundamental matrix and
is decomposed to obtain the solution for egomotion. It can observed that the proposed
approach outperforms both the linear and Domke’s method.

In the case of real images, SIFT based feature matching was used to generate the
point correspondences which are then used to calculate the JFD. To show the validity of
our approach for real images we have calculated the epipolar lines based on the egomotion

1SOFA synthetic sequences courtesy of the Computer Vision Group, Heriot-Watt University
(http://www.cee.hw.ac.uk/ mtc/sofa)

2http://www.cs.umd.edu/ domke/egomotion/



(a) (b)
Figure 4: Epipolar lines calculated based on the egomotion, estimated by proposed ap-
proach, overlaid over the real images in (a) and (b).

evaluated using the proposed approach. Figure 4 shows the epipolar lines overlaid on the
respective images.

We also have experimented by varying the number of points in the equation (14) and
have found that taking few equally spaced points on the image gives accurate results.
As observed in Figure 5 increasing the number of equally spaced point beyond 36 (i.e.
grid size= 6) does not yield a significant improvement in the accuracy of the estimated
egomotion.

5 Conclusion and Discussions
In this paper, we have described a method to compute the egomotion of a moving camera
using the statistical concept of joint feature distributions (JFD). The JFD’s captured the
statistics of a given collection of training correspondences and we used them to build a
dense set of correspondences of the same kind. In this work, we focussed on using the
JFD to predict correspondences and then used the epipolar constraint to find a probability
distribution for the egomotion.

The JFD contains all the information regarding the uncertainties in egomotion. When
the scene is decidedly deep, the fundamental matrix is well defined and we have a homo-
geneous covariance matrix for the family of epipolar lines associated with a given point
xi and the corresponding epipole e. So, the translation direction (e) and the rotation in-
formation (available from the fundamental matrix and e) can be calculated. For shallow
scenes, the uncertainty in homographies is well characterized by the JFD information ma-
trix (its inverse contains the homogeneous information of the homography) and this can
be decomposed into translation and rotation components.

For scenes with varying degrees of projectivities (or collections of planes), a mix-
ture of shallow JFD’s (their shared eigenvector) would allow us to characterize the scene.
We are currently exploring approaches that would allow us to compute the uncertainty in
egomotion directly from this information without imposing the additional epipolar con-
straints.

References
[1] X. Armangu, H. Arajo, and J. Salvi. A review on egomotion by means of differential epipolar

geomety applied to the movement of a mobile robot. Pattern Recognition, 21, 2003.

[2] W.F Clocksin. A new method for computing optical flow. In Proceedings of British Machine
Vision Conference, 2000.



2 4 6 8 10 12 14 16 18 20
0

5

10

15

Grid Size

E
rr

or
 in

 D
eg

re
es

 

 
Error in Rotation
Error in Translation

Figure 5: Improvement in accuracy of the estimated egomotion with increase in number of
points under consideration in the proposed approach. n grid size means a equally spaced
grid of n×n points on the image

[3] J. Domke and Y. Aloimonos. A probabilistic framework for correspondence and egomotion.
In ICCV Workshop on Dynamic Vision, 2005.

[4] C.G Harris and M Stephens. A combined corner and edge detector. In AVC, 1988.

[5] Richard Hartley. In defense of the eight-point algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19, 1997.

[6] Allan D. Jepson and David J. Heeger. Linear subspace methods for recovering translational
direction. In Proceedings of the 1991 York conference on Spacial vision in humans and robots,
1993.

[7] K. Kanatani. Unbiased estimation and statistical analysis of 3-d rigid motion from two views.
IEEE Trans. Pattern Anal. Mach. Intell., 15, 1993.

[8] Kenichi Kanatani. 3-d interpretation of optical flow by renormalization. Int. J. Comput. Vision,
11, 1993.

[9] Hongdong Li and Richard Hartley. 5-point motion estimation made easy. In Proceedings of
the International Conference on Pattern Recognition, 2006.

[10] David Lowe. Distinctive image features from scale-invariant keypoints. In International
Journal of Computer Vision, 2004.

[11] David Nister. An efficient solution to the five-point relative pose problem. In Proceedings of
Computer Vision and Pattern Recognition, 2003.

[12] K. Prazdny. Egomotion and relative depth map from optical flow. Biological Cybernetics, 36,
1980.

[13] Y Rosenberg and M Werman. Representing local motion as a probability distribution matrix
applied to object tracking. In Proceedings of Computer Vision and Pattern Recognition, 1997.

[14] E.P Simoncelli, E.H Adelson, and D.J Heeger. Probability distributions of optical flow. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1991.

[15] Tina Y. Tian, Carlo Tomasi, and David J. Heeger. Comparison of approaches to egomotion
computation. In Proceedings of the Conference on Computer Vision and Pattern Recognition,
1996.

[16] Bill Triggs. Factorization methods for projective structure and motion. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 1996.

[17] Bill Triggs. Joint feature distributions for image correspondence. In ICCV, 2001.

[18] Zhengyou Zhang. Determining the epipolar geometry and its uncertainty: A review. Technical
Report 2927, Sophia-Antipolis Cedex, France, 1996.


