
Epsilon Stereo Pairs

Yuanyuan Ding Jingyi Yu
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716, USA
{ding,yu}@cis.udel.edu

Abstract

Human stereo vision works by fusing a pair of perspective images with a
purely horizontal parallax. Recent developments suggest that very few vari-
eties of multiperspective stereo pairs exist. In this paper, we introduce a new
stereo model, which we call epsilon stereo pairs, for fusing a broader class
of multiperspective images. An epsilon stereo pair consists of two images
with a slight vertical parallax. We show many multiperspective camera pairs
that do not satisfy the stereo constraint can still form epsilon stereo pairs.
We then introduce a new ray-space warping algorithm to minimize stereo
inconsistencies in an epsilon pair using multiperspective collineations. This
makes epsilon stereo model a promising tool for synthesizing close-to-stereo
fusions from many non-stereo pairs.

1 Introduction
A stereo pair consists of two images with a purely horizontal parallax. They provide
important depth cues that are amenable to processing using computer vision algorithms
[1, 4]. The classic pinhole and orthographic camera models have long served as the
workhorse in capturing stereo pairs. However, recent developments have suggested that
cameras that do not adhere to the pinhole structure may also form stereo pairs. For in-
stance, a stereo panorama fuses two pushbroom images to synthesize a 360 degree depth
perception [8]. We refer to these images as multiperspective stereo pairs.

Seitz [10] has classified all possible stereo pairs in terms of their epipolar geometry.
Pajdla [6] independently obtained a similar result. They have shown that the epipolar
geometry, if it exists, has to be a double ruled surfaces. Therefore, very few varieties of
multiperspective stereo pairs exist. In this paper, we introduce a new framework, which
we call epsilon stereo pairs, to model a much broader class of multiperspective images.

An epsilon stereo pair (ε-pair) consists of two images with a slight vertical parallax.
We show many previous multiperspective cameras form valid epsilon stereo pairs even
though they do not satisfy the stereo constraint. We use ε-pairs to model the recently
proposed General Linear Cameras (GLC) [11]. We show both vertical and horizontal
parallaxes can be directly derived from the GLC intrinsics.

We then present a new ray-space warping algorithm to minimize stereo inconsisten-
cies in an ε-pair. Our approach is based on the multiperspective collineation theory [12],
which describes the transformation between the images of a camera due to changes in



sampling and image plane selection. We show a proper collineation can effectively re-
duce stereo inconsistency in an ε-pair. Finally, we develop an automatic algorithm to find
an optimal collineation via non-linear optimizations. This makes the epsilon stereo model
a promising tool for synthesizing close-to-stereo fusions from many non-stereo pairs.

2 Previous Work
Classic pinhole cameras collect rays passing through a single point. Because of its sim-
plicity, any oblique pair of pinhole images can be warped to have a purely horizontal
parallax via projective transformations (homography) [4]. Recently, several researchers
have proposed alternative multiperspective camera models, which capture rays originat-
ing from different points in space. These multiperspective cameras include pushbroom
cameras [3], which collect rays along parallel planes from points swept along a linear
trajectory, two-slit cameras [13], which collect all rays passing through two lines, and
oblique cameras [7], in which each pair of rays are oblique.

Despite their incongruity of view, some multiperspective cameras can still form valid
stereo pairs. Peleg et. al. [8] stitched the same column of images from a rotating pinhole
camera to form a circular pushbroom. They then fused two oblique circular pushbrooms
to synthesize a stereo panorama. Feldman et. al. proved that a pair of cross-slit cameras
can have valid epipolar geometry if they share a slit or the slits intersect in four pairwise
distinct points [2]. Seitz [10] and Pajdla [6] independently classified the space of all
possible stereo pairs in terms of the epipolar geometry. Their work suggests that only three
varieties of epipolar geometry exist: planes, hyperboloids, and hyperbolic-paraboloids, all
corresponding to double ruled surfaces.

This paper focuses on how to fuse multiperspective camera pairs that do not have valid
epipolar geometry. Such pairs may consist of two different cross-slit cameras, a cross-slit
and a pushbroom, or two arbitrary multiperspective cameras. To simplify our analysis, we
use the recently proposed General Linear Cameras (GLC) [11] to uniformly model these
cameras.
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Figure 1: General Linear Cameras. (a) A GLC collects radiance along all possible affine com-
bination of three rays. The rays are parameterized by their intersections with two parallel planes.
(b) The GLC projection maps every 3D point P to a ray. The GLC model unifies many previous
cameras, including the pinhole (c), the orthographic (d), the pushbroom (e), and the cross-slit (d).

2.1 General Linear Cameras
In the GLC framework, every ray is parameterized by its intersections with the two par-
allel planes, where [s, t] is the intersection with the first and [u,v] the second, as shown



in Figure 1(a). This parametrization is often called a two-plane parametrization (2PP)
[5, 11]. Alternatively, we can reparameterize each ray by substituting σ = s− u and
τ = t− v. In this paper, we will use this [σ ,τ,u,v] parametrization to simplify our anal-
ysis. We also assume the default uv plane is at z = 0 and st plane at z = 1. Thus [σ ,τ,1]
represents the direction of the ray.

A GLC is defined as the affine combination of three rays:

GLC = {r : r = α · [σ1,τ1,u1,v1]+β · [σ2,τ2,u2,v2]+(1−α−β ) · [σ3,τ3,u3,v3],∀α,β}
(1)

Many well-known multiperspective cameras, such as push-broom, cross-slit, linear oblique
cameras are GLCs.

We further simply the GLC model by choosing three specific rays that have [u,v]
coordinates as [0,0], [1,0], and [0,1] to form a canonical GLC:

r[σ ,τ,u,v] = (1−α−β ) · [σ1,τ1,0,0]+α · [σ2,τ2,1,0]+β · [σ3,τ3,0,1] (2)

It is easy to see that α = u and β = v. Therefore, every pixel [u,v] maps to a unique ray
in the GLC.

Given a 3D point P[x,y,z], the GLC projection maps P to pixel [u,v] (see [12]) as:

u =

∣∣∣∣∣∣

zσ1 zτ1 1
x y 1

zσ3 1+ zτ3 1

∣∣∣∣∣∣
Az2 +Bz+C

, v =

∣∣∣∣∣∣

zσ1 zτ1 1
1+ zσ2 zτ2 1

x y 1

∣∣∣∣∣∣
Az2 +Bz+C

(3)

The denominator corresponds to the characteristic equation of the GLC:

Az2 +Bz+C = 0 (4)

where

A =

∣∣∣∣∣∣

σ1 τ1 1
σ2 τ2 1
σ3 τ3 1

∣∣∣∣∣∣
,B =

∣∣∣∣∣∣

σ1 v1 1
σ2 v2 1
σ3 v3 1

∣∣∣∣∣∣
−

∣∣∣∣∣∣

τ1 u1 1
τ2 u2 1
τ3 u3 1

∣∣∣∣∣∣
,C =

∣∣∣∣∣∣

u1 v1 1
u2 v2 1
u3 v3 1

∣∣∣∣∣∣
(5)

The root zi(i = 1,2) to equation (4) corresponds to a slit (line) on plane z = zi that
all rays in the GLC will simultaneously pass through [11]. For instance, the cross-slit
characteristic equation has two distinct roots since all rays simultaneously pass through
two slits whereas an oblique camera has no solution.

Notice points on these slits will project to infinity on the image plane. To avoid this
singularity, we assume the scene geometry S(Sx,Sy,Sz) lie on the positive side of the
image plane and is bounded by volume [xmin,ymin,zmin]× [xmax,ymax,zmax], where zmin >
max(z1,z2,0).

3 Epsilon Stereo Pairs
A stereo pair consists of two images with a pure horizontal parallax, i.e., for every 3D
point P, its images [u,v] and [u′,v′] in the two cameras must satisfy v = v′. We introduce a
new stereo model, which we call epsilon stereo pairs, for fusing camera pairs that do not
satisfy the stereo constraint.
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Figure 2: (a) An epsilon stereo pair consists of two images with a mostly horizontal parallax and
a slight (ε vertical parallax. The vertical parallax is measured using a distance metric (b) or an
angular metric (c). We can change the horizontal direction ~d to reduce ε .

We say that two views V and V ′ form an epsilon stereo pair if the following property
holds:

The rays V (u,v) and V ′(u′,v′) intersect only if |v− v′| ≤ ε . The classical stereo con-
straint is a special case of the epsilon stereo model when ε = 0.

Any two such views are referred to as an ε-pair. In our analysis, we make the same
assumption as [10], i.e., all views are u- and v-continuous. Furthermore, we only consider
scene geometry visible in both views.

Physically, an ε-pair represents two views with a mostly horizontal parallax and with
a slight (ε) vertical parallax. In an ε-pair, all pixels on a row in V correspond to pixels
lying inside the ε band around the same row in V ′, as shown in Figure 2. When ε is small
enough, our visual system can potentially fuse the two images as if they were stereo pairs,
as shown in Figure 4.

3.1 Translation GLC Pairs
We show that any two GLCs form a valid ε-Pair. We first consider the pairs in which
the second GLC is a translation of the first GLC along the image plane. Assume the first
GLC is specified in its canonical form [σ1,τ1,0,0], [σ2,τ2,0,0], and [σ3,τ3,0,0], and the
translation is specified as [−tx,−ty,0].

The projection of a point Ṗ(x,y,z) in the first GLC can be computed using Equation
(3). To project P to the second GLC, we can simply translate Ṗ by [tx, ty,0]. The vertical
and the horizontal parallax of Ṗ can be computed as:

∆v = v− v′ =−

∣∣∣∣∣∣

zσ1 zτ1 1
1+ zσ2 zτ2 1

tx ty 0

∣∣∣∣∣∣
Az2 +Bz+C

=
z(ty(σ1−σ2)+ tx(τ2− τ1))− ty

Az2 +Bz+C
(6)

∆u = u−u′ =−

∣∣∣∣∣∣

zσ1 zτ1 1
tx ty 0

zσ3 1+ zτ3 1

∣∣∣∣∣∣
Az2 +Bz+C

=
z(ty(σ3−σ1)+ tx(τ1− τ3))− tx

Az2 +Bz+C
(7)

Notice, the x and y terms diminish in ∆v and ∆u. Thus, for a translation GLC pair, the
vertical parallax ∆v is a quadratic rational function of z. To show they form a valid epsilon
stereo pair, we only need to prove ∆v(z) is bounded. We sketch the proof as follows.



Without loss of generality, we assume the characteristic equation (4) has coefficient
A > 0 and has two roots z1 and z2 (if A < 0, we can analyze -∆v(z) instead). Thus, equation
(4) can be rewritten as Az2 +Bz+C = A(z− z1)(z− z2). We then replace it into (6) as:

∆v(z) =
z(ty(σ1−σ2)+ tx(τ2− τ1))− ty

A(z− z1)(z− z2)
=

1
A (ty(σ1−σ2)+ tx(τ2− τ1))z− ty

A
(z− z1)(z− z2)

(8)

Recall that the scene depth satisfies z > max(z1,z2,0), therefore, the denominator of
(8) is positive and monotonically increasing. Next, we consider the numerator of equation
(8).

If 1
A (ty(σ1−σ2)+ tx(τ2− τ1)) < 0, then the numerator is monotonically decreasing.

In this case, ∆v(z) is monotonically decreasing, and its extrema can be computed as:
∆v(z)min = lim

z→∞
∆v(z) = 0, ∆v(z)max = ∆v(zmin) (9)

If 1
A (ty(σ1−σ2)+ tx(τ2− τ1)) > 0, we can rewrite the equation (8) as:

∆v(z) =
1
A (ty(σ1−σ2)+ tx(τ2− τ1))− ty

Az

(1− z1
z )(z− z2)

(10)

For z > max(z1,z2), the denominator remains positive and monotonically increasing.
For the numerator, when ty < 0, it is monotonically decreasing. Thus, ∆v(z) is a monoton-
ically decreasing function and its bound can be derived similarly to the derivation in (9).
When ty > 0, the numerator is a monotonically increasing. However it is bounded with
maximum 1

A (ty(σ1−σ2)+ tx(τ2− τ1)) at z = ∞ and minimum at z = zmin. Thus, ∆v(z) is
bounded, although it may not be monotonic w.r.t. z.

We have shown that ∆v, in general, is bounded. In fact, in many cases, ∆v is mono-
tonically decreasing with respect to z. A similar derivation applies to ∆u. Notice, the
horizontal parallax, ∆u, provides an important depth cue of the scene. The monotonicity
in ∆u is particularly important in stereo fusion. Our analysis indicates translation GLC
pairs are not only ε-pairs but also well-suited for multiperspective stereo fusion if ε is
small.

3.2 General GLC Pairs
Next, we consider a pair of two different GLCs. Assume the two GLCs are specified as
[σ1,τ1,σ2,τ2,σ3,τ3], and [σ ′

1,τ ′1,σ ′2,τ ′2,σ ′
3,τ ′3]. We have

∆v(x,y,z) = v− v′ =

∣∣∣∣∣∣

zσ1 zτ1 1
1+ zσ2 zτ2 1

x y 1

∣∣∣∣∣∣
Az2 +Bz+C

−

∣∣∣∣∣∣

zσ ′1 zτ ′1 1
1+ zσ ′2 zτ ′2 1

x y 1

∣∣∣∣∣∣
A′z2 +B′z+C′

(11)

where (x,y,z) ∈ [xmin,ymin,zmin]× [xmax,ymax,zmax]
Since scene geometry lies beyond the slits of both GLCs, the denominator Az2 +Bz+

C and A′z2 +B′z+C′ cannot be zero. Furthermore ∆v is linear in x and y and is bounded
by [xmin,xmax]× [ymin,ymax]. Therefore, we only need to consider ∆v w.r.t z.

Recall that v(z) and v′(z) are both rational functions in z with quadratic numerators
and denominators. Let z1,z2 be the two roots of the corresponding GLC characteristic
equation for v(z). We can rewrite the projection equation (3) as:



v(z) =
1
A (σ1τ2−σ2τ1)+ 1

A (y(σ2−σ1)+ x(τ1− τ2)− τ1) 1
z + y

A
1
z2

(1− z1
z )(1− z2

z )
(12)

Let κ = 1
z ,since scene points satisfy z > max(z1,z2,zmin), we have κ ∈ (0, 1

max(z1,z2,zmin) ),
and equation (12) transforms to:

v(κ) =
1
A (σ1τ2−σ2τ1)+ 1

A (y(σ2−σ1)+ x(τ1− τ2)− τ1)κ1 + y
A κ2

(1− z1κ)(1− z2κ)

Thus, we have (1− z1κ)(1− z2κ)∈ ((1− z1
max(z1,z2,zmin) )(1− z2

max(z1,z2,zmin) ),1). This proves
v(z) is bounded w.r.t to z. A similar proof applies to v′(z), and hence, ∆v is also bounded.

Notice, our analysis only applies to GLCs whose characteristic equations are quadratic,
such as cross-slit and linear oblique cameras. The characteristic equation may degenerate
to linear in the case of pushbroom cameras. However, in that case, the GLC projection is
linear and rational, and a similar derivation can be applied.

3.3 Reducing Vertical Parallax
The vertical parallax in an ε-pair can be further reduced by using a different horizontal
direction, as shown in Figure 2(a). Here, we present a simple and intuitive algorithm
for finding the optimal horizontal direction for a GLC ε-pair. We assume that the two
GLCs share the same image plane at z = 0. Our goal is to estimate the optimal horizontal
direction ~d so that the average vertical parallax ε is minimal.

Assume the scene geometry is known, then, for each 3D point we compute projections
in the ε pair as P[u1,v1] and Q[u2,v2] using equation (3). To measure the vertical parallax,
we can compute the distance from Q to the scanline that passes through P with direction
~d, as shown in Figure 2(b).

Assume the angle between ~d and the u-axis is η , this distance can be computed as:
dPQ = |sinη(u2−u1)− cosη(v2− v1)| (13)

The optimal η can be obtained by solving the following miminization problem:

ηopt = min
η

∫

Θ
|sinη(u2−u1)− cosη(v2− v1)|2dxdydz (14)

Alternatively, we can measure the angular difference between ~PQ and ~d as shown in
Figure 2(c). Let ζ denote the angle between ~PQ and u axis, we have:

η−ζ = η− arctan(
v2− v1

u2−u1
) (15)

Hence the optimal horizontal direction can be computed as:

ηopt = min
η

∫

Θ
(η− arctan(

v2− v1

u2−u1
))2dxdydz (16)

4 Optimal Epsilon Stereo Pairs
When an ε-pair consists of cameras that capture significantly different rays, changing the
horizontal direction on the image plane is insufficient for reducing the vertical parallax.
In this section, we present a new ray-space warping algorithm based on multiperspective
collineations.



4.1 Multiperspective Collineation
A multiperspective collineation describes the transformation between the images of the
camera due to changes in sampling and image plane selection. This transformation is
analogous to planar collineation (homography) in pinhole cameras.

A collineation can be specified by an image plane Π[ṗ, ~d1, ~d2], where ṗ specifies the
origin of the plane and ~d1 and ~d2 specify the two spanning directions. For every ray r that
has origin ȯ and a direction~l, we intersect ray r with Π to compute its pixel coordinate
[i, j] as:

[ox,oy,oz]+λ [lx, ly, lz] = ṗ+ ~d1i+ ~d2 j (17)

Solving for i, j, and λ in (17) gives:

i =
(−lzdy

2 + lydz
2)(o

x− px)+(lzdx
2− lxdz

2)(o
y− py)+(−lydx

2 + lxdy
2)(o

z− pz)
γ

j =
(lzdy

1− lydz
1)(o

x− px)+(−lzdx
1 + lxdz

1)(o
y− py)+(lydx

1− lxdy
1)(o

z− pz)
γ

(18)

where

γ =

∣∣∣∣∣∣

dx
1 dx

2 −lx

dy
1 dy

2 −ly

dz
1 dz

2 −lz

∣∣∣∣∣∣
(19)

For a canonical GLC, [ṗ, ~d1, ~d2] are all linear functions of the pixel coordinate [u,v].
Therefore, the GLC collineation is, in general, a quadratic rational function.
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Figure 3: We use multiperspective collineations to reduce the vertical parallax between a pinhole
and a cross-slit camera. Top row: We apply different collineations on the cross-slit camera. Bot-
tom row: We plot the corresponding distribution of the vertical parallax. The vertical parallax is
significantly reduced using collineation (d).

4.2 Automatic Collineation Optimization
Given an ε-pair, we use collineations to reduce stereo inconsistencies. In Figure 3, we
apply different collineations to an ε-pair that consists of a pinhole camera and a cross-
slit camera. We also densely sample the scene and plot the vertical parallax distributions



under each collineation using a histogram. The horizontal axis represents the range of
vertical parallaxes and the vertical represents the occurrence percentage of the points. As
shown in Figure 3(h), the vertical parallax of an ε-pair can be significantly reduced with
a proper collineation.

We also present an automatic algorithm to robustly estimate the optimal collineation.
Our algorithm starts with features matching between the two images. Recall that each
GLC captures a different set of rays and exhibits unique distortions. Thus, matching the
feature points between two GLCs can be difficult. In our implementation, we use Scale
Invariant Feature Transform (SIFT) to preprocess the images. SIFT robustly handles im-
age distortion and illumination variations and generates transformation-invariant features.
We then perform global matching using SSD to find the potential matching pairs. To re-
move outliers, our algorithm uses RANSAC where we use projective transformations as
its precondition.

Given feature correspondences fk(ik, jk),(k = 1, . . . ,n) in I and f ′k(i
′
k, j′k),(k = 1, . . . ,n)

in I′, we compute the ray representation r′k for each feature f ′k in I′. Our goal is to find
the optimal collineation [ṗ, ~d1, ~d2] that minimizes the vertical parallax between fk and
Pro j(rk,Π), where Pro j(r′k,Π) represents the projection of ray r′k under collineation Π.
As shown in equation (18). We formulate this optimization as a least squares problem:

min
Π ∑

r′k∈ f eatureraysinI′
D2(Pro j(r′k,Π), fk) (20)

The distance metric D2(Pro j(r′k,Π), fk) measures the vertical parallax between fk and
Pro j(r′k,Π).

One way to compute D is to calculate the vertical distance between Pro j(r′k,Π) and
fk. In Figure 4(b), we apply the vertical distance metric to fuse two cross-slit images. We
use blue arrows to mark the displacements between the feature points in the final fusion.
Although the vertical parallax is significantly reduced, many features pairs, such as the
ones of the middle building, lie very close to each other and fail to provide correct depth
cues.

We propose a different distance metric that simultaneously measures the vertical and
the horizontal parallax for each feature pair. We estimate the intersection point of the
corresponding two rays for each pair and assign an approximated horizontal disparity
dispk that emulates how it would be seen in a perspective stereo pair. We formulate the
new distance metric as:

D2(Pro j(r′k), fk) = (Pro j(r′k)
i− ( f i

k +dispk))2 +(Pro j(r′k)
j− f j

k )2 (21)

Finally we use Levenberg-Marquardt to solve equation (20).

5 Results
We have performed experiments on various GLC pairs using our algorithm. We have
modified the PovRay [9] ray tracer to accommodate different GLC types. In Figure 4, we
fuse a pinhole image with a cross-slit image of a city scene. These two cameras cannot
form epipolar geometry. To better illustrate our results, we color the pinhole image with
green and the cross-slit with red and fuse the two images in an anaglyph. We apply



our automatic collineation algorithm to find the optimal collineations. We highlight the
displacement between the corresponding features with blue arrows in the final anaglyph.
The initial two images exhibit a severe vertical parallax (Figure 4(a)). We then compute
the optimal collineation using the vertical distance. As a result, the vertical parallax is
significantly reduced. However, many features lie too close to each other and do not
provide valid depth cues (Figure 4(b)). We then use the disparity metric (21) to compute
the best collineation. The resulting collineation produces a close-to-stereo pair with a
minimal vertical parallax and a consistent horizontal parallax (Figure 4(c)).

(a)

(b)

(c)

Figure 4: (a) An anaglyph of a pinhole (green) and a cross-slit (yellow). (b) An optimized ε-pair
using the vertical parallax metric. Overall, the vertical parallax is reduce. However, the depth cue
is also lost. (c) An optimized ε-pair using the disparity metric. The vertical parallax is reduced and
the horizontal parallax is preserved.

We have also compared our collineation algorithm with the commonly used projective
transformation. In Figure 5, we fuse a pinhole image (Figure 5(a)) and a pushbroom
image with additional synthetic radial distortions (Figure 5(b)). Figure 5(c) computes
the optimal projective transformation and Figure 5(d) computes the optimal collineation,
both using the disparity metric (21). The optimal collineation result is less distorted and
is more consistent with the pinhole image. This is because multiperspective collineation
describes a much broader class of warping functions than the projective transformation.

6 Conclusion
In this paper, we have introduced a new framework, which we call epsilon stereo pairs,
to model images captured by a broader class of multiperspective cameras. An epsilon



(a) (d)(b) (c)

Figure 5: We compare collineation with the projection transformation on an ε-pair of a pinhole
camera (a) and a pushbroom camera with synthetic radial distortions (b). (c) shows the the optimal
projective transformation result. (d) shows our optimal collineation result.

stereo pair consists of two images that have a slight vertical parallax. We have shown
many previous multiperspective images form epsilon stereo pairs, even though they do not
satisfy the stereo constraint. We have also proposed a new ray-space warping algorithm
based on multiperspective collineations to minimize the vertical parallax between two
images. Experiments demonstrate that our epsilon stereo model provides a promising
tool for synthesizing close-to-stereo fusions using non-stereo pairs.

Acknowledgement
This work has been supported by the National Science Foundation under grant NSF-
MSPA-MCS-0625931.

References
[1] Bolles, R. C., H. H. Baker, and D. H. Marimont: Epipolar-Plane Image Analysis: An Ap-

proach to Determining Structure from Motion. International Journal of Computer Vision, Vol.
1 (1987).

[2] D. Feldman, T. Pajdla, and D. Weinshall: On the Epipolar Geometry of the Crossed-Slits
Projection. In Proc. 9th Int. Conf. on Computer Vision (2003).

[3] R. Gupta and R.I. Hartley: Linear Pushbroom Cameras. IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 19, no. 9 (1997) 963–975.

[4] R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge
Univ. Press, 2000.

[5] M. Levoy and P. Hanrahan: Light Field Rendering. Proc. ACM SIGGRAPH ’96 31–42.
[6] T. Pajdla: Epipolar Geometry of some non-classical cameras. Proceedings of Computer Vi-

sion Winter Workshop, pp. 223-233, Slovenian Pattern Recognition Soceity.
[7] T. Pajdla: Stereo with Oblique Cameras. Int’l J. Computer Vision, vol. 47, nos. 1/2/3 (2002)

161–170.
[8] S. Peleg, M. Ben-Ezra, and Y. Pritch: Omnistereo: Panoramic Stereo Imaging. IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 23, no. 3 (2001) 279–290.
[9] POV-Ray: The Persistence of Vision Raytracer. http://www.povray.org/

[10] S. M. Seitz: The Space of All Stereo Images. Proc. Int’l Conf. Computer Vision ’01, vol. I
(2001) 26–33.

[11] J. Yu and L. McMillan: General Linear Cameras. Proceedings of 8th European Conference
on Computer Vision (2004), Volume 2, pp. 14-27.

[12] J. Yu and L. McMillan: Multiperspective Projection and Collineation. Proceedings of 10th
Intl. Conferenc on Computer Vision (2005), pp. 580-587.

[13] A. Zomet, D. Feldman, S. Peleg, and D. Weinshall: Mosaicing New Views: The Crossed-Slits
Projection. IEEE Trans. on PAMI (2003) 741–754.


