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Abstract

This paper presents a computationally efficient approach to estimate transla-
tional 3-D motion from range images sequences, that is adapted from a 2-D
motion estimation algorithm. An implementation of the algorithm is eval-
uated for computational efficiency as well as robustness in the presence of
noise for both synthetic and real-life range data acquired with a PMD device,
a high-speed low-resolution 3-D camera.

1 Introduction

Motion estimation for intensity video images is well researched, with a number of proven
concepts to create dense motion vector fields, possessing computational efficiency, or
robustness against sensor noise. However, 3-D motion estimation on range images lacks
fast and robust algorithmic concepts.

A current application field for translational 3-D motion estimation is given by the use
of 3-D cameras in cars, such as a PMD camera [3]. In road traffic scenes, the only notable
rotational motions are yaw movements which occur for cars bending off. Yet, even in this
case, translational motion dominates due to the considerable turn radius of cars.

This paper presents a novel method to estimate translational 3-D motion from range
images, that is adapted from a high-performance 2-D motion estimation algorithm. Its
central qualities are computational efficiency and robustness in the presence of noise.

2 Related Work

The issue of estimating 3-D motion or optical flow fields from range images has been the
subject of a number of publications. For example, an evaluation of 3-D motion estimation
algorithms was given in Eggert et al., 1997 [2]. Many 3-D motion estimation approaches
are based upon finding correspondences. These correspondences can be considered both
local (cf. [1]), or global by solving a total least squares framework [8]. The resulting flow
field of the latter method is dense, yet the complexity is high and real-time computation
is not feasible with current hardware.

A correspondenceless approach was pursued by Liu and Rodrigues, 1999, based upon
the cross matrix to estimate the motion parameters [6]. It is also possible to use the
shift of previously segmented surfaces in a range image for motion estimation [5]. This
approach is restricted to small relative motion between the camera and the scene and the
segmentation process in itself is complex.



Apart from the cited work on 3-D motion estimation – which is only a selection –
2-D optical flow is a major topic of interest. Most of the 2-D motion estimation algo-
rithms used in video-encoders are designed to be computationally efficient, which is also
a constraint for real-time motion estimation.

However, to estimate 3-D motion in range images under real-time constraints, neither
2-D motion estimation based on difference measures nor 3-D motion estimation algo-
rithms with high complexity can be used. Therefore, this paper suggests adapting a 2-D
motion estimation algorithm for use on range images.

3 2-D Motion Estimation using PMVFAST

The Predictive Motion Vector Field Adaptive Search Technique (PMVFAST) is a block
based motion estimation technique based upon MVFAST [4], which is an essential part
of several video-coding standards, such as MPEG-1/2/4 [9]. PMVFAST has shown to be
faster than other motion estimators while retaining a motion estimation quality compara-
ble to a significantly slower full search algorithm.

PMVFAST uses a Diamond Search (DS) pattern (cf. Fig. 1a). Beginning in the centre,
the (0,0) motion vector (MV) is the initial starting point. Then the search path is mean-
dering circularly around the centre, performing a full orbit each time before increasing its
search distance up until the maximum search distance.
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Figure 1: Fig. a) shows a Diamond Search pattern used for 2-D motion estimation. Ex-
emplary PCS path building process: b) shows all (1,0,0) variations (#1-6), b) extends a)
with all (1,1,0) variations (#7-18), and c) extends b) with all (2,0,0) variations (#19-24).

At each point on the search path, a block in the previous frame is matched against a
block in the current frame. The block in the current frame is shifted by the (i,j) values of
the search path. The quality of the match is determined by a distortion measure. A widely
used distortion measure is the sum of absolute differences (SAD, see Eq. 1), which omits
the multiplications necessary for mean squared error but has a similar performance [9].
Blocks used in this paper are 5× 5 pixels, resulting in 25 summations per comparison.
Also, MVs are not calculated for every pixel, instead a regular grid is used with the grid
distance increasing logarithmically with the range image’s size.

SADDS(vx,vy) = ∑
i, j∈DS

∣∣Ik(x+ i,y+ j)− Ik−1(x+vx + i,y+vy + j)
∣∣ (1)

The search for the minimum SAD is performed with two differently sized diamonds
in [9]. The expected magnitude of motion is estimated by examining three neighbouring



#28/29 (2-D) #28/29 (3-D)

#37/38 (2-D) #37/38 (3-D)

Figure 2: Motion vector fields of frame pairs #28/29 (increasing distance to car in front)
and frame pair #37/38 (decreasing distance) in the Torcs sequence. Motion vector field
(2D) shows the result using a 2-D full search algorithm, whereas (3D) shows the PCS
result. Blue arrows indicate an increasing distance, red arrows a decreasing distance. The
background shows the range images on which the motion estimation has been performed.

MVs at(x−1,y), (x,y−1), (x+1,y−1), the previous MV at(xk−1,yk−1), and the median
MV. The average of these MVs is then used as an estimation for the current MV.

If the estimated MV for (x,y) is small, a small search diamond is used with the (0,0)
MV as its centre. If the MV is estimated to be intermediate, a large diamond is used, again
with (0,0) MV as starting point. In the case of high estimated motion, the small diamond
is used with the estimated MV as its centre.

Regardless of the estimated motion, the (0,0) MV is examined first, and – if the dis-
tortion is below a chosen threshold – no further matching is done. Otherwise, the DS is
performed and the displacement featuring the minimum distortion is chosen as the cen-
tre point in the next cycle. The search algorithm terminates if the centre of the search
diamond is also the displacement with minimum distortion.

This concept holds for intensity images, yet in range images distance information
is represented by intensity. On convex surfaces, such as a sphere, this will induce a
difference-based 2-D motion estimation to detect a concentric outward motion if the dis-
tance is decreasing (it is implied, that small distances are represented by a high intensity),
and a converging motion if the distance is increasing.

The above behaviour does not heavily affect MPEG motion estimation, since the aim
there is not to calculate exact MVs, but to maximally reduce the video’s bit rate while
having as little visible quality loss as possible. However, for range images this effect
leads to the necessity to consider depth motion in order to get accurate motion vectors.

4 Extending Diamond Search for use on Range Images

The idea of using a diamond shaped search path is extendible towards a 3-D translational
motion estimation from range images. The least complex diamond shape in 3-D is a
regular octahedron which will be referred to asPoint Cut Search(PCS) path.

The PCS path will expand continuously, adding new layers around the origin in a point
cut shape. The first layer has a distance of 1 to (0,0,0) and consists of the six permutations
(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), and (0,0,-1) with varying signs.



The following base coordinates are (1,1,0); (1,1,1); (2,0,0); (2,1,0); (3,0,0) etc. These
base coordinates are then permutated (maximum 6 permutations if all values are unique)
with changing signs for every value (maximum 8 sign combinations if no value is zero).
An illustration of the PCS path building process is given in Fig. 1b-d.

Both PMVFAST and PCS realise horizontal and vertical displacements by shifting the
observation window in the actual frame horizontally and vertically. In PCS, displacements
in distance in range images are represented as changes of intensity. Therefore, by adding
or subtracting the value corresponding to the range displacement to the intensity values in
the observation window, a displacement in distance can be modelled (see Eq. 2).

SADPCS(vx,vy,vz) = ∑
i, j,k∈PCS

∣∣Ik(x+ i,y+ j)− Ik−1(x+vx + i,y+vy + j)+vz+k
∣∣ (2)

As for PMVFAST, the search terminates when the centre point of the PCS is the point
with minimum distortion or when the maximum number of iterations is reached.

5 Evaluation of the implemented Motion Estimator

The proposed motion estimator was implemented using four layers of abstraction (cf. Fig.
3). First, the range images are filtered in order to remove noise (temporal filtering using
previous frames is optional). Second, subsequent filtered range images are searched for
correspondences, using PCS. The resulting motion vectors are then filtered to remove
outliers. Finally, the filtered motion vector field is used by PCS to predict the motion
vectors for the next motion estimation.
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Figure 3: Block diagram of the implemented PCS motion estimator. Circles represent
processing / filtering operations that are performed by the motion estimator, while boxes
represent different abstraction layers from unfiltered range images to filtered MV fields.

5.1 Computational cost

The computational cost of the implemented motion estimator is evaluated using the sim-
ulated range image sequence extracted fromTorcs1. The sequence consists of 155 frames

1Torcs is an open source racing game (http://torcs.sourcforge.net) using OpenGL. See supplemen-
tary video:http://emfs1.eps.hw.ac.uk/∼ceeyrp/BMVC2007/motionTorcs.avi showing the range im-



recorded at 15 frames per second and a resolution of 500×220 pixel. Range is encoded
with 8 bit, representing 256 range values, which is a coarse yet sufficient range resolution.

For each configuration, the average number of comparisons needed for each motion
vector and the average SAD for the chosen motion vectors were taken as indicators of the
computational cost and motion vector field quality respectively. To get a benchmark for
these two values, a Full Search (FS) has been used (cf. Tab. 1).

Evaluating the performance of the PCS search strategy, the maximum number of iter-
ations to shift the local minimum to the PCS’s centre is the most important parameter. For
evaluation, two PCS paths were chosen. The small PCS used has a maximum search dis-
tance of 2, the large PCS has a maximum search distance of 5. The threshold for (0,0,0)
MV was set to 16, a value which yielded good results in the evaluation.

FS PCS2 PCS3 PCS4 PCS5 PCS6 PCS7

Comparisons per MV 75.52 19.72 22.49 24.70 25.72 26.48 27.10
Average SAD per MV 33.16 45.46 40.21 37.04 35.69 34.60 33.86

Efficiency Measure (Product) 2504.4 897.5 904.3 915.0 918.0 916.1 917.6

Table 1: Comparisons per MV and average SAD for motion estimation in the Torcs se-
quence. A full search (FS) is used as benchmark for the PCSn with n maximum iterations.
The efficiency measure is the product of comparisons per MV and average SAD.

Tab. 1 shows the performance of the PCS strategy with respect to the maximum
number of iterations allowed. The lowest average SAD of 33.86 for 7 maximum iterations
comes very close to the benchmark valueSADf ull of 33.16, while needing only about a
third (36%) of the comparisons.

In order to assess the efficiency of the PMVFAST search strategy, the product of
comparisons needed for each MV and the average SAD is a possible metric. This product
grows with increasing computational cost and distortion, for low computational cost and
low distortion the product is small (cf. Tab. 1), the latter being true for PCS.

5.2 Quantitative Evaluation of Accuracy

A comparison of the estimated motion vector fields of a synthetic motion pattern against
a ground truth known from the rendering process of the pattern has been conducted.

5.2.1 Motion Ground Truth

The motion pattern consists of two spheres diametrically orbiting around the range im-
age’s centre (x,y,z) = (160,120,127) so that the sphere in front occludes the sphere behind
it intermittently. The underlying motion function for this pattern is

vk =

 ⌊
80.0·sin( k

30)+160.5
⌋⌊

60.0·cos( k
30)+120.5

⌋⌊
80.0·cos( k

30)+127.5
⌋

−

 xk−1

yk−1

zk−1

 , vmax=

 3
2
3

 (3)

The resulting range image sequence contains 200 frames with 320× 240 pixels2.

age, and the motion vector field estimated using PCS.
2See supplementary video:http://emfs1.eps.hw.ac.uk/∼ceeyrp/BMVC2007/motionOrbit.avi

showing the source range image, ground truth, motion estimation and motion vector field (from left to right).



5.2.2 Noise and Preprocessing Model

Range data sequences acquired by a 3-D camera suffer from a substantial amount of noise.
This noise can be reduced by employing temporal filtering of a large number of frames.
For traffic scenes, temporal filtering over a number of frames increases rotational motion
of other traffic participants, which is not handled well by the algorithm.

In this trade-off between noise and rotational motion the algorithm has shown to be
more capable of handling noise in the range images, therefore a diminutive number of
frames for temporal filtering has been chosen.

The noise that occurs in 3-D camera range data sequences is best characterised as
clipped Gaussian noise, as no negative distances or distances above the maximum mea-
surable distance can appear, yet the distribution of noise suggests a Gaussian distribution
(cf. Fig. 4). Therefore, the synthetic range image sequence has added noise of Gaussian
distribution, where 0.0≥ z(x,y)+znoise≥ 255.0.
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Figure 4: Distribution of range measurements of a constant distance over 135 frames
(bars), which can be approximated by a Gaussian distribution withσ = 2.7 (red line).

Assuming a Gaussian noise model, spatial filtering using a Gaussian filter with 0.8≥
σRI ≥ 4.8 presents a suitable preprocessing (cf. Fig. 5).
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Figure 5: MSE of motion vector components for the orbiting movement pattern under
influence of Gaussian noiseσnoiseestimated by PCS3 (solid line) and FS (dotted line) as
compared to ground truth. The range image is processed using a Gaussian filter withσRI.

In Fig. 5, three major effects can be observed. First, if a noise-free range image is
processed with a Gaussian filter, the MSE deteriorates as could be expected. Second, if
a noisy range image is processed with a Gaussian filter, the MSE improves until a point
where the range image is quasi noise-free and then shows the same behaviour as a noise-
free image, that is MSE deterioration for higher standard deviations.

The third observable effect is, that PCS has a lower MSE for range images with a high



remaining noise after preprocessing. The reason for that is differing termination condi-
tions. If a high level of noise is present during motion estimation, the correct MV does
not necessarily exhibit the lowest SAD value. Using a full search, every displacement has
the same probability to be selected as the estimated MV, whereas the iterative shifting in
PCS makes it more probable, that a displacement near the initial starting point is selected.

The synthetic scene contains a large fraction of (0,0,0) MVs, therefore an incorrect
MV close to an initial (0,0,0) MV starting point does not affect the MSE as much as a
large MV, that is more probable to occur using a full search. However, it can be seen in
Fig. 5 that this effect disappears when a suitable level of filtering is applied, so that the
correct MSE exhibits the minimum SAD.

5.2.3 Regularisation Model

An analysis of the resulting MV fields against the ground truth suggest, that the main
reason for high MSE values of the estimated motion vector fields is outliers caused by
noise in the range image, not generic false motion vector estimation. Suitable methods to
achieve outlier reduction include Gaussian or median filtering of the MV field.

In Fig. 6, MSE values for the same synthetic range image sequence as in Fig. 5 when
using a Gaussian (×) or median (∆, using a 5×5 field) filter are shown.
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Figure 6: MSE of motion vector components for the orbiting movement pattern under
influence of Gaussian noiseσnoiseestimated by PCS3 (solid line) and FS (dotted line) as
compared to ground truth. The source range image is filtered using a Gaussian filter with
σRI. The motion vector field is filtered using a Gaussian (×) or median (∆) filter.

In can be seen from Fig. 6, that the optimum MSE values gained by PCS at different
levels of noise in the range images (including no noise) are within a narrow field (that
is 0.1015 to 0.1616). Thich is an indicator that the algorithm is robust towards noise, if
both input range images and motion vector fields are suitably filtered. The results are also
comparable with the results gained by FS. At the same time, PCS computed the 320×
240 pixels range image sequence at 11.8 frames per second (fps) on a standard 2.0 GHz
PC, where FS performed at 1.85 fps, thus being more than six times (6.38) slower.

5.3 Performance on Data acquired with a 3-D Camera

In addition to synthetic range image sequences, the proposed algorithm has been evaluated
using real-life data acquired by a PMD device, a high-speed low-resolution 3-D camera.



The 3-D camera is mounted inside the car close to the rear-mirror, observing an angle
range of 55◦× 18◦ in front of the car. It acquires 64× 16 pixel range images for distances
up to 30m with a frame-rate of≥100Hz [3]. In order to acquire a ground truth, a 2-D
laser-scanner mounted on the car’s radiator grille was used (see Fig. 7).
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Figure 7: The left image a) shows the scene at frame #310 as seen from a grayscale
intensity camera mounted close to the PMD device. The scatterplot b) on the right side
shows the readings of the 2-D laser-scanner at the same frame.

As the proposed algorithm is designed to estimate translational motion, a large rubber
ball is used due to its rotational invariance. Moreover, it is possible to reconstruct the
ball’s 3-D shape from the measured 2-D scan-line at any time, as the ball’s radius and the
scan-line’s height are both known. In the scene, the ball is pushed in front of the stationary
car and – due to a slightly inclined ground plane – performing a curve to the left, heading
back towards the car (cf. Fig. 8a).

In order to determine the trajectory of the ball’s centre, the readings of the laser-
scanner are discarded unless they fall into a rectangle (distance 0..15m, offset -5..5m),
which exclusively returns readings showing the ball. These readings fall onto a circle
with the ball’s radius. Thereby the ball’s centre is determined fulfilling the circle equation
Eq. 4 for the selected laser readings (xreading,yreading).

xcentre,ycentre= arg (xreading1,2,..,n −xcentre)2 +(yreading1,2,..,n −ycentre)2 (4)

It is obvious, that Eq. 4 is overdetermined forn> 2, which can be solved by averaging
all centre positions which are calculated using 2 laser readings at a time. The centre
positions are then processed by applying both median and Gaussian filters in order to get
a continuous motion (see Fig. 8a).

The range image sequence of the same scene is acquired with a PMD device3 (see Fig.
8b). In order to be used with PCS, the range data has to be filtered over a small number
of frames and outliers have to be rejected. Spatial filtering is not performed at this point,
as the motion estimation algorithm includes this operation.

Generating a motion ground truth from the laser readings requires a calibration func-
tion from (xlaser,ylaser) to (xpmd,ypmd,zpmd), which is approximated using a L2 regression.
(cf. [7]).

3See supplementary videohttp://emfs1.eps.hw.ac.uk/∼ceeyrp/BMVC2007/motionPMD.avi show-
ing the source range image, ground truth, motion estimation and motion vector field (from top to bottom).
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Figure 8: Scatterplot a) shows the ball’s trajectory as detected with a laser scanner (∆
represents frame #250,∇ frame #400). The range image sequence b) shows selected
frames of the scene as seen by the PMD device (ball is brightened manually as to enhance
visibility in the range image) as well as the corresponding estimated motion vector field.
In the latter, blue arrows indicate an increasing distance, red arrows a decreasing distance.

The motion ground truth can now be generated from the ball’s centre position. In
Fig. 9 the MSE values of the motion estimation for the acquired range image sequence as
compared to ground truth are shown.
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Figure 9: MSE of motion vectors components estimated by PCS3 (solid line) and FS
(dotted line) as compared to the ground truth under influence of Gaussian noiseσnoise for
the orbiting movement pattern. The source range image is processed using a Gaussian
filter with σRI.

Fig. 9 shows, that Gaussian or median filtering of the motion vector field results in a
considerable reduction of the MSE. Both PCS and FS show small MSE values. Due to
the large fraction of (0,0,0) MVs in the ground truth, the FS suffers from normal distrib-
ution of incorrect MVs in the presence of unfiltered noise, which is discussed in section
5.2.2 above. Again, PCS (46.9 fps) performed significantly faster than FS (19.5 fps) at a
comparable motion vector quality.



6 Conclusion and Future Work

This paper presented a novel method to efficiently determine 3-D translational motion
vectors in a range image sequence. The motion estimation has been evaluated on noisy,
synthetic, and real-live range image data acquired by a PMD device and shown to be
robust if a suitable filtering is applied on both range image and motion vector field.

Yet, there remain limitations for the proposed algorithm, which are largely those of
PMVFAST. First, occlusion boundaries with little contrast between foreground object and
background can lead to a motion vector pointing from the previous scene’s background
towards the occluding object’s surface and vice versa. Second, rotational movements of
objects must not be fast in order to find correct correspondences, which is generally true
when using a high-speed 3-D camera on a road traffic scene. However, there still exists a
trade-off between rotational motion and noise in range image sequences.

It has been shown that the computational cost for the acquisition of the motion vectors
is low when compared to a full search. At a comparable motion vector field quality, PCS
is shown to require only 16% – 42% of the number of comparisons a full search performs.

Future work will include evaluating the algorithm allowing a dynamic road-traffic
range image scene as opposed to a static background and a fixed camera position. We
should also evaluate other alternatives to the full search algorithm such as range flow,
phase correlation or the use of a correlation-based matching criterion instead of a difference-
based SAD measure.
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