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Abstract

Binocular stereo has been extensively studied for extracting the shape of a
scene. The challenge is in matching features between two images of a scene;
this is the correspondence problem. Shape from shading (SfS) is another
method of extracting shape. This models the interaction of light with the
scene surface(s) for a single image. These two methods are very different;
stereo uses surface features to deliver a depth-map, SfS uses shading, albedo
and lighting information to infer the differential of the depth-map.

In this paper we develop a framework for the integration of both depth and
orientation information. Dedicated algorithms are used for initial estimates.
A Gaussian-Markov random field then represents the depth-map, Gaussian
belief propagation is used to approximate the MAP estimate of the depth-
map. Integrating information from both stereo correspondences and surface
normals allows fine surface details to be estimated.

1 Introduction
Binocular stereo is a long-standing problem in computer vision[17]. It enables the con-
struction of 3D models from two 2D images, by solving the correspondence problem,
where matching features are found between two images such that the matched features
are at the same location on the object. If camera calibration is then available depth can
be reconstructed from such matches. A standard preprocessing step involves rectifying
the images, so that they represent the images taken from an idealised horizontal parallel
camera pair. Given a rectified image pair features can only match features on the same
scan-line. In the dense stereo problem where every pixel is a feature a disparity map is
created, where the disparity assigned to each pixel is the offset along the x-axis to its
matching pixel in the other image.

Dense stereo algorithms may be divided into two steps. First is the calculation of a
matching cost for each disparity at each location, represented by the 3D Disparity Space
Image (DSI). In areas with strong cues a DSI gives a clear indication of actual disparity,
but in relatively uniform areas it will not distinguish the correct disparity from incorrect
disparities. Suggested approaches include normalised cross-correlation[17] and sliding



windows[3]. A common choice is to use individual pixel dissimilarities and rely on mod-
elling assumptions in the second step to recover a reasonable solution.

The second step is the selection of disparities to find a consistent solution. Simply
selecting the best matching cost does not work well because of noise and ambiguities,
so there is a need for modelling assumptions. Modern approaches use techniques such
as dynamic programming[1], graph cuts[4] and belief propagation[21]. The most com-
mon modelling assumption is a smoothness term, which is often equivalent to assuming
piecewise planar surfaces or fronto-parallel piecewise planar surfaces. Whilst these ap-
proaches do well in regions with strong stereo cues uniform areas are generally plane
fitted or interpolated, regardless of actual shape.

Shape from Shading (SfS) relies on the shading information available from a single
image. It is premised on the intensity of light reflected by a surface being related to the
angle between the surface and light source(s). It therefore provides information about sur-
face gradient. The approach was pioneered by Horn[11] and then Ikeuchi and Horn[12].
Whilst complete orientation is desired surface intensity only provides tilt information.
Again, as with stereo, modelling assumptions are used to resolve the ambiguities. A
smooth surface assumption is again common, though this is smoothing surface orientation
rather than disparity. SfS algorithms generally assume Lambertian surface reflectance and
constant albedo over the surface in question, and therefore need constant albedo objects.

Stereo algorithms do not perform effectively in areas of uniform texture. Such regions
will generally either be interpolated or plane fitted, which is not necessarily a true reflec-
tion of the surface shape. In contrast SfS can operate only in areas where albedo can be
inferred, so a uniform albedo assumption needs to be used. This makes SfS ideal for fill-
ing in areas where stereo has insufficient information[14]. Furthermore, stereo provides
information about albedo, which is necessary for SfS. In combining these ideas we have
an improved set of modelling assumptions allowing for a surface estimate with greater
detail. Leclerc and Bobick[14] have used stereo to provide initialisation and boundary
constraints for SfS. Cryer, Tsai and Shah[7] combine SfS and stereo in the frequency do-
main, using a high pass filter for the SFS and a low pass filter for the stereo. Other work
has taken an object centred approach[10, 16]. Here a model is initialised with a stereo
algorithm and then optimised to fit both stereo and shading information. The method
needs a good initialisation however, and is not effective with only a single stereo pair for
initialisation. Jin, Yezzi and Soatto[13] assume the image is divided into areas of texture
and constant albedo and apply separate cost functions to each area and solve with level
sets. Shao et al[18] use an additional cost for the difference between SfS irradiance in
the left image and image irradiance at the corresponding point in the right image. This
combines depth and shading into a single cost function.

The paper is organised as follows; section 2 gives the problem formulations for stereo
and SfS. Section 3 gives the core details of our algorithm. Section 4 describes albedo es-
timation whilst sections 5 and 6 detail the SfS and stereo algorithms respectively. Section
7 presents results and, finally, section 8 concludes.

2 Problem Formulation
The goal is to use the methods of stereo and shape from shading in a complementary way.
Here we briefly describe the problem formulations of both.



2.1 Stereo
The images captured by the camera pair are initially rectified using the camera calibration
before processing. The input to the stereo problem is therefore a rectified image pair,
the images notionally referred to as the left, IL(x,y) and right, IR(x,y). The output is a
disparity map, D(x,y), representing the dense correspondences between images. Rectifi-
cation has ensured that epipolar line are horizontal, therefore disparities are offsets on the
x-axis, i.e. IL(x,y) corresponds to IR(x+D(x,y),y). The process may be divided into two
steps, first a DSI(x,y,d) is defined expressing the cost of matching IL(x,y) and IR(x+d,y).
Modelling assumptions are then used to select an optimal set of matches which produces
the solution, D(x,y). Given camera calibration disparity may be converted into a depth
map.

2.2 Shape from Shading
SfS uses the image intensity of a single image1, L(x,y). The goal of SfS is to recover
surface orientation for each pixel, n(x,y). Under a single light source and Lambertian
reflectance model the surface normals are related to the image intensity via

L(x,y) = A(x,y)(n(x,y) · s) (1)

where s is the light-source direction and A(x,y) is the apparent albedo at (x,y) in the
image. The goal of SfS is to recover the surface normals given the luminance map, albedo
map and the light source direction. As equation 1 only constrains the angle between the
light source and surface normal modelling assumptions such as surface smoothness must
be introduced to solve the problem. In principle depth can be recovered from the normal
map by integrating over the surface. This is neither straightforward nor accurate however.

3 Integrating Depth and Orientation Information
Once we have a field of surface normals to hand we can use it to provide information
about scene shape by integration. Traditionally this is done using a global integration
method, such as that of Frankot and Chellapa[9]. Depth information is also available
however, provided directly by the stereo algorithm. Our goal is then to combine these two
sources of information to produce an improved estimate of the surface. We do this within
the framework of Gaussian belief propagation. This enables us to define the required
surface as the MAP estimate of a Markov random field, and to combine the two sources
of information in a probabilistic way.

3.1 Belief Propagation
Belief propagation is a powerful method for finding the posterior distribution of a Markov
random field. It has previously been used with discrete distributions to find stereo disparities[8].
In our case we have to recover disparity to sub-pixel accuracy otherwise surface normals
will not provide much information, i.e. the change in orientation produced by a unit
change in disparity is often an order of magnitude more than the SfS derived orientation
information can provide. Using discrete distributions would result in an infeasibly large

1We use the luminance channel of the Luv colour space for the intensity. Experimentation has shown this
to be in reasonable agreement with Lamberts law for non-specular objects with the cameras used. There is an
implicit white light assumption being made here.



number of disparity labels. This makes it essential to use continuous density functions
representing continuous disparity measurements. One tractable solution is to use Gaus-
sian distributions. The beliefs are then defined by the mean and variance of the Gaussian
distribution, allowing orientation information to be effectively used. We adopt this ap-
proach in this paper.

Loopy belief propagation works by iteratively passing messages between nodes of the
MRF. The message that a node t passes to its neighbour s is[19]

m(n)
ts (xs) = α

∫
xt

ψst(xs,xt)ψt(xt ,yt) ∏
u∈N/s

m(n−1)
ut (xt)dt (2)

Here xt is the disparity at node t; ψst(xs,xt) is the compatibility distribution between the
disparities at t and s; ψt(xt ,yt) is the distribution of disparities inferred from the observed
evidence yt ; m(n−1)

ut (xt) is a message from the previous iteration; and the set N/s is the
neighbourhood of t excluding s. We can then compute the belief at node t using

b(n)
t = αψt(xt ,yt) ∏

u∈N
mut(xt) (3)

We adopt a variant of the Gaussian algebra of Cowell[6]. The Normal distribution is
defined as a function of the precision P and the precision times the mean Pµ , which we
will refer to as the p-mean. The precision is equal to the inverse covariance matrix, i.e.
P = Σ−1. We have

φ [Pµ,P] = α exp
[
−1

2
(x−µ)T P(x−µ)

]
(4)

The reason for defining φ in this way is that it produces a simple set of rules for manipu-
lating the distributions, which are given in Appendix A.

Under our Gaussian model the stereo algorithm is used to give an initial estimate of the
disparities. At a point t in the image the stereo algorithm gives a set of measurements, yt ,
which are used to infer a distribution for the disparities, xt . This is modelled by a Normal
distribution, ψt(xt ,yt) = φ [Pt µt ,Pt ]. The mean µ and precision P for this distribution are
computed from the stereo algorithm as detailed in section 6.

The compatibility distribution between two neighbouring points in the image s and t
is also modelled by a normal distribution. If the disparity at t is xt then we would expect
the disparity at s to be xt + zts where zts is the disparity change predicted by integrating
the surface normals along the path from t to s. The compatibility distribution ψst(xs,xt)
is therefore defined as a Normal distribution with mean xt + zts and a fixed precision Pn
which reflects the accuracy of the surface normals. We therefore obtain

ψst(xs,xt) = φ

[
Pn

(
−zts
zts

)
,Pn

(
1 −1
−1 1

)]
(5)

Since the points are neighbours in the image we can assume that the surface normal direc-
tion is constant along the path between them, and use an interpolated surface orientation
at the half way point. This is in fact necessary to avoid bias in the result. The two separate
processes therefore influence the MRF in different ways; the local measurement process
models the depth information and the compatibility between sites is used to incorporate
the orientation information.



Since the distributions are Normal, the messages are also Normal distributions. We
begin by defining the following quantities:

P0 = Pt + ∑
u∈N/s

Put P0µ0 = Pt µt + ∑
u∈N/s

Put µut

These are the local precision and p-mean respectively, excluding the message we are
currently computing. The new message m(n)

ts (xs) is a Normal distribution which we will
define as

m(n)
ts (xs) = φ [Ptsµts,Pts]

Applying Eqn. 2, we obtain the update rules:

Pts ← Pn−Pn(Pn +P0)−1Pn

Ptsµts ← Pnzts +Pn(Pn +P0)−1(P0µ0−Pnzts)
(6)

We iteratively apply these rules to find an estimate of the MAP disparity map. The beliefs
are given by

b(n)
t = αψt(xt ,yt) ∏

u∈N
mut(xt) = φ

[
Pt µt + ∑

u∈N
Put µut ,Pt + ∑

u∈N
Put

]
so the mean, and hence the estimated disparity, is

µ(t) = (Pt µt + ∑
u∈N

Put µut)(Pt + ∑
u∈N

Put)−1 (7)

4 Albedo Estimation
Under the Lambertian reflectance assumption SfS requires an albedo map as input. The
surface texture consists of albedo and colour; colour is taken to be the (u,v) channels of
Luv colour space. For an arbitrary texture it is impossible to distinguish texture variation
from shading; this is the basis of ‘3D’ effects in user interfaces. It has already been noted
that in variable texture regions stereo matching is effective, so additional SFS information
is only necessary in relatively uniform regions. Uniform regions allow us to ignore texture
variation.

We begin by segmenting the image into uniform regions with mean shift[5] to obtain
a set of regions, R. Within each of these regions the colour is uniform and the albedo is
assumed to be uniform. The luminance L will however vary across the region because of
shading effects. In order to correctly compute the albedo of a region we need to account
for shading effects using Equation 1. Given a field of surface normals n(x,y) we can
estimate the albedo at each pixel via the relation A(x,y) = L/(n(x,y) · s). For individual
pixels this is not reliable due to inaccurate normal estimation. As albedo is constant an
accurate estimate can be obtained by averaging over each region

Ar =
1
|r| ∑

(x,y)∈r

L(x,y)
(n(x,y) · s)

(8)

where r ∈ R. This requires a field of surface normals; as it is reasonably robust to noise
this may be obtained directly from the stereo algorithm.



Boot Strap Smoothed Boot Strap Our Algorithm
Frame 1.62(13.5%) 1.22(2.2%) 1.08(1.0%)
Head 1.84(13.7%) 1.55(0.2%) 1.90(1.9%)

Head (centre) 1.73(10.0%) 1.47(0.1%) 1.40(0%)
Table 1: Statistics, see text for details.

5 Shape from Shading Algorithm
Equation 1 only constrains the angle between the surface normal and light source, i.e.
surface normals must lie on a cone whose angle is defined by the ratio L/A. To remove
this ambiguity we introduce two constraints, which are a) that surface normals should
vary smoothly across the surface, and b) at occluding boundaries, the surface normals lie
in the image plane and point away from the boundary. We adopt the Worthington and
Hancock[20] algorithm to solve for the field of surface normals by alternately smoothing
and re-projecting onto the cone. Applying this method gives us a fields of surface normals
for either image, the framework only uses the left images orientation information however.

6 Stereo Algorithm
The DSI of a single pixel can not be accurately represented with a single Gaussian. A dis-
parity value and its confidence can be however, hence the need for a stereo algorithm to
select a reasonable disparity for each pixel. A modified version of the algorithm of Meer-
bergen et al.[15] is used. The modification is such that, in addition to the best disparity,
it also outputs all other disparities within a given tolerance of the best, as an indication of
confidence. It uses the Birchfield and Tomasi’s[2] sampling invariant dissimilarity mea-
sure, the resulting disparities can therefore be considered as ranges, ±0.5 the given value,
rather than as infinitesimal points. A Gaussian can therefore be fitted to each pixels set
of disparities for use by the Gaussian belief propagation step. Occluded pixels with no
disparities are assigned an evidence of ψt(xt ,yt) = φ [0,0].

Both the SfS initialisation and albedo estimation steps require surface normals to be
extracted from the initial disparity map, this may be done with camera calibration in-
formation. Directly estimating surface normals by differentiating a discrete depth-map
does not work however. Therefore the belief propagation process is run to obtain an ini-
tial smooth surface; for this first run orientation is provided by plane fitting the uniform
colour segments. To further reduce noise least squares planes are fitted to a 11×11 win-
dow around each normal and the plane perpendiculars used; this is necessary to obtain a
robust albedo estimate.

7 Experimental Results
We have evaluated our method using a number of stereo pairs with ground truth data.
Standard stereo tests[17] are not fit for our purposes, in part because they do not match
the single known light source requirement but also because they give ground truth in
terms of either discrete disparities or fitted planes. As we obtain surfaces to a much finer
resolution we need ground truth data with disparity maps at sub-pixel resolution.

Using a Cyberware 3030 head scanner and two Canon S70s in the standard stereo
position a data set with ground truth data has been captured. It was calibrated both before
and after the capture session with a 3D calibration target. The stereo pair backgrounds are



Figure 1: Results for a photo frame, see text for details.

masked out; the ground truth disparity map for the human head is masked out in problem
areas, such as eyes and hair.

We illustrate the algorithm with the picture frame given in figure 1 and the head given
in figure 2. The figures are arranged as left image, ground truth disparity then right image
on the first row, output orientation map, disparity map and albedo map on the second row.
The final row contains renders of the 3D models, first the ground truth, then the smoothed
boot strap and finally the output. The frame is smoothed considerably by the algorithm.
Whilst some overall structure has been lost details not visible in the initialisation are
apparent, primarily the decoration on the frame. It additionally shows the effectiveness
of the albedo estimation. The algorithm produces a reasonable visual result for the head,
unlike the bootstrap algoirthm. Again, it captures details not visible in the bootstrap.

Table 1 compares the algorithm statistically, with the boot strap algorithm[15] in the
first column then the smoothed version used for albedo estimation followed by the final
result. We provide two values in each case. The first is the average disparity difference
from ground truth for pixels classified as inliers, the second is in brackets and is the
percentage of outliers. We define inliers as disparity values within 8 pixels of the ground
truth disparity. For the frame the results are clear cut, but for the head the numbers indicate
that our algorithm has made it worse, though the renders indicate otherwise. For the
smoothed version the error is equally distributed, but for the output from our algorithm
the error is primarily in the ears and edges of the face. This is because the lambertian
shading model is insufficient in these regions. The head (centre) row shows the statistics



Figure 2: Results for a head, see text for details.

when the ears and edges of the head are masked out.

8 Conclusions
We have presented a method of integrating shape from shading information with stereo
information using Gaussian belief propagation. This method efficiently delivers a contin-
uous estimate of disparity and is relatively easy to implement. Our results show an im-
provement in the fine surface details when shading information is used, leading to more
accurate and visually pleasing models.

Much possible future work exists in this area. The greatest weakness of this approach
is SfS requiring a single known light source. Two future directions may be found in using
another source of orientation information or removing this constraint from SfS, with light
source estimation and support for multiple light sources.



A Gaussian Belief Propagation
Multiplying, we get

φ [P1µ1,P1]φ [P2µ2,P2] = φ [P1µ1 +P2µ2,P1 +P2] (9)

If we add an additional independent variable, we get

Ext(φ [Pµ,P] = φ

[(
Pµ

0

)
,

(
P 0
0 0

)]
(10)

Finally, if we marginalise over the first variable, we get

Marg1(φ [Pµ,P]) = φ [h2−P12P−1
11 h1,P22−P12P−1

11 PT
12] (11)

where P =
(

P11 P12
PT

12 P22

)
and Pµ =

(
h1
h2

)
Combining the local distribution with previous messages:

ψt(xt ,yt) ∏
u∈N/s

m(n−1)
ut (xt) = φ [Ptt µtt ,Ptt ] ∏

u∈N/s
φ [Put µut ,Put ]

= φ [Ptt µtt +∑
u

Put µut ,Ptt +∑
u

Put ]

= φ [P0µ0,P0] (12)

Extending the distribution to incorporate xs, we get

Ext(φ [P0µ0,P0]) = φ

[(
P0µ0

0

)
,

(
P0 0
0 0

)]
Then combining with ψst(xs,xt):

ψst(xs,xt)Ext(φ [P0µ0,P0]) = φ

[(
P0µ0−Pnzts

Pnzts

)
,

(
Pn +P0 −Pn
−Pn Pn

)]
Finally, we marginalise to find the new message

m(n)
ts (xs) = αMarg1(φ

[(
P0µ0−Pnzts

Pnzts

)
,

(
Pn +P0 −Pn
−Pn Pn

)]
)

= φ [Pnzts +Pn(Pn +P0)−1(P0µ0−Pnzts),Pn−Pn(Pn +P0)−1Pn]

so the message update rules are

Pts ← Pn−Pn(Pn +P0)−1Pn

Ptsµts ← Pnzts +Pn(Pn +P0)−1(P0µ0−Pnzts)
(13)
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