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Fibre Centred Tensor Faces
Abstract

In  this  paper  we present  a  reformulation  of  the  tensorface  analysis  method  and  
produce a model that is simpler (i.e. has fewer parameters), is more compact (i.e. has  
tighter distributions) and is less ambiguous (i.e. no 2 sets of parameters synthesise the  
same data vector).  This is achieved by simply subtracting the fibre (row, column, etc)  
mean from each fibre of the training data before performing PCA analysis. Centring of  
tensor data via subtraction of the whole set mean is commonly used as a preprocessing  
step, but the fibre-centring algorithm presented here has not been suggested previously  
for tensorface analysis.   We show how the new formulation allows an approximate  
linear  analysis  with  a  considerable  speed  improvement  over  previous  methods.  In  
addition,  the centring allows simpler truncation of  parameter vectors leading to an  
even more compact model. The new method is tested on image synthesis and analysis  
and in a simple face recognition task, in which it out performs non-centred multilinear  
analysis.

1 Introduction
Multilinear analysis has proved a useful tool in facial image analysis because of its 

ability to separate different sources of variation such as pose, expression, identity and 
lighting.  While centring via subtraction of the whole set mean is frequently used as a 
preprocessing step, the choice of centring algorithm can lead to different results and 
more or less efficient algorithms. In this work we present a centring approach designed 
for face analysis.  The centring approach used is to centre each “fibre” before unfolding 
the tensor, removing variation due to factors that are more easily accounted for using 
other axes of the face tensor.   For example,  using an identity-expression tensor,  we 
would  subtract  each  subject's  average  (across  expressions)  from  the  individual 
expression  images  and  perform the  expression  part  of  the  analysis  on  the  resulting 
“identity free” tensor.  This is repeated along the identity axis, removing the average of 
each  expression  from  each  individual  expressive  image,  leaving  “expression  free” 
identity  data.   In  this  paper  we first  review the  related  literature,  then  explain  the 
proposed method in detail and finally present preliminary results that demonstrate that 
this kind of processing not only leads to more appropriate parameters (for improved face 
recognition) it also leads to a faster analysis algorithm.

2 Literature Review
Multilinear analysis was introduced to the computer vision community by Vasilescou 

and Terzopoulos [1-4]. Multilinear data represent the natural extension from scalars (0-
D  tensors),  through  vectors  (1D  tensor)  and  matrices  (2D  tensors)  to  general  n-
dimensional data. For face data the images are usually scan converted into a 1-D vector 
(vectorised), with the data vector representing 1 dimension of the face tensor and other 
attributes  varying  along  the  other  axes  e.g.  along  one  axis  identity,  along  another 
expressions and along another could be different lighting.  To synthesise a new data 
vector from this block it seems intuitively reasonable to use one set of weights along 



British Machine Vision Conference  

each axis i.e. one for the identity axis, another along the expression axis and a third set 
of  weights along the lighting axis.  Hence the linear  weightings of  the example data 
vectors are given as the outer product tensor of the weights along each axis of the data 
block.  This leads to a considerable reduction in the number of parameters required over 
a linear model.  For example, using 10 identities, 10 expressions and 10 lightings would 
only require  30   parameters  (10+10+10)  instead  of  1000  (10x10x10)  using a linear 
combination of the training data vectors.  The reconstruction from such a data set is 
therefore given by:

t=∑
i=0

I

∑
j=0

J

⋯∑
k=0

K

ai b j⋯ck t ij⋯k (1)

where t is the reconstructed data vector, ai, bj, ..., ck are the model parameters and tij...k are 
the model's components.

As with linear  face analysis,  it  has proved useful to  perform additional  (multi)linear 
processing on the input data. The standard decomposition is to factor the n-way tensor 
into N orthogonal matrices plus a core tensor.  The usual method of construction is to 
unfold the tensor into a matrix along each axis, perform Singular Value Decomposition 
(SVD) on the unfolded matrix and then take the left orthogonal matrix. This is known as 
high-order SVD (HOSVD) or Tucker's method [5].  The HOSVD method does not yield 
unique output parameters and the core tensor is not diagonal. Alternatives have been 
proposed, for example Parallel Factor Analysis (PARAFAC), which is also known as 
Canonical Decomposition (CANDECOMP) [6][7], in which the data is modelled as the 
sum of N outer product tensors.  This has the attractive properties of a diagonal core 
tensor  and  that  the  decomposition  is  unique,  but  the  generating  matrices  are  not 
orthogonal.  The development of PARAFAC/CANDECOMP was motivated by a need 
to discover fundamental properties of the original data. For example in chemometrics it 
has been used to discover the pure spectra of mixed samples.  Although one can think of 
applications  in  face  analysis  in  which  the  primary  aim is  to  discover  fundamental 
properties of the original data (e.g. to find basic components of expressions) the aim in 
most of the existing face research is for compact, efficient and effective analysis and 
synthesis methods, and so the use of more efficient orthogonal decomposition remains 
attractive.

In order to analyse an example data vector several methods have been proposed.  In 
their  original  tensorface  work [1]  Vasilescou and Terzopoulos  proposed  finding the 
optimal  set  of  identity  vectors  for  each  set  of  non-identity  parameters  (expression, 
lighting, viewpoint).  The optimal set of these weights that best matches the target are 
considered the best match.  This needs to be repeated across the database to find the 
overall best match.  This method has two drawbacks, the first is that it is close to an 
exhaustive  search  and  therefore  slow and  the  second  is  that  it  does  not  allow for 
interpolated  values  of  the  non-identity  parameters  e.g.  lighting  between  two  of  the 
training lighting examples.  

The ideal would be to find the parameters that minimise (1) in the least squares sense i.e.

 2=∑
x=0

X ∑i=0

I

∑
j=0

J

⋯∑
k =0

K

a i b j⋯ck T ij⋯ k  x−T  x
2

(2)
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This is a highly non-linear equation and difficult to solve explicitly.  In [3] Vasilescou et 
al approximated the solution using a two step minimisation i.e. first they find the best 
linear parameters, rij...k that minimise:

 2=∑
x=0

X ∑i=0

I

∑
j=0

J

⋯∑
k =0

K

r ij⋯ k T ij⋯ k  x−T  x
2

(3)

and then they find the best rank 1 approximation to the Tensor  rij...k using HOSVD.  This 
is not guaranteed to find the best solution to (3), as other authors have noted [8], but 
seems a reasonable approximation.

Others have solved (2) using iterative methods.  Park and Savvides [9] use the additional 
restriction  that  the  magnitude  of  each  of  the  weight  vectors  should  be  1  (i.e. 
∑

i
ai

2=∑
j

b j
2=⋯=∑

k
c k

2=1 ).  The resulting equations are solved iteratively using a 
Lagrange multiplier to include the additional constraint.  This additional constraint is 
required because the original tensorface model is non unique, i.e. two (or more) sets of 
parameters can give the same output e.g. scaling the ai by   and the bj by 1/  
produces the same result.   It is this non-uniqueness of the parametric description that we 
believe leads to under performance of the original tensor-face SVD model.  Because the 
identity parameters are only known subject to some linear multiple, recognition is based 
on  maximising  the  normalised  scalar  product  between  the  known and  test  identity 
parameters.  It is quite possible that two very different face images could have the same 
normalised  identity  parameters,  depending  on  the  values  of  the  other  parameters. 
Conversely, it is possible for the same face to have quite different parameters that lie 
along a line in the identity parameter space.

One difference between the tensorface analysis proposed by Vasilescou et al and the 
frequently used PCA analysis of facial images e.g. [12][13], is that in the latter the mean 
is explicitly subtracted from the set before performing the PCA analysis (e.g. using SVD 
or Jacobi rotations to find the Eigenvectors and Eigenvalues of the covariance matrix). 
This makes sense from the perspective of both the dimensionality of the linear space 
spanned by the data and from a Gaussian model of the distribution of the data.  Given N 
non-collinear  points  in  some (generally higher)  M dimensional  space,  N-1  direction 
vectors are required to span the space, plus a single position vector within the linear 
space.  Hence a space defined by N points only requires at most N-1 parameters to span 
the linear subspace.   A convenient point to choose as the position vector within the 
space is the mean, as this minimises the size of the distribution.

Bro and Smilde [10] have considered the effects of centring and also scaling of the data 
in multilinear analysis, but they do not consider the situation in which the fibre means 
are retained in the model along every dimension. Lu et al  [11]  have used a centred 
multilinear approach for gait analysis, but again the centring is only performed once 
along a single “samples” axis.  It is not clear how their method could be extended to 
include appropriate centring along multiple sample axes, such as different styles of gait.

In this paper we adapt the HOSVD method with the addition of fibre centring.  First we 
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outline the mathematics of the reformulated representation and then describe methods 
for the analysis of an input vector and synthesis of an output vector.  Finally we test the 
new method on a face recognition task and compare the performance with a non-centred 
multilinear method. 

3 Method

3.1 Tensor construction
We propose a simple modification to the multilinear analysis of face images in which 
the mean is explicitly subtracted before processing. The mean we use in this context is 
the "fibre" mean (we will use fibre to refer to any 1D array extracted parallel to the 
Cartesian axes e.g. rows, columns, etc.)   Removing the fibre mean leaves difference 
vectors that minimise the variation within the fibre.  For example, using an  identity-
expression-lighting set we would remove the identity and expression variation from the 
lighting fibres,  the identity and lighting variation from the expression fibres and the 
expression and lighting variation from the identity fibres.  The hope is to minimise the 
variation due to known factors when processing along each axis.  

For each axis of the tensor we first unfold the tensor along that axis and then multiply by 
the matrix [I-M], where each element of  M is equal to  1/N.  This subtracts the fibre 
average from each sample. Next we perform PCA analysis on the resulting matrix to 
find the rotation matrix Ui and variances wi.  At most N-1 of the variances will be non-
zero, so we can discard at least the smallest component.  We construct the matrix  Ui' 
whose first row is an averaging vector  and the remaining rows calculate the rotated 
difference components as follows:

U i '=[1 0 ⋯ 0
0 u00 ⋯ uN0

⋮ ⋱
0 u0N−1 ⋯ uNN −1

][ 1/N 1/N ⋯ 1/N
1−1/N −1/N ⋯ −1/ N

⋮ ⋱ ⋮
−1/N −1/N ⋯ 1−1/N ] (4)

where {ujk} = Ui.  We perform the analysis on the original data along each axis, and then 
as a final step multiply the original tensor by the matrices Ui' along each direction.  In 
our implementation no processing is performed along the direction of the data vector. 
An alternative option is to  perform the decomposition along all axes and then to undo 
the transform along the data vector using the inverse operator.  In our implementation 
the inverse operator Ui'-1 is given by:

U i '
−1=[1 1 0 ⋯ 0

1 0 1 ⋯ 0
⋮ ⋱ ⋮
1 0 0 ⋯ 1

][1 0 ⋯ 0
0 u00 ⋯ u0N−1

⋮ ⋱
0 uN0 ⋯ uN−1N

] (5)

3.2 Image synthesis
In order to reconstruct a single data vector (e.g. an image) we use an equation of the 
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same form as used previously, i.e.:

t=∑
i=0

I

∑
j=0

J

⋯∑
k=0

K

ai b j⋯c k t ij⋯k (6)

except that the first component of each parameter vector is 1, i.e. a0 = b0 = ... = c0 = 1. 
The component  t00...0 is the overall mean of the entire multilinear  set  and is  given a 
constant weighting of 1.  Hence the model has one less free parameter along each axis, 
and so is a simpler model.  In addition because of the normalisation the distribution of 
parameter  values  are   tighter  and  so  truncation of  the  components  can be  justified. 
Truncation of the data has previously been performed using an iterative approach that 
tries  to  minimise  the  reconstruction  error  while  preserving  orthonormality  of  the 
decomposition  vectors  [4].   The  centring  scheme  proposed  here  ensures  that  the 
truncated tensor  model is  optimal in the sense that  the component with the smallest 
distribution from the row mean is discarded.

3.3 Image analysis
In this paper we propose 2 methods for estimating the parameters of our updated model 
given in equation (2).  In the first we follow [3] and approximate the solution by first 
finding the linear estimates that solve equation (3).  Because the weight of the overall 
mean is 1 we subtract the component t00..0 before minimising.  The least squares solution 
of (3) for our model is given by:

r=T tT −1T tt−t00⋯0 (7)

where r  is the vector containing the vectorised version of the tensor R = {rij...k} and T is 
the matrix whose columns are the data vectors of the tensor T excluding the mean (i.e. 
the tensor T unfolded along the data axis, less the mean).

In previous work HOSVD has been used to factor R into the best rank-1 approximation 
and find the outer product vectors.  For the new model we note that the weights on the 
origin  adjacent  edges  of  the  linear  weight  tensor  should  be  equal  to  the  parameter 
vectors we seek i.e.

ri0⋯0=a i

r0j⋯0=b j

⋮
r 00⋯k=ck

(8)

As an additional optimisation we do not need to calculate all of the linear components 
explicitly, as these can be "projected out".   We only need the rows of the matrix P = 
(TtT)-1Tt that correspond to the origin adjacent edge components of  r in order to get a 
fast (linear) estimate of the model parameters.  Once the matrix P has been calculated 
only  O(I+J+ ...  +K) dot products are required to analyse an input image rather than 
O(IJ...K) dot products required to compute the entire tensor  R. Also this method does 
not require the additional work of using HOSVD to find the best rank 1 approximation 
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of the tensor R and factor it into vectors.

If  additional  accuracy  is  found  necessary  we  propose  using  an  alternating  least 
squares  (ALS) approach.   An initial  estimate of  the parameters  can be  found using 
equation (7) and then the parameters along each axis are re-estimated, keeping the others 
fixed i.e. estimate parameters  ai keeping  bj ...  ck fixed, then estimating parameters  bj, 
keeping  ai ...  ck fixed  etc.   This  involves  collapsing  the  model  using  the  fixed 
components e.g. if we are optimising the parameters ai the components are given by:

t ' i=∑
j=0

J

⋯∑
k=0

K

b j⋯ck t ij⋯k (9)

and the model is given by:

t=t '0∑
i=1

I

a i t ' i (10)

which  is  solved  for  ai.  This  process  can  be  repeated  until  convergence  (i.e.  the 
parameters remain stable).

3.4 Face recognition method
In this section we describe how to find the best match from a set of example faces to a 
previously unseen facial image. In order to compute the best match, previous authors 
have  used  the  maximum  normalised  scalar  product  between  the  known  identity 
components and those estimated for the test image, i.e.

a⋅b=
∑ ai bi

∑ ai
2∑ bi

2 (11)

is maximised, where a and b are the identity parameter vectors for two subjects.  The 
normalised scalar product was used because of the unknown scaling of the parameters. 
In contrast the values of the fibre-centred tensor parameters are known precisely, so we 
have explored alternative recognition methods.  One option is to build a Gaussian model 
of the identity parameters for each subject and calculate the maximum  probability over 
all subjects i.e. maximise:

p a = 1
2n/2∣C b∣

e
−

1
2 a−b tC b

−1 a−b 
(12)

where a is the identity parameter vector of the test image and b and Cb are the mean and 
covariance matrix that define the Gaussian distribution of identity parameters for the 
training face that  we are testing against.   The problem with this method is  that  the 
distribution of identity parameters for an individual in the training data is usually zero or 
very close to zero.   This could be seen as a case of over fitting of the model to the 
training data, and the same is true of the non-centred HOSVD, save for the unknown 
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sign of the normalised components.  We could populate the Gaussian model by using 
additional example images of the same subjects used to train the tensor model but as this 
requires  an  additional  image set,  we instead  use  the  simpler  method of  finding the 
closest mean to the test subject i.e. we seek to minimise:

∑
i=0

I

ai−bi 
2 (13)

where a is the test identity vector and b is the mean identity vector for the training image 
we are comparing against.

4 Results
In  this  section  we  present  the  results  of  our  reformulated  tensorface  methods  and 
compare them with the original algorithms. First we describe our data preprocessing, 
then we demonstrate the results of analysis and synthesis of face images.  Finally we use 
the method for a face recognition task and compare the results with standard HOSVD 
recognition.

The test set of images need to contain standardised images that vary along a number of 
dimensions (such as identity, pose, lighting).  Many of the existing test sets, such as the 
FERET set are not suitable for multilinear training, as the poses etc are not standardised 
across subjects.   Other more suitable images sets exists, such as the Yale database and 
the Weizman image set.  We use two example sets for training and testing, one set of our 
own images and one from a standard collection. The first is a bi-linear set in which 7 
subjects  are  performing  16  different  viseme  (visual  phonemes).   The  peak  viseme 
images were extracted from video by hand.   The images in this set are face-on images 
with consistent lighting. We use an out-of-set (neutral) image for testing. The second set 
is a tri-linear subset of the Weizmann face database.  The images in the subset are face-
on images and show 15 identities, 3 lightings and 3 expressions.  A forth image of each 
subject with a neutral expression and  different lighting is used as the test set.

4.1 Data pre-processing
In this work we decompose the facial image data into a shape component and a shape 
normalised image component.  Each image was delineated automatically using an active 
appearance  model  (AAM) [11][12]  and  any errors  were corrected  by hand.     The 
average of the feature points across the set was calculated and was shifted and scaled to 
fit in a window of a user specified size (for the experiments shown here we used a 100 
by  150  pixel  image).  The  delineated  feature  template  of  each  subject  was  then 
normalised to this average using best fit scaling, rotation and translation before being 
vectorised and placed in the  input shape tensor.  The input images were warped into the 
normalised average shape using piecewise linear  warping over  a triangulation of the 
template feature points.   All but  the face region was masked and then the resulting 
images were vectorised and added to the input image tensor.

4.2 Model Building Example
Figure 1 shows the decomposition process applied to the subset of the Weizmann face 
set.  Only 3 of the 15 identities used are shown.  The input data tensor comprising the 
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shape normalised example images is on the left.  The result of processing along each 
axis in turn with the matrix Ui' is shown going from left to right.  The original data and 
averaged  components  are  unmodified  for  display  and  the  processed  difference 
components are scaled and shifted so that mid-grey equals zero for display.

4.3 Analysis and Synthesis Examples
Figure 2 shows the synthesis process.  The synthesis process forms a weighted sum of 
the  centred  multilinear  data  (left).   The  weights (centre)  are  formed from the  outer 
product tensor of the parameter vectors.  Each parameter vector starts with the value 1 
and so the contribution of the overall mean is always 1.  Figure 3 illustrates the linear 
analysis process.   Figure 4 shows some examples of  face synthesis from parameters 
found using the linear approximation.  Examples are given with and without truncation 
of the model.

Figure  3: Diagram showing the (approximate) linear analysis process.  Only the 
components  of  the  pseudo  inverse  matrix  (left)  corresponding  to  the  linear 
coefficients shown in red (right) need to be used. 

Figure  2:  A  diagram  of  the  face  synthesis  method  for  the  normalised  image  
components.

Figure 1: Example of the decomposition process on a set of (shape 
normalised) face images.



British Machine Vision Conference  

4.4 Face Recognition Experiments
We tested the centred tensor face model's performance on a simple face recognition 

task using our two face sets for training.  We tested the model's ability to correctly 
assign an identity to previously unseen images of the same individuals as used in the 
training  set.   For  the  viseme  set  this  was  a  neutral  expression  image  and  for  the 
Weizmann set it was a neutral image with different lighting. For the centred model we 
used the approximate linear analysis and truncated the model parameters to explain 95% 
of the variance in the training data along each axis.  For the viseme set this reduced the 
viseme parameters from 15 to 12 in shape and from 15 to 13 in colour but  did not 
truncate the identity parameters.  For the Weizmann subset the identity parameters were 
reduced  from 15  to  12  in  both  shape  and  colour  and  the  lighting  and  expression 
parameters were not truncated.  The results are shown in Table 1. 

Non-centred Centred

Viseme 71% 100%

Weizmann 67% 100%
Table 1. Results of the simple face recognition experiments.

5 Conclusions and Future Work  
In this paper we have developed a reformulation of the multilinear PCA analysis of 

face images and have demonstrated improved recognition performance over previous 
HOSVD  face  recognition  in  a  simple  test.   The  improved  performance  is  almost 
certainly due to the unknown scaling of the identity parameters in the original HOSVD 

Figure 4: Face synthesis by analysis examples from the two data sets used.  In  
each  set:  left  original,  centre  100%  and  right  95%  of  variance  in  each  
parameter explained in the two data sets.
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method  requiring  the  use  of  the  normalised  scalar  product  or  normalised  nearest 
neighbour  for  recognition.   This  normalisation  can  project  different  subjects  into  a 
similar part of the parameter space.  In contrast in the centred method the parameters are 
unique and so can be used directly.

Future  work  will  focus  on  testing  the  method  on  larger  datasets  and  for  other 
recognition tasks e.g. expression recognition.  We would also like to compare our new 
method with multilinear independent component analysis (MICA) and explore an ICA 
version of the algorithm presented here.
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