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Abstract

One of the challenges found in recent methods for action recognition has
been to classify ambiguous actions successfully . In the case of methods that
use spatio-temporal features this phenomenon is observed when two actions
generate similar feature types. Ideally, a probabilistic classification method
would be based on a model of thefull joint distribution of features, but this
is computationally intractable. In this paper we propose using an approxima-
tion of the full joint via first order dependencies between feature types using
so-called Chow-Liu trees. We obtain promising results and achieve an im-
provement in the classification accuracy over naive Bayes and other simple
classifiers. Our implementation of the method makes use of a binary descrip-
tor for a video analogous to one previously used in location recognition for
mobile robots. Because of the simplicity of the algorithm, once the offline
learning phase is over, real-time action recognition is possible and we present
an adaptation of this method that works in real-time.

1 Introduction

The interpretation of video sequences is a topic that has been growing in importance in
recent years. It involves not only computer vision techniques for obtaining information
from images but also machine learning algorithms because ofthe ultimate need for high
level interpretation. Many things are involved in the analysis of a video sequence such as
object recognition, target localization, motion detection, physical contraints and human
behaviour. In some applications, like visual surveillance, the role played by humans is
the main priority, so several methods for modeling human activity have been proposed.
However the majority of these approches fall short of modelling “behaviour”, which, we
posit, refers to a more complex combination of factors like intentionality and therefore
belongs to a higher level of understanding.

A first step to achieving behaviour undestanding is almost certainly the recognition of
actions. In Efroset al. [8] a target motion descriptor was developed for classifying frames
using ak-nearest neighbour classifier. Robertson [18] used Efros’ descriptor within a pro-
babilistic framework, fusing the low-level motion descriptors with location and direction
cues via a Bayes’ net. That work further made an attempt at behaviour recognition via



hidden Markov representations of action sequences which they proposed could be inter-
preted as behaviours.

Another kind of descriptor for action classification was employed by Davis [6], ob-
tained as histograms of the motion orientation informationcontained in what he called
“Motion History Images” (MHI). Carlsson and Sullivan [3] utilized keyframes to repre-
sent actions: given a new frame a voting matrix is created to compare keyframes with
the new frame, with the matrix updated if the topology between corresponding points of
a keyframe and the new frame is the same. An interesting approach was followed by
Boiman and Irani [2], although their main objective was to detect irregularities in videos
and not to classify actions. They define irregularities as fragments of videos that can’t
be composed using previous observed data. The method apparently works well but is
computationally expensive.

Other methods developed lately are based directly on image features. Image features
are a common tool in computer vision methods, very popular inareas such as pattern and
object recognition. In recent years a new kind of feature, found not only in space but also
in time, have been used for action recognition. Laptev and Lindeberg [12] presented an
approach that is an extension in time of the well know Harris-Stephens [9] corner detector,
achieving good results in general although for subtle movements (like a wheel spinning)
the method doesn’t give a good response and the number of features obtained is very
small. Oikonomopouloset al. [17] also extended another kind of spatial features to the
temporal case, in this case the saliency approach of Kadir and Brady [10]. The saliency
approach is based on localizing points of local maximum entropy. A method that is not
an extension of a previously know feature detector was presented by Dolĺar et al. [7],
based primarily on a convolution with a Gabor filter in time. The features obtained in this
way have also been used for action recognition by Niebleset al. [16] in a very interesting
application of probabilistic Latent Semantic Analysis.

In this paper we adopt the spatio-temporal features proposed by Dollár et al.. In con-
strast to their work, however, our classification method is solidly grounded in a probabi-
listic framework. More precisely we are interested in evaluating p(z1, . . . ,zn|A), the joint
distribution over feature observationszi given a particular actionA. This joint distribu-
tion, comprisingn dimensions (wheren is typically very large) is intractable to compute.
Our main contribution in this paper is to show how this joint distribtion can be effectively
approximated using only first-order dependencies [4]. Thisidea was recently employed
in mobile robotics for location recognition [5] and here we apply it to action recognition
for the first time.

The remainder of the paper is divided as follows: in section 2we review the theory
behind spatio-temporal features and explain why similar actions are more dificult to iden-
tify following this approach. In section 3 our probabilistic method is explained in detail,
and in section 4 we describe a real-time implementation of this method. Section 5 shows
the results obtained and the last section deals with the conclusions and future directions
of research.

2 Spatio-temporal features

We will use the spatio-temporal features as described in [7], because they have shown
good results even using the most simple methods of classification. These features are



obtained by convolving a set of video frames with a Gaussiang(x,y;σ) in the spatial
dimension and with 1D Gabor filters in the temporal dimension. The 1D Gabor filters are
defined ashev(t;τ,ω) =−cos(2πtω)exp−t2/τ2

andhod(t;τ,ω) =−sin(2πtω)exp−t2/τ2
.

In this quadrature pair each filter is a harmonic function with a Gaussian envelope. The
parameterτ in this specific case controls the frequency of the harmonic function and the
variance of the Gaussian. The whole response function is then expressed as:

R = (I ∗g∗hev)
2 +(I ∗g∗hod)

2 (1)

Using a threshold and non-maximal suppression, the features with highest response
are selected. Usually these high response locations correspond to local regions containing
periodic motions but regions with spatio-temporal corners[12] are also detected. Once
the spatial and temporal location of a feature is obtained, the set of pixels which surround
it in a given size of spatio-temporal window is extracted. [7] call this spatio-temporal
window acuboid. The side length of this temporal window is set to six times the scale at
which the feature was detected. An example of the features detected by this method and
their corresponding cuboids is shown in Figure 1.

(a) (b)

Figure 1: (a) Detected features. (b) Cuboids (flattened representation, time runs from left
to right).

As shown in [14] the selection of a good descriptor for spatial features has proven
to play an important role in improving the results of any algorithm involving image fea-
tures. Regarding spatio-temporal features, [7] experiments with some of the classic des-
criptors including SIFT [13], and show that apparently a simple descriptor such as the
concatenated brightness values of the cuboids gives results as good as or better than other
descriptors. We have not conducted our own evaluation and like [7] we use this simple
descriptor in our work. The features are clustered usingk-means with Euclidean distance
and a fixed number of cluster centres. The clusters centres obtained in this process define
the set of feature types. After the clustering process each feature is tagged as belonging
to one of these clusters. The overall process involves the selection of four parameters: the
scales in space and time (σ ,τ), the feature threshold, and the number of cluster centres.
The latter determines the complexity of our model.

Using feature types for classifying similar actions has itsproblems because similar
actions generate similar features as can be observed in Figure 2. This is what motivates
the development of our method that can deal to some extent with this problem.
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Figure 2: Graphics of feature ocurrence for (a) Jogging and Waving. (b) Jogging and
Running. As can be seen similar actions, like those in (b), produced similar kinds of
features.

3 Probabilistic formulation

Different methods have been used for the classification of actions. In [7] histograms of
feature types using the Euclidean andχ2 distances are compared. Laptev and Linde-
berg [12] define models for each action and select the model that best fits the features.
Probabilistic methods are used in [17] and [16]. The former uses Relevance Vector Ma-
chines for obtaining posterior probabilities of actions, and in the latter a probabilistic
Latent Semantic Analysis is implemented.

Our implementation follows the spirit of these latter two approaches, recognizing that
probabilistic approaches are more robust and give more relevant information that can be



used in higher levels of understanding. The approach described here is based on the
method proposed by Cummins and Newman [5]. In their work the aim was to recognise a
previously visited location for the specific case of loop closing in robot navigation. It is a
relatively simple probalistic approach, but as we will showgives remarkably good results.

Our aim is to classify avideo as one of the set of previously known actions. Here a
video can refer to any sequence of frames, but in the case of our training data (the KTH
dataset [11]) each video is in fact a single file, and we have one action per file. In our real-
time implementation in section 4 we employ a sliding temporal window with the “video”
being the sequence of frames within the window. We begin defining an observation vector
asZ = {z1,z2, ...,zn} where eachzi is a binary variable that is set to 1 if a feature type
is observed in a video and zero otherwise. Defining a setA = {A1, ...,Ak} of actions we
want to obtain the conditional probabilityp(Ai|Z) for each action. Using Bayes rule this
is:

p(Ai|Z) =
p(Z|Ai)p(Ai)

p(Z)
(2)

wherep(Z) is just a normalizing factor. Given the prior that each action is equally
likely to occur, the important term in (2) becomes the likelihood: p(Z|Ai). This condi-
tional distribution contains the information on the relationships of the feature types and
is therefore the one that we want to learn. Because the complexity of the calculation of
the joint distribution increases exponentialy with the number of variables (feature types),
computing of the full distribution quickly becomes untractable. We believe that capturing
at some extent these relationships between feature types isa key factor for differentiating
similar actions, therefore a way of approximating this distribution is of paramount impor-
tance. In the next sections we describe an approximation given by Chow and Liu [4] and
also we briefly describe the naive Bayes approach as a standard method for comparison.

3.1 Näıve Bayes

One of the simplest ways of approximating a joint distribution is to assume independence
between all the variables; this is called naı̈ve Bayes and is expressed mathematically as
p(x1,x2, ...,xn) = ∏n

i p(xi), in our case this will be:

p(Z|A j) = p(z1,z2, ...,zn|A j) =
n

∏
i

p(zi|A j) (3)

This is a very simple way of approximating the joint distribution and very easy to
implement. We simply have to learn the marginal probabilityof each feature type, and
this can be done as explained in [15] by settingp(zi|A j) = n(zi)/N j, wheren(zi) is the
number of times that feature typezi was observed andN j is the total number of videos
corresponding to actionj. This kind of estimation has one drawback: if a feature type
is not observed during training then its marginal probability becomes zero and therefore
the whole joint becomes zero. To avoid this extreme case we apply a simple way of
smoothing namelyp(zi|A j) = (n(zi)+ s)/(N + s∗ v) wheres is the smoothing factor and
v is the number of values that the random variablez can take. Ifs = 1 this is known as
Laplacian smoothing.



3.2 Chow - Liu approximation

Chow and Liu [4] presented a first order approximation to the full joint distribution (i.e.
the joint is represented as the product of termsp(zi|z j,A), so that each observation variable
zi is conditioned on at most one otherz j). The distribution obtained in this way is proved
to be the optimal approximation of the full distribution in the sense of minimizing the
Kullback-Leibler divergence.

In order to determine the approximation the mutual information I between pairs of
variables is calculated

I(zi,z j) = ∑
zi,z j

p(zi,z j) log
p(zi,z j)

p(zi)p(z j)
(4)

where the sum is made for all combination of values that the variableszi andz j can
take. The joint distributionp(zi,z j) and the marginalsp(zi), p(z j) can be learnt from data.
The next step is to construct a weighted undirected graph whose nodes are the random
varibleszi and the weight of each edge is given by the mutual informationbetween its
two nodes. The final step involves finding the maximum spanning tree in this graph,
as task common in graph theory. The maximal spaning tree provides the structure of the
dependencies between the variables: each variable is dependent on only one other variable
(except for the root of the tree). The approximation of the full distribution is then

p(Z|A j) = p(zr|A j) ∏
q∈Ω

p(zq|zpq ,A j) (5)

wherezr is the root node,Ω is the set of all nodes excluding the root node andzpq

is the parent of nodezq. As in the case of naı̈ve Bayes we have to apply some kind of
smoothing to avoid probabilities going to zero.

4 Real-Time implementation

Having obtained action descriptors in an offline learning phase, the recognition task is
extremely fast. For our real-time implementation we maintain a FIFO buffer of video
frames in memory. The size of this buffer of course depends onthe temporal scale chosen
and this induces a fixed latency of half the buffer length on the results. Each image
received is first smoothed with a Gaussian, and then insertedinto the buffer. Once the
buffer is full we need only perform the convolution in time, extract the features of the
central frame in the buffer, and compute a binary frame descriptor for that frame in an
analogous fashion to the complete video in section 3. We thenestimate the posterior
probability for each one of our actions given this new data. If the estimated probability
for the maximum likelihood action is above a threshold then we identify the current action,
and if not we read another frame and add its new frame descriptor to our previous one and
compute the probabilities again, this continues until the probability of one of the actions
reaches the threshold. Frames older than a fixed lag are removed from consideration.
Images of the real-time system working are shown in Figure 3.



(a) (b)

(c) (d)

Figure 3: Snap-shots of the real-time implementation. (a)-(b) Correct classification of the
action. (c) In this frame there is confusion between joggingand running so the action
remains undefined until more information is acquired. Two frames later, in image (d), the
action is correctly classified.

5 Experiments

For our experimental evaluation we have used the action database made by Laptev and
that is available online at KTH website [11]. This database contains videos of six differ-
ent actions namely: hand clapping, hand waving, walking, jogging, running and boxing,
performed by 25 different persons and has been used in various papers as their training
and test data. The total database contains 599 videos. Because our main objective is
to compare the results obtained by the Chow-Liu approximation when trying to classify
similar actions against the simple naive Bayes approach we first tested with three actions:
walking, jogging and running. A set of images extracted fromthe videos corresponding
to these three actions can be seen in Figure 4.

The methodology chosen for the experiments is the one used in[16]. The database
was divided in 25 sets, one for each person, we used the features extracted from the
videos of 3 randomly selected persons for clustering (and obtain our feature types). With
the remaining 22 persons we performed a leave-one-out crossvalidation test. Because the
clustering phase introduces a random component, the experiments were repeated 25 times
for each number of cluster centres and the results presentedhere are an average of these
runs. The parameters used for the feature detection wereσ = 1 (spatial scale),τ = 2.5



Figure 4: Some images taken from the videos of the KTH database.

and a threshold of 0.01. The scales were fixed during the experiments and we only used
the first 200 frames of each video for extracting features. The results of both the naı̈ve
Bayes approach and the Chow-Liu approximation for different cluster centres, can be
seen in Figure 5a. Figure 5b shows the confusion matrix obtained with the Chow-Liu
algorithm and 800 cluster centres. It should be noted that inmeasuring the performance
of discrimination between actions (especially jogging andrunning) we take the labels
in the KTH dataset as ground truth, but these labels are very much open to individual
interpretation. In order to asses this ambiguity in the “ground-truth” we asked several
people to classify 300 videos of walking, jogging and running. The confusion matrix of
the average results obtained in this test is shown in Figure 5c.

In order to compare our classification scheme with the results presented in other pa-
pers we also made experiments using the whole database. Figure 6 show the results of
both methods when training and testing with the six actions using 500 cluster centres.

6 Conclusions

We have presented an action classification method that exploits the relationships between
different spatio-temporal feature types and we have shown it to improve the classification
of similar actions. The results are promising despite some ambiguity of the data set ground
truth. We also showed how this method can be implemented in a real-time application.
It is also worth remarking that even the simple naı̈ve Bayes approach gives very good
results when classifying disimilar actions, as can be seen in the results shown in Figure 6,
indeed the accuracy for these actions is sometimes better that the one obtained using more
complex models.

Although in this paper we have used a supervised learning approach, this can be easily
extended to an usupervised form in the case of naı̈ve Bayes by means of Mixtures of
Bernoulli distributions and EM as described in [1]. The caseof an unsupervised Chow-
Liu algorithm is more difficult and the subject of our ongoingresearch. In common with
the related work of [7], currently our overall action descriptor – the binary occurrence
vector – takes no account spatial or temporal ordering, factors which we believe may be
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Figure 5: Results obtained. (a) Accuracy of both methods using different cluster centres.
(b) Confusion matrix obtained with the Chow-Liu algorithm and 800 cluster centres. (c)
Confusion matrix as a result of human classification.

important to incorporate into our descriptor.
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