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Abstract

One of the challenges found in recent methods for actiongr@tion has
been to classify ambiguous actions successfully . In the obsethods that
use spatio-temporal features this phenomenon is obserred two actions
generate similar feature types. Ideally, a probabilistéssification method
would be based on a model of thél joint distribution of features, but this
is computationally intractable. In this paper we proposagian approxima-
tion of the full joint via first order dependencies betweesttfiee types using
so-called Chow-Liu trees. We obtain promising results attdeve an im-
provement in the classification accuracy over naive Bayesodimer simple
classifiers. Our implementation of the method makes use wfaayodescrip-
tor for a video analogous to one previously used in locateognition for
mobile robots. Because of the simplicity of the algorithmce the offline
learning phase is over, real-time action recognition isfids and we present
an adaptation of this method that works in real-time.

1 Introduction

The interpretation of video sequences is a topic that has gemving in importance in
recent years. It involves not only computer vision teche&jfor obtaining information
from images but also machine learning algorithms becausieedailtimate need for high
level interpretation. Many things are involved in the as#yof a video sequence such as
object recognition, target localization, motion detegtiphysical contraints and human
behaviour. In some applications, like visual surveillarite role played by humans is
the main priority, so several methods for modeling humaiviicthave been proposed.
However the majority of these approches fall short of madgltbehaviour”, which, we
posit, refers to a more complex combination of factors likemtionality and therefore
belongs to a higher level of understanding.

A first step to achieving behaviour undestanding is almasaogy the recognition of
actions. In Efro%t al. [8] a target motion descriptor was developed for classgfframes
using ak-nearest neighbour classifier. Robertson [18] used Efrestdptor within a pro-
babilistic framework, fusing the low-level motion desdaps with location and direction
cues via a Bayes’ net. That work further made an attempt aavietr recognition via



hidden Markov representations of action sequences whighphoposed could be inter-
preted as behaviours.

Another kind of descriptor for action classification was éogpd by Davis [6], ob-
tained as histograms of the motion orientation informatontained in what he called
“Motion History Images” (MHI). Carlsson and Sullivan [3]ilited keyframes to repre-
sent actions: given a new frame a voting matrix is createttopare keyframes with
the new frame, with the matrix updated if the topology betweerresponding points of
a keyframe and the new frame is the same. An interesting appravas followed by
Boiman and Irani [2], although their main objective was ttedeirregularities in videos
and not to classify actions. They define irregularities agtnents of videos that can’t
be composed using previous observed data. The method afipaserks well but is
computationally expensive.

Other methods developed lately are based directly on imeageifes. Image features
are a common tool in computer vision methods, very popularéas such as pattern and
object recognition. In recent years a new kind of featurantbnot only in space but also
in time, have been used for action recognition. Laptev amdiéberg [12] presented an
approach that is an extension in time of the well know HaBtisphens [9] corner detector,
achieving good results in general although for subtle m@mm(like a wheel spinning)
the method doesn't give a good response and the number oirdsabbtained is very
small. Oikonomopoulost al. [17] also extended another kind of spatial features to the
temporal case, in this case the saliency approach of KadiBaady [10]. The saliency
approach is based on localizing points of local maximumagnytr A method that is not
an extension of a previously know feature detector was ptedeby Dolbr et al. [7],
based primarily on a convolution with a Gabor filter in timénelfeatures obtained in this
way have also been used for action recognition by Nie&tlek [16] in a very interesting
application of probabilistic Latent Semantic Analysis.

In this paper we adopt the spatio-temporal features prapg®ollaret al.. In con-
strast to their work, however, our classification methodigly grounded in a probabi-
listic framework. More precisely we are interested in eatihg p(z, .. ., z;|A), the joint
distribution over feature observatiogsgiven a particular actio. This joint distribu-
tion, comprisingn dimensions (whera is typically very large) is intractable to compute.
Our main contribution in this paper is to show how this joirgtdbtion can be effectively
approximated using only first-order dependencies [4]. Tdes was recently employed
in mobile robotics for location recognition [5] and here wiply it to action recognition
for the first time.

The remainder of the paper is divided as follows: in sectiome2review the theory
behind spatio-temporal features and explain why similioas are more dificult to iden-
tify following this approach. In section 3 our probabilestnethod is explained in detail,
and in section 4 we describe a real-time implementationisfrttethod. Section 5 shows
the results obtained and the last section deals with thelusinas and future directions
of research.

2 Spatio-temporal features

We will use the spatio-temporal features as described inb&tause they have shown
good results even using the most simple methods of clagsificaThese features are



obtained by convolving a set of video frames with a Gaussiany; o) in the spatial
dimension and with 1D Gabor filters in the temporal dimensitime 1D Gabor filters are
defined ad(t; T, w) = — cos 2t w) exp /7 andheg (t; T, w) = — sin(2mtw) exp /7.

In this quadrature pair each filter is a harmonic functiorhvéitGaussian envelope. The
parameter in this specific case controls the frequency of the harmamction and the
variance of the Gaussian. The whole response function isdkpressed as:

R= (I xg*hey)? + (1 ¥ g hog)? 1)

Using a threshold and non-maximal suppression, the featwith highest response
are selected. Usually these high response locations poméddo local regions containing
periodic motions but regions with spatio-temporal corrjé®y are also detected. Once
the spatial and temporal location of a feature is obtairtezlset of pixels which surround
it in a given size of spatio-temporal window is extracted] dall this spatio-temporal
window acuboid. The side length of this temporal window is set to six timesgbale at
which the feature was detected. An example of the features®el by this method and
their corresponding cuboids is shown in Figure 1.
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Figure 1: (a) Detected features. (b) Cuboids (flattenecesgmtation, time runs from left
to right).

As shown in [14] the selection of a good descriptor for spdiéiatures has proven
to play an important role in improving the results of any aidon involving image fea-
tures. Regarding spatio-temporal features, [7] experimeith some of the classic des-
criptors including SIFT [13], and show that apparently apendescriptor such as the
concatenated brightness values of the cuboids gives semijood as or better than other
descriptors. We have not conducted our own evaluation &ed 7] we use this simple
descriptor in our work. The features are clustered ukingeans with Euclidean distance
and a fixed number of cluster centres. The clusters centtagel in this process define
the set of feature types. After the clustering process eaatufe is tagged as belonging
to one of these clusters. The overall process involves fleetian of four parameters: the
scales in space and time (1), the feature threshold, and the number of cluster centres.
The latter determines the complexity of our model.

Using feature types for classifying similar actions haspitsblems because similar
actions generate similar features as can be observed ineF2gurhis is what motivates
the development of our method that can deal to some extehtg problem.
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Figure 2: Graphics of feature ocurrence for (a) Jogging ardilg. (b) Jogging and
Running. As can be seen similar actions, like those in (ddpced similar kinds of
features.

3 Probabilistic formulation

Different methods have been used for the classification & In [7] histograms of
feature types using the Euclidean axdl distances are compared. Laptev and Linde-
berg [12] define models for each action and select the modelhtist fits the features.
Probabilistic methods are used in [17] and [16]. The fornmssuRelevance Vector Ma-
chines for obtaining posterior probabilities of actionedan the latter a probabilistic
Latent Semantic Analysis is implemented.

Our implementation follows the spirit of these latter tw@egaches, recognizing that
probabilistic approaches are more robust and give moreaeiénformation that can be



used in higher levels of understanding. The approach desttiere is based on the
method proposed by Cummins and Newman [5]. In their work thmeveas to recognise a
previously visited location for the specific case of loopsahg in robot navigation. Itis a
relatively simple probalistic approach, but as we will stgiwes remarkably good results.

Our aim is to classify aideo as one of the set of previously known actions. Here a
video can refer to any sequence of frames, but in the caserdfaining data (the KTH
dataset [11]) each video is in fact a single file, and we haeeemtion per file. In our real-
time implementation in section 4 we employ a sliding tempatadow with the “video”
being the sequence of frames within the window. We begin ihefian observation vector
asZ ={z,2,...,z,} where eacly, is a binary variable that is set to 1 if a feature type
is observed in a video and zero otherwise. Defining aAset{Ay, ..., A} of actions we
want to obtain the conditional probability(A;|Z) for each action. Using Bayes rule this
is:

P(Z|A)) P(A)
p(Z)
wherep(Z) is just a normalizing factor. Given the prior that each ati®equally
likely to occur, the important term in (2) becomes the likelbd: p(Z|A;). This condi-
tional distribution contains the information on the redathips of the feature types and
is therefore the one that we want to learn. Because the caitypte the calculation of
the joint distribution increases exponentialy with the tnemof variables (feature types),
computing of the full distribution quickly becomes untiaaiie. We believe that capturing
at some extent these relationships between feature typdeigfactor for differentiating
similar actions, therefore a way of approximating thisrilisition is of paramount impor-
tance. In the next sections we describe an approximatiendiy Chow and Liu [4] and
also we briefly describe the naive Bayes approach as a sthnadhod for comparison.

P(AI|Z) = )

3.1 Nave Bayes

One of the simplest ways of approximating a joint distribatis to assume independence
between all the variables; this is calledveaBayes and is expressed mathematically as
p(X1,%2,....%a) = ' P(Xi), in our case this will be:

n
P(ZIA) = (21,22, .., z|Aj) = [ ] P(@|A)) 3)
|

This is a very simple way of approximating the joint disttibn and very easy to
implement. We simply have to learn the marginal probabiityeach feature type, and
this can be done as explained in [15] by settjp(g|Aj) = n(z)/N;j, wheren(z) is the
number of times that feature tygewas observed an; is the total number of videos
corresponding to actiof. This kind of estimation has one drawback: if a feature type
is not observed during training then its marginal probapllecomes zero and therefore
the whole joint becomes zero. To avoid this extreme case b apsimple way of
smoothing hamely(z|Aj) = (n(z) +s)/(N + s*Vv) wheres is the smoothing factor and
v is the number of values that the random variabtan take. Ifs= 1 this is known as
Laplacian smoothing.



3.2 Chow - Liu approximation

Chow and Liu [4] presented a first order approximation to thkjéint distribution (i.e.
the joint is represented as the product of tep(w|zj, A), so that each observation variable
z is conditioned on at most one othgy. The distribution obtained in this way is proved
to be the optimal approximation of the full distribution inet sense of minimizing the
Kullback-Leibler divergence.

In order to determine the approximation the mutual infoiorat between pairs of
variables is calculated

p(z.2)
1(z,z)) = i,zj)log————~
(ZH J) Z'-sz p(zh J) gp(a)p(zj)
where the sum is made for all combination of values that thiabkesz andz; can
take. The joint distributiop(z,zj) and the marginalp(z ), p(z;) can be learnt from data.
The next step is to construct a weighted undirected grapts&/hodes are the random
variblesz and the weight of each edge is given by the mutual informabietween its
two nodes. The final step involves finding the maximum spantiee in this graph,
as task common in graph theory. The maximal spaning treagesthe structure of the
dependencies between the variables: each variable isdeson only one other variable
(except for the root of the tree). The approximation of tHedistribution is then

(4)

P(Z|A}) = p(z|A)) er(Zq\qu,Aj) (5)
ge

wherez is the root nodeQ is the set of all nodes excluding the root node aghd
is the parent of node,;. As in the case of rige Bayes we have to apply some kind of
smoothing to avoid probabilities going to zero.

4 Real-Time implementation

Having obtained action descriptors in an offline learningg#) the recognition task is
extremely fast. For our real-time implementation we mame FIFO buffer of video
frames in memory. The size of this buffer of course dependh@temporal scale chosen
and this induces a fixed latency of half the buffer length om rissults. Each image
received is first smoothed with a Gaussian, and then insertedhe buffer. Once the
buffer is full we need only perform the convolution in timetract the features of the
central frame in the buffer, and compute a binary frame deserfor that frame in an
analogous fashion to the complete video in section 3. We #stimate the posterior
probability for each one of our actions given this new dafahé estimated probability
for the maximum likelihood action is above a threshold theridentify the current action,
and if not we read another frame and add its new frame desctigpbur previous one and
compute the probabilities again, this continues until thabpbility of one of the actions
reaches the threshold. Frames older than a fixed lag are eshfoem consideration.
Images of the real-time system working are shown in Figure 3.
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Figure 3: Snap-shots of the real-time implementation(§a)correct classification of the
action. (c) In this frame there is confusion between joggnd running so the action
remains undefined until more information is acquired. Tvemfes later, in image (d), the
action is correctly classified.

5 Experiments

For our experimental evaluation we have used the actiorbdatamade by Laptev and
that is available online at KTH website [11]. This databasetains videos of six differ-

ent actions namely: hand clapping, hand waving, walkinggiog, running and boxing,

performed by 25 different persons and has been used in gapapers as their training
and test data. The total database contains 599 videos. &eoaw main objective is
to compare the results obtained by the Chow-Liu approximnatihen trying to classify

similar actions against the simple naive Bayes approachretadsted with three actions:
walking, jogging and running. A set of images extracted fithi videos corresponding
to these three actions can be seen in Figure 4.

The methodology chosen for the experiments is the one usgdjn The database
was divided in 25 sets, one for each person, we used the ésatxtracted from the
videos of 3 randomly selected persons for clustering (atdiolour feature types). With
the remaining 22 persons we performed a leave-one-out eatidation test. Because the
clustering phase introduces a random component, the expets were repeated 25 times
for each number of cluster centres and the results presbetedare an average of these
runs. The parameters used for the feature detection wetel (spatial scale)r = 2.5



Figure 4: Some images taken from the videos of the KTH datbas

and a threshold of.01. The scales were fixed during the experiments and we oely us
the first 200 frames of each video for extracting featurese msults of both the iiee
Bayes approach and the Chow-Liu approximation for differdnster centres, can be
seen in Figure 5a. Figure 5b shows the confusion matrix néthivith the Chow-Liu
algorithm and 800 cluster centres. It should be noted thatdasuring the performance
of discrimination between actions (especially jogging andning) we take the labels
in the KTH dataset as ground truth, but these labels are veighropen to individual
interpretation. In order to asses this ambiguity in the togna-truth” we asked several
people to classify 300 videos of walking, jogging and rugnifihe confusion matrix of
the average results obtained in this test is shown in Figcire 5

In order to compare our classification scheme with the requrksented in other pa-
pers we also made experiments using the whole databasereghow the results of
both methods when training and testing with the six acti@isgi500 cluster centres.

6 Conclusions

We have presented an action classification method thatiexhe relationships between
different spatio-temporal feature types and we have shoterirnprove the classification
of similar actions. The results are promising despite samgguity of the data set ground
truth. We also showed how this method can be implemented @alatime application.
It is also worth remarking that even the simpléveBayes approach gives very good
results when classifying disimilar actions, as can be sedme results shown in Figure 6,
indeed the accuracy for these actions is sometimes bettigthihone obtained using more
complex models.

Although in this paper we have used a supervised learningpaph, this can be easily
extended to an usupervised form in the case éen8ayes by means of Mixtures of
Bernoulli distributions and EM as described in [1]. The cafan unsupervised Chow-
Liu algorithm is more difficult and the subject of our ongoimgearch. In common with
the related work of [7], currently our overall action deptor — the binary occurrence
vector — takes no account spatial or temporal orderingpfaathich we believe may be
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Figure 5: Results obtained. (a) Accuracy of both methodsgudifferent cluster centres.
(b) Confusion matrix obtained with the Chow-Liu algorithmda800 cluster centres. (c)
Confusion matrix as a result of human classification.

important to incorporate into our descriptor.
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