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Abstract

Several interesting monitoring applications concern pe@ntering a pre-
scribed area, where they deposit an object in their possgssi collect an
object deposited earlier. One example arises in the usecptlei racks. We
propose a novel method for associating each person who ideposobject
with the person who later collects it. Our main contributierio deal with
ambiguity in the visual data through the use of global caists on what
is possible. The method is evaluated on a set of practicararpnts in a
bicycle rack, and applied to online theft detection by cormgpthe colour
profile of associated individuals.

1 Introduction

A major challenge in computer vision is to reliably recognevents based on current
object tracking and detection technology. Despite intengesearch aiming towards uni-
versal tracking with “one object per track and one track ggect” [17], such a tracker is
not yet available if a single viewpoint is used. Ambiguoussal analysis makes it difficult
to associate each person with the event accomplished. Bhadeing the expected events
and their underlying global constraints is one way to resawnflicting and ambiguous
observations.

The scenario where a person leaves an object (typicallyelbcwithin a storage area,
and picks it up sometime later, presents a rich constraioedasio that may be observed
by a single CCTV camera. However, ambiguous observatiams &vailable tracking and
object detection methods are often insufficient to recogjthiz events in isolation with any
certainty. We propose a method to connect people and opgaadsiecide on the sequence
of drop-off and pick-up events. The explanations generatexiild be both consistent
and optimal based on the observations. A link can then beredéetween the person
dropping off an object, and the person picking up the sameabthater. Additionally,
passive biometric features can be utilized to compare ttvesendividuals, and raise a
warning when they do not match.

In Section 2, we give a brief overview of relevant work in asating trajectories
and biometric comparison. Section 3 describes how we dptsple and objects from
a video stream. Section 4 presents the association taskrapdges a solution method.
Three experiments using bicycles as objects were condacigdesults are presented in
Section 5. We show how solutions are superior to those ofxdairhen the constraints are
relaxed or removed altogether.



2 Background

Our scenario requires associating the individual who dodpan object with the one who
picks it up. Establishing correspondence between temlyalisjoint motion trajectories
of individuals has previously been used to relate entry atiicheints in non-overlapping
camera views, and to track individuals across blind regwitis a single view [2, 3, 9, 12,
22]. Such methods typically depend on features of the mowidiyiduals obtained from
the video stream, sometimes referred to as passive [6] bbsmhetrics [19, 20].

Colour is a matching feature to connect two trajectories &s eéasy to retrieve, al-
though depends on people not changing their clothing wiisingle session [3, 6, 7, 9,
16, 21]. Bowden and KaewTraKulPong utilized colour histogs to re-identify individ-
uals in non-overlapping neighbouring camera views [3]. Hild and Komiya also used
colour and shape for pedestrians and vehicles [22]. SipilBerclaz et. al. used both
colour and location information to fuse trajectories in b&pping cameras [2]. Sivic et.
al., used colour similarity of clothing to match people imiyy photos segmented using
a face detector [16].

There are however difficulties in using colour informatiohvealking pedestrians.
Shadows, lighting changes and clothing’s natural foldimgoduce wide variations to the
colour of the corresponding pixels across frames. A pixepkxel comparison can thus
produce poor matches. Wu et. al. showed how frame-levelamdesice-level colour rep-
resentations can overcome pixel-level variations [20anke-level colour information is
usually represented by Gaussian mixtures [8] or colouobistms [3, 7, 14, 16, 21]. Bow-
den and KaewTraKulPong proposed the median histogram giih&ame histograms to
represent sequence-level information [3].

In our scenario, we can not ensure the picking person to bedhee as the drop-
ping person. Thus, correspondence based on the individfesdtures can not be ap-
plied. Makris et. al. followed an approach that is indepenaé feature-based matching.
Their work learns the temporal characteristics of the setsiok connection by observing
regularities of exits and entries in different camera viearsd thereby anticipating the
topology of a set of camera views [12]. Javed et. al. combenepbral relationships
with colour profiles and neighbourhood knowledge. They eoriate on learning bright-
ness transfer functions to strengthen their colour mateisitheme [9]. The temporal
expectancy can not be used in our case either. We can noipatéiavith any certainty
when an object will be picked up.

Kettnaker and Zabih, on the other hand, tracked pedestretmgeen cameras using a
one-to-one optimal assignment approach [10]. This is basdte valid assumption that
a trajectory can be associated with only one trajectory lgfaia neighbouring camera.
We experiment with a similar technique to link dropping afidgpicking up trajectories.

To the authors’ knowledge, the exact proposed scenarioagping off and picking
up objects has not been explored before. Perhaps the ckissasrio that has been ad-
dressed previously is that of abandoned baggage. This wasatsis of the PETS2006
challenge for which a number of solutions were proposed Thle abandoned baggage
task, however, does not require associating events ageeljnidropping off and picking
up objects.

The method described in this paper uses sequential prapagditmultiple hypothe-
ses in order to solve a constrained optimisation probleminfilar technique has been
used in the radar surveillance literature to deal with amibigs introduced by sensors.



Reid proposed the Multiple Hypothesis Tracking (MHT) in 99@r radar activities [15],
where tracking information, availed sequentially, cleamsbiguities in previous obser-
vations. MHT keeps a set of hypotheses explaining legajassénts in a tree structure.
Each child hypothesis represents one interpretation af¢hedata. A path in the tree rep-
resents a possible interpretation of all observations fileerbeginning of the observation
period (root) up to the current timestamp (leaf).

3 Tracking People and Detecting Objects

For tracking people, a generic blob tracker [11] was usecktoave the trajectories of
individuals as they approach and depart the storage areis. trBlaker uses a per-pixel
background model together with a simple foreground shapggetand assigns a unique
identifier to each object moving over a continuous trajectdfor each person, the po-
sition (represented by centre of mass of the pixels), aremfrer of foreground pixels)
and colour information are provided for each frame during pleriod the person remains
visible. We extended the tracker to deal with broken trajees through combining trajec-
tories that exhibit similar colour profiles and that are ggdgtand temporally consistent.

In the case where the possessed object is comparable todivéiral's projected
area (such as bicycles utilized in our experiments), thegban area along the trajectory
is significant, and can be used to differentiate people dépg<rom those collecting
objects. This is feasible when the viewed locations arenaitasi depth from the camera’s
position. Figure 1 shows projected area through time aslp@gposit and collect objects.
The difference in the area prior to entering the storage anglafter leaving it represents
an estimate of the projected size of an object at a given deypith is independent of
the person’s size. Maximum likelihood estimation (MLE) wesd to estimate Gaussian
class conditional densities for area differences (at argdepth) across a drop-off and a
pick-up (Figure 1). In this way we are able to estimate theliilood that someone is
dropping off or picking up an object, provided a continuogectory is available across
the event. We use this likelihood, when available, to helpst@in the assignment of
individuals to different events detailed in Section 4.
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Figure 1: The change in area over time for someone pickirft) ad dropping (middle) a
bike; the increase/decrease in size is clearly visiblerda60 (left) and t=130 (middle),
along with ML estimates for Gaussian distributions of ardi@ences (right)

The tracker can not be used to identify static objects. &uhtébefore’ and ‘after’
reference images of the storage area are compared, thenedpling changed pixels, rep-
resenting objects that have been deposited and removedriskhef noise or lighting
changes is minimised by taking reference images beforesopemters the storage area



and after exiting it. If another person enters the area pgadhe departure of the first,
the second reference image is only taken after all have thxpaWe refer to these inter-
vals as ‘periods of activity’. The changed image pixels &entgrouped into connected
regions representing several blobs of dropped and pickgettsbas Figure 2 shows. We
refer to these blobs as ‘objects’ even though some are &ctualtiple adjacent objects
that could not be separated. The possibility of multiplesob§ of the same type within
one detected blob is reflected in the constrained optinisgtioblem formulated in Sec-
tion 4. We distinguish dropped from picked objects by detecintensity edges in the
‘before’ and ‘after’ reference images, masking with themdped pixels, and classifying
as a dropped object if the number of edge features increasésjce versa. This assumes
the background is relatively free of edge features, anddahbtone type of object (either
dropped or picked) is present within each blob.

Figure 2: Before (a) and after (b) reference images, rengalropped (c) and picked (d)
bicycles

4 The Association Phase

4.1 The problem as constrained optimisation

From tracking and object detection, a set of person hypetigs} and a set of object
hypotheseqo;} are generated. Individuals may appear more than once inahefs
people, and, crucially, the same object is normally detkistéce, once when it is dropped,
and once when it is picked. False positives are expectedtim dmis. The association
problem can be represented using a graph as in Figure 3. riectsmipeople to objects and
dropped objects to picked objects. There are two types cgdeerson-object edges and
object-object edges. The aim is to identify those edgedbsttexplain the observations.
An example of a solution is shown as darker lines to the rigligure 3. Four types of
events are used to explain the observations over an exterefiad ;
1. pkdp(pi,0j, Pk, 01): personp; picks up objecb;, personpy drops off objecy, 0j
ando, are the same object,
2. dp(pi,05): personp; drops off objecd;, which remains unpicked during the period,
3. pk(pi,0j): personp; picks up objecibj, which was not dropped off during the
period,
4. none(p;): personp; neither picks up nor drops off an object.
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Figure 3: People (squares) and objects (circles) are comhata edges. Horizontal

dividers separate periods of activity within the storageaampunctuated by periods of
inactivity. The vertical divider separates drop-offs frgick-ups. Objects only appear as
dropped or picked. People with broken trajectories can apipeboth vertical sections

A possible explanation is specified by a union of events of égoe:
€= CpkdpUCdpUCpk UCnone (1)

subject to the constraint thedich person isinvolved in exactly one event. This is based on
the assumption that each person does not drop/pick moresti&nbject simultaneously.
Coxdp is the set of al(i, j, k,|) combinations that define thekd p events, and similarly for
Cdp, Cpk andChone.

An optimal solutione* to the assignment problem is obtained by minimizing a cost
function. This cost function is defined as a sum of the coste@ated with each of the
four event types:

fleg =3 fpkdp(pivoi’pkvol)"’gfdp(pivoj)"" Fok(Pi,0)) + 3 frone(Pi)
Cpkdp p pk Chone

fokdp = d(pi,0j) +d(0j,0) +d(pk, 0 | Of) 2)

fdp: fpk:d(phoi)"’a

fnone:[3

wherea is a penalty term on unconnected drop-off or pick-up evearigS is a penalty
term on a ‘none’ event.

d(pi,0j) is the plausibility of a link between a person and an objeat] ia derived
from the maximum degree of overlap between the bounding Bdkeoobject and the
bounding boxes of the person across the whole trajectothelfrajectory of the person
is complete, the dropping individuals (identified througbaadifferencing - Section 3)
are only connected to dropped objects, and the picking iddals are only connected to
picked objects.

sharedBoundingBox( p;,0; ) . ! .
d(pi,Oj) — {1—max( n‘inBoundingBox(pi.oj)J ) if (l (pl) - I(OJ))

otherwise

3)

I (pi) = [time entering aredime exiting areh
I (0;) = [time of ‘before’ reference imagéme of ‘after’ reference imade

d(pk, 0 | 0j) is an updated post-segmented cost. When two or more inde#panajects
are added, one combined object blob is detected (Sectiow/Bgn one of these objects



is subsequently removed, a better estimate of the objaggésmand bounding box can be
obtained as Figure 4 shows.

Figure 4: The left image shows three objects dropped simetiasly. As one object is
collected (right image), post-segmentation could be aghie

d(0;,0j) is the match of picked to dropped objects, and is assessedrbparing
corresponding pixels. This match function accommodatghiect type, and assumes
objects do not change their shape or position between beoppdd and picked. 15(0;)
is the set of pixels representing objegtthen

S(0))nS(0)) ; :
1- Wﬁgoh)\) if o € picked/ 0j € droppedA I (0j) > 1(0j)

d(0;,0)) = { 4)

[ otherwise

4.2 Solving the constrained optimisation problem

To solve the constrained optimisation problem, we propagdtee of multiple hypothe-
ses (explanations) starting from the beginning of the olzg&m period, and working
through to the end, with levels of the tree correspondingetagals of activity. The tree is
pruned at each stage to keep the search tractable (bearh)searetaining only the best
hypotheses.

As several people enter the storage area simultaneoustya®lobs get deposited or
picked up. Multiple sets of assignments can be generatecptaia the events during one
period of activity, and decide who dropped/picked whicheahj If a person is connected
to a picked object, then all matching drop offs that have matrbpicked up yet are com-
pared for plausibility. The previously unmatched drop évemow joined with its pick
up, and can not be picked again.

Each level in the tree is thus expanded into nodes represgthtié different hypothe-
ses explaining the observations up to the current periocctifity. Figure 5 shows a
three-level multi-hypotheses tree. Each path (from rode&) in the tree corresponds
to an explanation. The cost of the path equals the sum of thieidual costs of events
along that path (exceptp events that are supersededikdp events). The best path is
determined by the minimum cost.

Due to the ambiguities in the visual data, the current best pey not be part of
the best path to lower levels of the tree as it propagatedimduture. Yet it would be
impractical to maintain the complete tree, due to the nunolb@ossible hypotheses for
all but the simplest cases. lifis the average number of sets of assignments per period
of activity, andn is the number of such periods (levels of the tree), then tmeptexity
will be ©(I"). For the first experiment which extended for one hour (refe8éction 5.1
for details),l = 8.02 andn = 35. This results in an intractable number of leaf hypothe-
ses 443 x 10%! of which many are hypotheses of high cost. To ensure scijabiler
long video sequences involving many periods of activitytydhe k-best hypotheses are
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Figure 5: The left graph shows probable connections withper@od of activity. Object4
represents a dropped object, while object5 representskagiabject. The various plau-
sible explanations extend the tree. The evgkatp(pz,0s, p1,01) can not be added to the
left branch as it contradicts the hypothesis at the pareet le

retained at each levek & 10 in our experiments). This reduces the complexitpto).
This method is ‘on-line’ in that the optimal hypothesis upth@ current timestamp is
always available.

For comparison purposes, we have implemented both an utmainesl solution (i.e.
optimizing f (e) free of the constraint) and one that only partially satisfiesconstraint
by transforming the problem into a one-to-one assignmeotblpm between individuals
and event types. This would still allow dropping people ia pkdp events to be involved
in another event. This approach is solved using the Munlitesg@arian) algorithm. The
cost matrix input to the assignment problem isiandn matrix A where each person (row)
can be mapped to another person or to one of the other thres tyfpevents explained
above (columns). If one person can be matched to anothespei@more than one route,
the minimum is selected, as Equation 5 shows.

Al k) = rTinIn{fpkdp(pi,oj, Pk, 01} (5)

5 Experimentsand Results

5.1 BicyclesasObjects

The conducted experiments utilized bicycles as objectshénytle racks as the storage
area. One challenge in using bicycles is the overlap in th&iking positions and the
difficulty in distinguishing bicycles from each other. Threxperiments were conducted.
The first experiment extended over 1 hour and staged 28 diffaryclists locking their
bicycles onto the racks and picking them up again. A view fidmve was selected to
avoid blocking the camera by passing pedestrians or veh(Eligure 6). Cyclists were
aware of the objectives of the research, but not of the teghas used in the solution. The
second experiment was staged for 50 minutes and includedI8tsy The third full day
(9.5 hours) experiment recorded 22 participants usingdbks over the course of the day.
In all three experiments, simulated thefts were performBae number of staged thefts
was 7, 1 and 5 respectively. Ground truth for the three di&gasas established by hand,
specifying the correct links between people and bicycles.



5.2 Association Results

The cost function (Equation 2) contains two parametersf3. The performance of the
constrained solution is relatively insensitive to the eabf these parameters, although
the partially-constrained and unconstrained solutioesnaore sensitive to these values.
We chosea = 1.5 andf3 = 2.0 in the experiments presented here. Table 1 shows the
percentage of people connected to the correct event in acgsopao the ground truth.
The constrained solution produced a significant improveroear the unconstrained or
partially-constrained solutions. As expected, applyimg¢onstraint correctly connects a
higher percentage of trajectories, due to the enforcedugmess.

%  unconstrained partially-constrained constrained

expl 75.86 86.21 93.10
exp2 70.37 70.37 92.59
exp3 83.59 82.03 96.09

Table 1: Percentage of correct connections

An example of an ambiguity that is resolved in the constmis@ution from exper-
iment 1 is shown in Figure 7 and Table 2. The unconstrainedoagp allowedpssgz to
be linked as the dropping person twice, afs@y is involved in two events. The partially-
constrained solution solved the problem fgg7, but p1g7is still involved in two events.
The constrained solution satisfied the constraint fullydu@ng the correct connections.
Several similar cases across the three experiments coditiibd.

unconstrained partially-constrained constrained
none(187) none(187)
pkdp(2916, 3, 187, 1) pk(2916, 3) pkdp(29186, 3, 187, 1)

pkdp(8059, 15, 5387, 10)  pkdp(8059, 15, 5387, 10)  pkdp(80595387, 10)
pkdp(8215, 15, 5387, 10)  pkdp(8215, 15,187,1)  none(8215)

Table 2: Example from experiment 1 showing how adding cairsis improves the asso-
ciations. The notation for events is defined in Section 4

3ot |

Figure 7. An example from experiment 1.
Only the edges required for the example are
included

Figure 6: Viewpoint of the bicycle rack



5.3 Colour Comparison and Theft Detection

As an application of the method, we attempted to detectsldfbicycles by comparing
associated individuals using colour information. The presd results use the constrained
solution. An 8x 8 x 8 scale-normalized equal-bin-size RGB colour histograma gen-
erated from the foreground pixels at each frame. ‘Scaleday per channel was used
as a simple colour constancy algorithm [1]. A per-bin medigtogram was calculated
across all frames as explained by Bowden and KaewTraKulRRjng\ distance metric
between histograms was produced using histogram intéssgads].

ROC Curve for the three experiments

1
e
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Figure 8: ROC curve (left) representing theft detectiorulss 0.7 was selected as the
threshold to calculate the confusion matrix (right) for theee experiments

The ROC curve is shown in Figure 8. At a threshold of 0.7, 77@dat of 13) of
the theft cases were caught for an 8.5% false-positive daf@se-positive cases resulted
from the owner returning wearing different clothing, deratrating the limitation of using
only colour profiles. 4 other false-positive cases wereliremly connected, while 9 were
correctly connected but the colour comparison failed toaméte individuals due to poor
segmentation from the background.

6 Conclusions and Future Work

The paper has proposed a method for associating indiviéisalsey drop objects off and
pick them up sometime later using an online constraint-dbageimisation. Ambigui-
ties in the observations are expressed as multiple hypeshadich can then be verified
or invalidated by future observations. Experiments protredlvalue of the association
framework for bicycle theft detection, where colour prddil®ere used to compare linked
individuals. To strengthen the system, the person’s featiieyond colour could be added
to compare individuals, for example, height [4], body masst [13] and behaviour anal-
ysis.

Though our experiments were confined to bicycles and bicyait&s, the approach
could be applied in other contexts. Car parks, cloakroontsaher parking environ-
ments exhibit analogous events and constraints and migbtka viable. Although the
techniques used to track and detect objects vary acrossidsniae propagation of mul-
tiple hypotheses used to solve the constrained optimisatiould remain applicable.
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