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Abstract

Several interesting monitoring applications concern people entering a pre-
scribed area, where they deposit an object in their possession, or collect an
object deposited earlier. One example arises in the use of bicycle racks. We
propose a novel method for associating each person who deposits an object
with the person who later collects it. Our main contributionis to deal with
ambiguity in the visual data through the use of global constraints on what
is possible. The method is evaluated on a set of practical experiments in a
bicycle rack, and applied to online theft detection by comparing the colour
profile of associated individuals.

1 Introduction

A major challenge in computer vision is to reliably recognise events based on current
object tracking and detection technology. Despite intensive research aiming towards uni-
versal tracking with “one object per track and one track per object” [17], such a tracker is
not yet available if a single viewpoint is used. Ambiguous visual analysis makes it difficult
to associate each person with the event accomplished. Understanding the expected events
and their underlying global constraints is one way to resolve conflicting and ambiguous
observations.

The scenario where a person leaves an object (typically locked) within a storage area,
and picks it up sometime later, presents a rich constrained scenario that may be observed
by a single CCTV camera. However, ambiguous observations from available tracking and
object detection methods are often insufficient to recognize the events in isolation with any
certainty. We propose a method to connect people and objects, and decide on the sequence
of drop-off and pick-up events. The explanations generatedshould be both consistent
and optimal based on the observations. A link can then be inferred between the person
dropping off an object, and the person picking up the same object later. Additionally,
passive biometric features can be utilized to compare thesetwo individuals, and raise a
warning when they do not match.

In Section 2, we give a brief overview of relevant work in associating trajectories
and biometric comparison. Section 3 describes how we detectpeople and objects from
a video stream. Section 4 presents the association task and proposes a solution method.
Three experiments using bicycles as objects were conductedand results are presented in
Section 5. We show how solutions are superior to those obtained when the constraints are
relaxed or removed altogether.



2 Background

Our scenario requires associating the individual who dropsoff an object with the one who
picks it up. Establishing correspondence between temporally disjoint motion trajectories
of individuals has previously been used to relate entry and exit points in non-overlapping
camera views, and to track individuals across blind regionswith a single view [2, 3, 9, 12,
22]. Such methods typically depend on features of the movingindividuals obtained from
the video stream, sometimes referred to as passive [6] or soft-biometrics [19, 20].

Colour is a matching feature to connect two trajectories as it is easy to retrieve, al-
though depends on people not changing their clothing withina single session [3, 6, 7, 9,
16, 21]. Bowden and KaewTraKulPong utilized colour histograms to re-identify individ-
uals in non-overlapping neighbouring camera views [3]. ZhiHua and Komiya also used
colour and shape for pedestrians and vehicles [22]. Similarly, Berclaz et. al. used both
colour and location information to fuse trajectories in overlapping cameras [2]. Sivic et.
al., used colour similarity of clothing to match people in family photos segmented using
a face detector [16].

There are however difficulties in using colour information of walking pedestrians.
Shadows, lighting changes and clothing’s natural folding introduce wide variations to the
colour of the corresponding pixels across frames. A pixel-by-pixel comparison can thus
produce poor matches. Wu et. al. showed how frame-level and sequence-level colour rep-
resentations can overcome pixel-level variations [20]. Frame-level colour information is
usually represented by Gaussian mixtures [8] or colour histograms [3, 7, 14, 16, 21]. Bow-
den and KaewTraKulPong proposed the median histogram of theper-frame histograms to
represent sequence-level information [3].

In our scenario, we can not ensure the picking person to be thesame as the drop-
ping person. Thus, correspondence based on the individual’s features can not be ap-
plied. Makris et. al. followed an approach that is independent of feature-based matching.
Their work learns the temporal characteristics of the source-sink connection by observing
regularities of exits and entries in different camera views, and thereby anticipating the
topology of a set of camera views [12]. Javed et. al. combine temporal relationships
with colour profiles and neighbourhood knowledge. They concentrate on learning bright-
ness transfer functions to strengthen their colour matching scheme [9]. The temporal
expectancy can not be used in our case either. We can not anticipate with any certainty
when an object will be picked up.

Kettnaker and Zabih, on the other hand, tracked pedestriansbetween cameras using a
one-to-one optimal assignment approach [10]. This is basedon the valid assumption that
a trajectory can be associated with only one trajectory thatleft a neighbouring camera.
We experiment with a similar technique to link dropping off and picking up trajectories.

To the authors’ knowledge, the exact proposed scenario of dropping off and picking
up objects has not been explored before. Perhaps the closestscenario that has been ad-
dressed previously is that of abandoned baggage. This was the basis of the PETS2006
challenge for which a number of solutions were proposed [5].The abandoned baggage
task, however, does not require associating events as required in dropping off and picking
up objects.

The method described in this paper uses sequential propagation of multiple hypothe-
ses in order to solve a constrained optimisation problem. A similar technique has been
used in the radar surveillance literature to deal with ambiguities introduced by sensors.



Reid proposed the Multiple Hypothesis Tracking (MHT) in 1979 for radar activities [15],
where tracking information, availed sequentially, clearsambiguities in previous obser-
vations. MHT keeps a set of hypotheses explaining legal assignments in a tree structure.
Each child hypothesis represents one interpretation of thenew data. A path in the tree rep-
resents a possible interpretation of all observations fromthe beginning of the observation
period (root) up to the current timestamp (leaf).

3 Tracking People and Detecting Objects

For tracking people, a generic blob tracker [11] was used to retrieve the trajectories of
individuals as they approach and depart the storage area. This tracker uses a per-pixel
background model together with a simple foreground shape model, and assigns a unique
identifier to each object moving over a continuous trajectory. For each person, the po-
sition (represented by centre of mass of the pixels), area (number of foreground pixels)
and colour information are provided for each frame during the period the person remains
visible. We extended the tracker to deal with broken trajectories through combining trajec-
tories that exhibit similar colour profiles and that are spatially and temporally consistent.

In the case where the possessed object is comparable to the individual’s projected
area (such as bicycles utilized in our experiments), the change in area along the trajectory
is significant, and can be used to differentiate people depositing from those collecting
objects. This is feasible when the viewed locations are at similar depth from the camera’s
position. Figure 1 shows projected area through time as people deposit and collect objects.
The difference in the area prior to entering the storage areaand after leaving it represents
an estimate of the projected size of an object at a given depth, and is independent of
the person’s size. Maximum likelihood estimation (MLE) wasused to estimate Gaussian
class conditional densities for area differences (at a given depth) across a drop-off and a
pick-up (Figure 1). In this way we are able to estimate the likelihood that someone is
dropping off or picking up an object, provided a continuous trajectory is available across
the event. We use this likelihood, when available, to help constrain the assignment of
individuals to different events detailed in Section 4.

Figure 1: The change in area over time for someone picking (left) and dropping (middle) a
bike; the increase/decrease in size is clearly visible around t=60 (left) and t=130 (middle),
along with ML estimates for Gaussian distributions of area differences (right)

The tracker can not be used to identify static objects. Instead, ‘before’ and ‘after’
reference images of the storage area are compared, thereby revealing changed pixels, rep-
resenting objects that have been deposited and removed. Therisk of noise or lighting
changes is minimised by taking reference images before a person enters the storage area



and after exiting it. If another person enters the area priorto the departure of the first,
the second reference image is only taken after all have departed. We refer to these inter-
vals as ‘periods of activity’. The changed image pixels are then grouped into connected
regions representing several blobs of dropped and picked objects as Figure 2 shows. We
refer to these blobs as ‘objects’ even though some are actually multiple adjacent objects
that could not be separated. The possibility of multiple objects of the same type within
one detected blob is reflected in the constrained optimisation problem formulated in Sec-
tion 4. We distinguish dropped from picked objects by detecting intensity edges in the
‘before’ and ‘after’ reference images, masking with the changed pixels, and classifying
as a dropped object if the number of edge features increases,and vice versa. This assumes
the background is relatively free of edge features, and thatonly one type of object (either
dropped or picked) is present within each blob.

(a) (b) (c) (d)

Figure 2: Before (a) and after (b) reference images, revealing dropped (c) and picked (d)
bicycles

4 The Association Phase

4.1 The problem as constrained optimisation

From tracking and object detection, a set of person hypotheses{pi} and a set of object
hypotheses{oi} are generated. Individuals may appear more than once in the set of
people, and, crucially, the same object is normally detected twice, once when it is dropped,
and once when it is picked. False positives are expected in both sets. The association
problem can be represented using a graph as in Figure 3. It connects people to objects and
dropped objects to picked objects. There are two types of edges: person-object edges and
object-object edges. The aim is to identify those edges thatbest explain the observations.
An example of a solution is shown as darker lines to the right of Figure 3. Four types of
events are used to explain the observations over an extendedperiod:

1. pkd p(pi,o j, pk,ol): personpi picks up objecto j, personpk drops off objectol, o j

andol are the same object,

2. d p(pi,o j): personpi drops off objecto j, which remains unpicked during the period,

3. pk(pi,o j): personpi picks up objecto j, which was not dropped off during the
period,

4. none(pi): personpi neither picks up nor drops off an object.



Figure 3: People (squares) and objects (circles) are connected via edges. Horizontal
dividers separate periods of activity within the storage area, punctuated by periods of
inactivity. The vertical divider separates drop-offs frompick-ups. Objects only appear as
dropped or picked. People with broken trajectories can appear in both vertical sections

A possible explanation is specified by a union of events of each type:

e = Cpkd p ∪Cd p ∪Cpk ∪Cnone (1)

subject to the constraint thateach person is involved in exactly one event. This is based on
the assumption that each person does not drop/pick more thanone object simultaneously.
Cpkd p is the set of all(i, j,k, l) combinations that define thepkd p events, and similarly for
Cd p, Cpk andCnone.

An optimal solutione∗ to the assignment problem is obtained by minimizing a cost
function. This cost function is defined as a sum of the costs associated with each of the
four event types:

f (e) = ∑
Cpkd p

fpkd p(pi,o j, pk,ol)+ ∑
Cd p

fd p(pi,o j)+ ∑
Cpk

fpk(pi,o j)+ ∑
Cnone

fnone(pi)

fpkd p = d(pi,o j)+ d(o j,ol)+ d(pk,ol | o j)

fd p = fpk = d(pi,oi)+ α
fnone = β

(2)

whereα is a penalty term on unconnected drop-off or pick-up events,andβ is a penalty
term on a ‘none’ event.

d(pi,o j) is the plausibility of a link between a person and an object, and is derived
from the maximum degree of overlap between the bounding box of the object and the
bounding boxes of the person across the whole trajectory. Ifthe trajectory of the person
is complete, the dropping individuals (identified through area differencing - Section 3)
are only connected to dropped objects, and the picking individuals are only connected to
picked objects.

d(pi,o j) =

{

1−max
( sharedBoundingBox(pi,o j)

minBoundingBox(pi,o j)

)

if (I(pi) ⊂ I(o j))

∞ otherwise

I(pi) = [time entering area, time exiting area]

I(oi) = [time of ‘before’ reference image, time of ‘after’ reference image]

(3)

d(pk,ol | o j) is an updated post-segmented cost. When two or more inseparable objects
are added, one combined object blob is detected (Section 3).When one of these objects



is subsequently removed, a better estimate of the object’s pixels and bounding box can be
obtained as Figure 4 shows.

Figure 4: The left image shows three objects dropped simultaneously. As one object is
collected (right image), post-segmentation could be achieved

d(oi,o j) is the match of picked to dropped objects, and is assessed by comparing
corresponding pixels. This match function accommodates any object type, and assumes
objects do not change their shape or position between being dropped and picked. IfS(oi)
is the set of pixels representing objectoi, then

d(oi,o j) =

{

1−
|S(oi)∩S(o j)|

min(|S(oi)|,|S(o j)|)
if oi ∈ picked∧o j ∈ dropped∧ I(oi) > I(o j)

∞ otherwise
(4)

4.2 Solving the constrained optimisation problem

To solve the constrained optimisation problem, we propagate a tree of multiple hypothe-
ses (explanations) starting from the beginning of the observation period, and working
through to the end, with levels of the tree corresponding to periods of activity. The tree is
pruned at each stage to keep the search tractable (beam search) by retaining only the best
hypotheses.

As several people enter the storage area simultaneously, several blobs get deposited or
picked up. Multiple sets of assignments can be generated to explain the events during one
period of activity, and decide who dropped/picked which object. If a person is connected
to a picked object, then all matching drop offs that have not been picked up yet are com-
pared for plausibility. The previously unmatched drop event is now joined with its pick
up, and can not be picked again.

Each level in the tree is thus expanded into nodes representing the different hypothe-
ses explaining the observations up to the current period of activity. Figure 5 shows a
three-level multi-hypotheses tree. Each path (from root toleaf) in the tree corresponds
to an explanation. The cost of the path equals the sum of the individual costs of events
along that path (exceptd p events that are superseded bypkd p events). The best path is
determined by the minimum cost.

Due to the ambiguities in the visual data, the current best path may not be part of
the best path to lower levels of the tree as it propagates intothe future. Yet it would be
impractical to maintain the complete tree, due to the numberof possible hypotheses for
all but the simplest cases. Ifl is the average number of sets of assignments per period
of activity, andn is the number of such periods (levels of the tree), then the complexity
will be Θ(ln). For the first experiment which extended for one hour (refer to Section 5.1
for details),l = 8.02 andn = 35. This results in an intractable number of leaf hypothe-
ses 4.43×1031 of which many are hypotheses of high cost. To ensure scalability over
long video sequences involving many periods of activity, only the k-best hypotheses are



Figure 5: The left graph shows probable connections within aperiod of activity. Object4
represents a dropped object, while object5 represents a picked object. The various plau-
sible explanations extend the tree. The eventpkd p(p7,o5, p1,o1) can not be added to the
left branch as it contradicts the hypothesis at the parent level

retained at each level (k = 10 in our experiments). This reduces the complexity toO(n).
This method is ‘on-line’ in that the optimal hypothesis up tothe current timestamp is
always available.

For comparison purposes, we have implemented both an unconstrained solution (i.e.
optimizing f (e) free of the constraint) and one that only partially satisfiesthe constraint
by transforming the problem into a one-to-one assignment problem between individuals
and event types. This would still allow dropping people in the pkd p events to be involved
in another event. This approach is solved using the Munkres (Hungarian) algorithm. The
cost matrix input to the assignment problem is ann×4n matrix A where each person (row)
can be mapped to another person or to one of the other three types of events explained
above (columns). If one person can be matched to another person via more than one route,
the minimum is selected, as Equation 5 shows.

A(i,k) = min
j,l

{ fpkd p(pi,o j, pk,ol)} (5)

5 Experiments and Results

5.1 Bicycles as Objects

The conducted experiments utilized bicycles as objects andbicycle racks as the storage
area. One challenge in using bicycles is the overlap in theirparking positions and the
difficulty in distinguishing bicycles from each other. Three experiments were conducted.
The first experiment extended over 1 hour and staged 28 different cyclists locking their
bicycles onto the racks and picking them up again. A view fromabove was selected to
avoid blocking the camera by passing pedestrians or vehicles (Figure 6). Cyclists were
aware of the objectives of the research, but not of the techniques used in the solution. The
second experiment was staged for 50 minutes and included 9 cyclists. The third full day
(9.5 hours) experiment recorded 22 participants using the racks over the course of the day.
In all three experiments, simulated thefts were performed.The number of staged thefts
was 7, 1 and 5 respectively. Ground truth for the three datasets was established by hand,
specifying the correct links between people and bicycles.



5.2 Association Results

The cost function (Equation 2) contains two parameters:α, β . The performance of the
constrained solution is relatively insensitive to the value of these parameters, although
the partially-constrained and unconstrained solutions are more sensitive to these values.
We choseα = 1.5 andβ = 2.0 in the experiments presented here. Table 1 shows the
percentage of people connected to the correct event in comparison to the ground truth.
The constrained solution produced a significant improvement over the unconstrained or
partially-constrained solutions. As expected, applying the constraint correctly connects a
higher percentage of trajectories, due to the enforced uniqueness.

% unconstrained partially-constrained constrained
exp1 75.86 86.21 93.10
exp2 70.37 70.37 92.59
exp3 83.59 82.03 96.09

Table 1: Percentage of correct connections

An example of an ambiguity that is resolved in the constrained solution from exper-
iment 1 is shown in Figure 7 and Table 2. The unconstrained approach allowedp5387 to
be linked as the dropping person twice, alsop187 is involved in two events. The partially-
constrained solution solved the problem forp5387, but p187 is still involved in two events.
The constrained solution satisfied the constraint fully producing the correct connections.
Several similar cases across the three experiments could befound.

unconstrained partially-constrained constrained
none(187) none(187)
pkdp(2916, 3, 187, 1) pk(2916, 3) pkdp(2916, 3, 187, 1)
pkdp(8059, 15, 5387, 10) pkdp(8059, 15, 5387, 10) pkdp(8059, 15, 5387, 10)
pkdp(8215, 15, 5387, 10) pkdp(8215, 15, 187, 1) none(8215)

Table 2: Example from experiment 1 showing how adding constraints improves the asso-
ciations. The notation for events is defined in Section 4

Figure 6: Viewpoint of the bicycle rack

Figure 7: An example from experiment 1.
Only the edges required for the example are
included



5.3 Colour Comparison and Theft Detection

As an application of the method, we attempted to detect thefts of bicycles by comparing
associated individuals using colour information. The presented results use the constrained
solution. An 8×8×8 scale-normalized equal-bin-size RGB colour histogram was gen-
erated from the foreground pixels at each frame. ‘Scale-by-max’ per channel was used
as a simple colour constancy algorithm [1]. A per-bin medianhistogram was calculated
across all frames as explained by Bowden and KaewTraKulPong[3]. A distance metric
between histograms was produced using histogram intersection [18].

Predicted
Actual Thief Non-Thief
Thief 10 3
Non-Thief 17 183

Figure 8: ROC curve (left) representing theft detection results. 0.7 was selected as the
threshold to calculate the confusion matrix (right) for thethree experiments

The ROC curve is shown in Figure 8. At a threshold of 0.7, 77% (10 out of 13) of
the theft cases were caught for an 8.5% false-positive rate.4 false-positive cases resulted
from the owner returning wearing different clothing, demonstrating the limitation of using
only colour profiles. 4 other false-positive cases were incorrectly connected, while 9 were
correctly connected but the colour comparison failed to match the individuals due to poor
segmentation from the background.

6 Conclusions and Future Work

The paper has proposed a method for associating individualsas they drop objects off and
pick them up sometime later using an online constraint-based optimisation. Ambigui-
ties in the observations are expressed as multiple hypotheses, which can then be verified
or invalidated by future observations. Experiments provedthe value of the association
framework for bicycle theft detection, where colour profiles were used to compare linked
individuals. To strengthen the system, the person’s features beyond colour could be added
to compare individuals, for example, height [4], body mass,gait [13] and behaviour anal-
ysis.

Though our experiments were confined to bicycles and bicycleracks, the approach
could be applied in other contexts. Car parks, cloakrooms and other parking environ-
ments exhibit analogous events and constraints and might also be viable. Although the
techniques used to track and detect objects vary across domains, the propagation of mul-
tiple hypotheses used to solve the constrained optimisation should remain applicable.
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