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Abstract

We present a novel approach to interest-point detection tailored to range im-

ages. A range image is represented by two images with blob-like patterns

that have easily detectable peaks and can be efficiently extracted using con-

volution kernels. These kernels were designed to produce repeatable and

independent blob-like patterns when convolved with the range image. The

interest-points correspond to peaks of the patterns after dropping the unstable

ones and performing Non-Maximal Suppression (NMS) on their union. The

approach was applied to facial range images from the FRGC V2.0 dataset

and about 88% repeatability was achieved. Face recognition was also per-

formed by matching the local range regions around the interest-points. An

approach based on three levels of matching combined with RANSAC algo-

rithm was used to increase the correct matches and reduce the false ones. Pre-

liminary recognition results for a database of 466 subjects and 1765 probes

were 96.33% identification rate and 90% verification rate at 0.1% False Ac-

cept Rate (FAR) for faces under neutral expression.

1 Introduction

In recent years, the paradigm of object recognition by matching local regions around

interest-points (point features) has been the focus of research in computer vision, espe-

cially in 2D recognition. This paradigm has many vital advantages over the classical

recognition approaches. For example, it is robust to occlusions and does not require ob-

ject/background segmentation. We believe that it can be also advantageous in the context

of 3D face recognition as it has been shown that recognition by matching local regions [1]

or point features [5] is more robust to makeup and facial expressions. However, applying

this paradigm to 3D face recognition requires a suitable interest-point detection approach.

In spite of that, some approaches to 3D face recognition are based on matching local

regions. In the approach by Moreno et al. [3] local regions are segmented according

to the mean and the Gaussian curvatures and the segmented regions are then matched

against each other. Errors in the curvatures (which are sensitive to noise) may affect

the segmentation of the local regions. Elastic Bunch Graph Matching (EBGM) which

matches local regions was extended to face recognition from integrated 2D and 3D images

[4]. Although EBGM is a successful face matcher, it is based on a fixed small number

of points. Consequently, it is not as robust as interest-point based recognition. In the

approach by Mpiperis et al. [5] local features are computed around all the 3D points.



It is tempting to apply the existing interest-point detection approaches that are de-

signed for 2D images to range images (e.g. the SIFT [6]). However, the nature of 2D

images is different from range images and this difference can affect the applicability

of these approaches to range images. Firstly, these existing approaches usually rely on

salient features which are usually induced by texture such as edges, corners and/or blobs.

On the other hand, pixels (range values) of range images smoothly vary. Consequently,

range images may not have sufficient easily detectable interest-points. For example, there

is a very limited number of such features in a range image of a human face. Applying a

2D image interest-point detection technique to such range image may result in either an

insufficient number of interest-points or unreliable ones depending on the selection of the

tuning parameters. Secondly, under rigid transformations, the appearance of an object in

range images vary differently from its appearance in 2D images. In a 2D image the value

of a pixel representing a point on the object generally remains constant with rigid trans-

formations (apart from the effects of illumination) whilst the pixel value in range images

varies accordingly.

In our approach to interest-point detection for range images, we represent the range

image by multiple images of blob-like patterns from which a sufficient number of repeat-

able interest-points can easily be detected at the peaks of these patterns. The patterns in

the representing images are independent from each other in the sense that they can define

different interest-points based on different 3D surface information. The representing im-

ages are efficiently extracted by convolving the range image with kernels of sufficiently

large sizes and non-overlapping spatial spectrums. Such kernel sizes suit range images

especially when the range image lacks sufficient salient features as they cover larger pixel

neighborhoods and generate response based on more surface information. In addition, the

kernels are robust to object translations and rotations within ±15◦.

2 Input Range Images

The input range images are computed from the frontal facial 3D pointclouds of the FRGC

v.02 dataset [7]. The data is in the form of three matrices x, y and z. The spikes are

removed by dropping the outlier points from the three matrices based on local statistics.

The matrices are then smoothed using a mean filter which neglects the missing points.

After that the holes are filled using bi-cubic interpolation of the missing points. The

range image was computed from the three matrices by interpolating for integral x and y

coordinates and storing the corresponding z coordinates in the range image matrix using

x as horizontal index and y as a vertical index. Finally, the range image is smoothed using

a Gaussian filter.

3 Interest-points Detection for Range Images

The summation of a group of adjacent spatial frequencies forms spatial beats in a similar

manner to the well-known sound beats phenomenon, as the differences in the spatial fre-

quencies also cause repeated patterns of constructive and destructive interferences over

spatial distances. Depending on the phase and amplitude values of the spatial frequen-

cies, the spatial beats can shift, intensify and/or merge. From these spatial beats, the

representing 2D blob-like images can be computed (see Fig. 1).
According to 2D Discrete Fourier Transform (DFT), a range image I(x,y) of size

N×M can be represented as the summation of complex exponents as in the well-known
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Figure 1: (a) is a window from a facial range image (part of the nose appears in the

widow). (b) Discrete Fourier transform (DFT) of the range window. (c) shows the fre-

quency bands which have high energy. (d) and (e) are real and imaginary spatial beats

generated by taking inverse DFT of a subset of 3×3 adjacent frequencies. (f) a window
of blob-like patterns that was generated by taking the absolute values of (d) and (e).

Eqn. 1.

I(x,y) =
M−1

∑
m=0

N−1

∑
N=0

amne
j2π(mf1x+n f2y+φmn)

=
M−1

∑
m=0

N−1

∑
N=0

amn cos(2π(mf1x+n f2y+φmn))+ j
M−1

∑
m=0

N−1

∑
N=0

amn sin(2π(mf1x+n f2y+φmn)) (1)

where f1 = 1
M
and f2 = 1

N
are the fundamental horizontal and vertical frequencies, re-

spectively. The factors amn and φmn are the amplitudes and the phase shifts of the spatial
frequencies.

By taking square windows of different sizes (from 21× 21mm to 31× 31mm) from
many facial range images and examining their spatial spectrum using DFT, only certain

frequency bands have high energy (See Fig. 1.c). These frequency bands are the fre-

quencies which are low in both directions (LB), the ones which are horizontally low and

vertically high (LH), the ones which are horizontally high and vertically low (HL), the

ones which are high both vertically and horizontally (HB), the stripe of frequencies that

are horizontally low (HS), the stripe of frequencies that are vertically high (VS). We are

interested in generating a blob-like image from a band of adjacent frequencies (a win-

dow 3× 3 frequencies) that have sufficient energies and are less affected by rigid trans-
formations. The HB band and the frequency subset of the LB band which are highest

horizontally and vertically seem more appealing as it can be shown empirically that the

frequencies which are lowest either horizontally or vertically are generally more affected

by the orientation of a given surface (pitch and yaw rotations).

3.1 Kernel Design

The selected 3×3 window of the adjacent spatial frequenciesF produces a correspond-
ing signal R that has real and imaginary spatial beats according to Eqn. 2.

R(x,y) = ∑
(ai,φi)∈F

ai cos(2π(mi f1x+ni f2y+φi))+ j ∑
(ai,φi)∈F

ai sin(2π(mi f1x+ni f2y+φi)) (2)

The blob-like image can be extracted from R by simply taking the absolute value of R
(see Fig. 1.f). An equivalent but more efficient way to achieve that is to convolve the

range image with a corresponding kernel r. The kernel r was computed by setting the

selected frequencies set F to 1 and all the other frequencies to 0 then taking the inverse

DFT. In a similar way, the blob-like image can be computed by taking the absolute value

of the convolution of the range image and r.
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Figure 2: (a) and (b) are the real and imaginary components of the kernel that passes

the selected adjacent frequencies. Their corners have high weights which affect their in-

variance to rotation around z axis. (c) and (e) are rotationally invariant kernels computed

from the real kernel (a) by rotating it in small steps from angle 0◦ to 360◦. The interpola-

tion of all the rotations is averged and the DC component is removed. (d) and (f) are the

frequency responses of the kernels (c) and (e), respectively

(a) (b) (c) (e)

Figure 3: (a) is a facial range image. (b) and (c) are blob-like image which are computed

by convolving the range image (a) with the kernels shown in Fig. 2.c and Fig. 2.e,

respectively. The interest-points are extracted from the peaks in (b) and (c) which are

easily detectable compared to the LoG in (e).

Unfortunately, the kernel has revealed to be sensitive to rotations around z axis (roll

rotation). Although, some peaks in the blob-like image are repeatable some other points

can go wrong. To circumvent this problem, we take the real part of r and rotate it around

the central point from 0◦ to 360◦ in steps of 1◦. At each step the kernel was bi-linearly

interpolated at the integral values of x and y indices. The 360◦ interpolated kernels were

then averaged and the DC value was subtracted. The resulting kernel h has complete

invariance to roll rotations and can produce suitable blob-like patterns (see Fig. 2 and

Fig. 3). The frequency response of h shows that it alternatively passes and suppresses

consecutive rings of frequencies (their phase also alternates from 0◦ to 180◦) that overlap

with the initially selected frequencies (see Fig. 2.d and 2.f). Note that the resulting filter

differs from LoG filters which are widely used for 2D interest-point detection. It has more

oscillations and less weight at the center. Our filters can generate patterns with much more

prominent peaks (see Fig. 3).

Four kernels of different sizes h1 (21mm×21mm), h2 (19mm×19mm), h3 (31mm×
31mm) and h4 (29mm×29mm) were computed to produce two independent represent-
ing blob-like images (one image from h1 and validated by h2 and the other one from h3
and validated by h4). The F frequencies which were used to extract the kernels are the

highest 3×3 adjacent frequencies in the LB band (the band of frequencies which are low
horizontally and vertically) namely, the 3rd, 4th and 5th frequencies in both horizontal

and vertical directions. These frequencies are formally described in Eqn. 3

F = {(mf1,n f2) ∈ F | 3≤ m≤ 5 and 3≤ n≤ 5} (3)

There are no sufficient frequencies with high energy in the LB band for another non-



overlapping 3×3 window to produce another independent representing image using a
kernel of the same size. The aforementioned kernel sizes of h1 and h3 are chosen so

that using the same frequency window, their frequency responses are non-overlapping.

The frequencies of the first kernel h1 range from
3
21
to 5
21
K cycle/m (horizontally and

vertically) but in the case of h3 the range is
3
31
to 5
31
K cycle/m.

The kernel h2 is very close in size and frequency response to h1 but h3 is close to h4.

The two representing images are computed using h1 and h3 and the other two kernels are

used to increase the reliability of the detected interest-points. The peaks of the patterns in

the first and the second representing images are validated using the patterns generated by

h2 and h4, respectively. If the peaks of the patterns are still detectable at the same locations

or within a small distance from their actual locations in the representing images, they are

deemed reliable and considered as interest-points (their locations are less sensitive to

minor changes in the spatial frequencies). Note that kernels of different sizes (scales) are

designed to produce different patterns. Hence, the approach of maxima across a large-

range of scales which is used in the SIFT [6] for scale-invariance (not required for 3D) is

not applicable here.

3.2 Steps of the Proposed Approach

The approach combines interest-points from the two representing blob-like images as

follows

1. The range image is convolved with each one of the four kernels h1, h2, h3 and h4 to

produce the representing and validating images R1, V1, R2 and V2, respectively.

2. The peaks of the patterns in the four blob-like images are found by detecting the

pixels which are the largest in their 7×7mm neighborhoods.

3. Each peak is assigned a strength measure s as in Eqn. 4. The peaks with low s are

dropped. s= R(x,y) ∏
b(u,v)∈B

R(x,y)−R(x+u,y+ v) (4)

where B is the set of border pixels of the 7×7 local neighborhood which have u
and v offsets from the x and y location of the peak.

4. The set of peaks in R1 that have corresponding peaks in V1 within a distance of

2mm are called the first set of interest-points I1 and combined with the second

interest-point set I2 which is extracted in a similar way from R2 and validated by

V2 to form the total set of interest-points, It = I1∪I2.

5. The non-maximum suppression (NMS) technique [10] is performed on the total set

It to produce a filtered set I f . The points with maximal strength s suppress the

inferior interest-points within a certain radius. See Section 5.1 for interest-points

repeatability tests.

4 Face Recognition

For matching two facial range images, the interest-points in both images are detected as

described in Section 3. Then, the local regions around the interest-points are matched

against each other (Section 4.1). From the local region matches a similarity measure S

between the matched facial images is computed.



(a) (b) (c) (d) (e) (f)

Figure 4: (a) and (b) are two local regions with a roll rotation between them. The curves in

(c) are depth samples at their circumferences from which the roll angle is estimated using

cross-correlation (d). The first region is sampled on concentric circles and the samples

are vectorized staring from the angle 0 (the samples on the circles are appended in a depth

vector starting from the largest circle to the smallest one) while the second local region is

sampled and vectorized in accordance to the roll angle to achieve correspondence between

the two sample vectors.

The shape of a human face deforms with expression, age and many other causes.

Given such deformations, we may need to accept weak local region matches. The best

match approach to the local regions produces some false matches resulting in a suboptimal

total similarity measure. Instead of the best match approach to matching local regions,

the local regions are putatively matched as described in Section 4.2.

4.1 Feature Extraction

The local region of each interest-point is sub-sampled on concentric circles as shown in

Fig. 4.e and 4.f. This circular sampling facilitates the association between the depth

values of the samples in the matched local regions. Under roll rotations we can achieve

one-to-one correspondences between the depth values simply by vectorizing the sampling

circles staring from an angle θs that equals the roll angle. It is worth mentioning that
this circular sampling in the range image (only x and y coordinates are considered) is

similar to finding the intersection between a sphere and a 3D surface [5, 2] (z coordinate

is also considered). However, finding the relative positions of the samples to the interest-

point position in case of circular sampling is more efficient computationally and can be

computed offline in a look-up table while in the other case the intersection has to be

computed online. On the other hand, the circular depth samples vary with pitch and yaw

rotations. For small local regions (the sampling circle with largest radius is 15mm) and

small pitch and yaw rotation angles the change is insignificant.

The vectorization starting angle θs provides invariance to roll rotations. To account for
pitch and yaw rotations (surface orientations) of the matched local regions, the sampled

depth values from the two local regions are linearly fitted to each other using an efficient

least squares fitting technique. Then, the sum of absolute errors between the fitted depth

values is used as a matching measure. The linear fitting gives invariance to pitch and

yaw rotations. In addition, it mitigates the affect of difference in surface orientations on

the circular sampling and minor errors in the locations of the detected interest-points.

However, it does not have the flexibility to over-fit the depth values of the local regions as

over-fitting dampens the error between dissimilar local regions leading to false matches.

The sum of absolute errors is computed from the local regions of two interest-points

as follows:

1. The circumference of the first local region is sampled in steps of 1◦ and unfolded in



the counter clock-wise direction starting from angle zero (θs = 0) into a sequence
of depth values called p. In a similar manner, the circumference of the second local

region is sampled and unfolded into q.

2. The roll rotation angle γ between the two local regions is found using the circular
cross-correlation C between p and q as given in Eqn. 5

C(m) =
N−1

∑
n=0

psqn where s=











n+m for 0≤ n+m< N

N+n+m for n+m< 0

n+m−N for n+m≥ N

(5)

There is no zero padding to the front or the end of the sequence p as in ordinary
cross-correlation. Instead, the elements of the sequence are shifted from one end

and inserted into the other end. The correlation sequence C is only computed over

the range of lags m from -8 to 8 sampling angle steps. The roll angle is computed

from the lag that yields maximum cross-correlation mmax by multiplying by minus

the sampling angle step, γ =−mmax (giving invariance within±8
◦, see Fig. 4.c and

4.d for an illustration example).

3. The first local region is sub-sampled on five concentric circles (see Fig. 4.e and 4.f).

The radii of the circles are 15, 12, 9, 6, and 3 mm and the number of samples on the

circles are 30, 25, 18, 12 and 6 respectively. The placement of the samples is based

on the a starting angle θs = 0. Each circle of samples is vectorized starting from the
angle γ and appended to a vector z1, starting from the largest to the smallest circle.
Similarly, the second local region is sub-sampled and vectorized into z2 but with a

starting angle θs = γ .

4. The depth vectors z1 and z2 are linearly fitted to each other. First, the depth at the

center of the first local region (interest-point) zc1 is subtracted from z2, z
′
2= z2−zc1.

Then we adjust z′2 by adding a plane so that it fits z1 as in Eqn. 6.

z′′2 = z′2+L2[uv]
⊤ (6)

where L2 is a matrix of two columns: the first one is the vectorization of the x
coordinates of the samples and the second one is the vectorization of their y coor-

dinates. The u and v parameters that define the adjusting plane is computed by the

following Eqn. 7. [uv]⊤ = (L⊤2 L2)
−1L⊤2 (z1− z

′
2) (7)

5. Finally, the sum of the absolute errors e between z1 and z
′′
2 is computed (Eqn. 8).

e=
n=N

∑
n=1

|z1(n)− z
′′
2(n)| (8)

4.2 Matching a probe to Face Gallery

During the offline phase, the interest-points are detected in the gallery faces as described

in Section 3.2. Then their local regions are sub-sampled and vectorized (Section 4.1).

We also, compute a difficulty factor σi for every interest-point in the gallery face. These
difficulty factors are used in weighting the contributions of the local region matches. In

the situation when the local regions are flat, the local regions can strongly but falsely



match. Even if the match is correct, the information in a flat surface is low and may

not be proportional to the matching measure. While in some other situations the local

regions may be complex and rich in information but may have smaller matching measure.

The difficulty factor is heuristically defined for an interest-point based on the sum of

absolute errors of fitting the local region to a planar region (in other words, the local

region is matched to a planar region as described in Section 4.1). The difficulty factor

(σ = log(e)− 2) is expected to be high for complex local regions. Then the interest-
points with difficulty factors less than a threshold σt = 250 are dropped.
The local regions with difficulty factors σi > σt in the gallery faces are putatively

matched to the local regions in the probe face. Firstly, we randomly select a subset from

them. Then this subset is matched against all the local regions in the probe face using the

best match approach. After that, we take the matches with fitting error e less than a strong

threshold ts = 85 (more likely to be correct matches) and use the RANSAC algorithm
[9] to find the rotation R and the translation t between the probe and the gallery faces.

In case the number of the strong matches are not sufficiently large (in our case we used

a threshold of seven strong matches), we include matches with medium strength to find

R and t (the matches with e less than a medium threshold tm = 110). If the number of
the matches is still not enough (less than seven) or RANSAC has failed to find R and t

that fit the matching points, the two faces are considered dissimilar and a value of zero is

assigned to the similarity measure.

The rotation R and the translation t that relate the gallery face to the probe face are

used to restrict the search scope for interest-points in the probe face corresponding to the

remaining ones in the gallery face. R and t are applied to x, y and z coordinates of the

interest-point to give an estimate of the location of the corresponding interest-point in the

probe image. The local regions around the interest-points in the proximity of that location

are matched to the local region around the interest-point in the gallery image. The best

match among them is accepted as a match if it is less than a weak threshold tw = 165.
The RANSAC algorithm [9] can robustly fit a model (in our case, the rotation R and

the translation t) to data (the x, y and z coordinates of the matching interest-points) in the

presence of outliers (false matches). From four randomly selected matches, R and t are

computed (four is the minimum number from which R and t can be computed in a least

square fashion [11]). The mean location of the four interest-points in the gallery face mg
is subtracted from their locations. Then their x, y and z coordinates are stored in the rows

of a 3×4 matrix Pg and similarly the matrix Pp is computed from their corresponding
interest-points in the probe face. A matrix A that transforms Pg to Pp is found, A =
PpP

⊤
g (PgP

⊤
g )−1. The rotation matrix R is the nearest orthonormal matrix to A. The

singular value decomposition of A is computed, A = USV⊤. The rotation matrix R is

computed, R = UDV⊤, where the matrix D is diagonal and the elements on the diagonal

are {1,1,1/det(UV⊤)}. Then the translation is found t = mp−Rmg. Then RANSAC
finds the number of matches that fit R and t (the matches with fitness function f = |Rpg+
t−pp| less than a distance threshold Dt , where pg and pp are the locations of the interest-
point in the gallery image and the matching interest-point in the probe image respectively).

If the number of matches that fit R and t is high (more than a percentage threshold) they

are accepted as the fitting model. Otherwise RANSAC iterates until a number of trials is

exhausted and takes the best model fitting the data.

The similarity measure S is extracted from the local region matches as given in Eqn.9.

The weights of the matches in S depend on their strengths and difficulty factors σi. W ,



M and S are the sets of weak, medium and strong matches, respectively. tw and tm are

the weak and the medium thresholds and ei is the fitting error.

S= ∑
ei∈W ∪M∪S

|(tw− ei)|σi+ ∑
ei∈M∪S

(tm− ei)
2σi (9)

5 Experiments and Results

5.1 Repeatability Test of Interest-points

To test the repeatability and accuracy of the interest points, the approach was applied on

a number of facial range images under neutral expression of many subjects. The detected

interest-points that belong to the same subject were registered to each other using the

ICP algorithm [8]. At a time, the ICP (3D) was applied on two sets of interest-points

from a pair of range images. For each point in the first set, the 2D Euclidean distance (z

is dropped as the error in z is not relevant to pixel accuracy) to the nearest point in the

second set was found (distance error). A small distance indicates that the interest-point

was accurately detected in the second range image. Fig. 5.a shows a histogram of error

distance computed from all the range images in the test set. It shows that 60% of the

interest-points were detected within a distance of 3mm and about 88% of the points are

within a distance of 5mm.

The performance of the approach with respect to rotations was tested. The underling

pointclouds of one of the range images of each pair were rotated using the pitch, yaw and

roll angles in the range of±15◦. After that, the range image was recalculated as in Section
2 (without the spike removal part). Then, the same repeatability test was performed on

the range images (see Fig. 5.a).

In comparison to the performance without rotations, some degradation can be noticed

in the accuracy of interest-point detection. However, generally the performance did not

degrade significantly. The interest-points which were detected within an error range of 0

to less than 1mm has decreased from 13% to 12%. Also, the interest-points which were

detected in the range of 1 to less than 2mm has decresed from 24.5% to 22% (see Fig.

5.a for more ranges). Staring from the range of 2 to less than 3 and onward, the interest-

point detection has shows generally an increase in the detection percentage rather than a

decrease which is an indication that some of the missed points in the smaller ranges were

detected in the less accurate ones. The overall detection percentage was about 87.5%

within 5mm. This repeatablity is comparable to typical 2D interest-point detection ap-

proaches when applied on 2D images [12, 6].

5.2 Recognition Results

The face recognition approach (Section 4) was applied to the FRGC V2.0 dataset [7], the

largest publicly available dataset. The number of subjects in the test data is 466. Our

approach to interest-point based face recognition was applied to the near frontal view

3D facial pointclouds with neutral expression. The range images are extracted from the

pointclouds as described in Section 4. Each subject is represented by a single range image.

The remaining range images are matched against the 466 gallery images. Fig. 5 shows

the recognition performance of 1765 probes. The first rank recognition is 96.3% and

increases to about 99% at the tenth rank (Fig. 5.b). The verification rate is about 90% at

0.1% FAR (Fig. 5.c).



(a) (b) (c)

Figure 5: (a) A histogram showing the repeatability of the detected interest-points in

registered range images (no rotations) and in rotated images in the range of ±15◦. The
width of the histogram bins is 1mm. (b) and (c) are the Cumulative Matching Characteris-

tics (CMC) and the Receiver Operational Characteristics (ROC) showing face recognition

performance.

6 Conclusions

An approach to interest-point detection in range images is presented and applied to facial

range images. Experiments showed that the proposed technique can detect interest-points

in facial range images with 88% repeatability at an accuracy of less than 5mm. We also

presented novel algorithms for local feature extraction and feature matching for 3D face

recognition. The proposed algorithms extract features around the interest points on a

3D face and match them for recognition under small pose variations. Experiments were

performed on the FRGC v2 dataset and a rank one recognition rate of 96.3%was achieved.
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