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Abstract. A new approach to align an image of a textured object with
a given prototype is proposed. Visual appearance of the images, after
equalizing their signals, is modeled with a Markov-Gibbs random field
with pairwise interaction. Similarity to the prototype is measured by a
Gibbs energy of signal co-occurrences in a characteristic subset of pixel
pairs derived automatically from the prototype. An object is aligned
by an affine transformation maximizing the similarity by using an au-
tomatic initialization followed by gradient search. Experiments confirm
that our approach aligns complex 2D/3D objects better than popular
conventional algorithms.

1 Introduction

Image registration aligns two or more images of similar objects taken at differ-
ent times, from different viewpoints, and/or by different sensors. The images are
geometrically transformed to ensure their close similarity. Registration is a cru-
cial step in many applied image analysis tasks, e.g. to fuse various data sources
(such as computer tomography (CT) and MRI data in medical imaging) for im-
age fusion, change detection, or multichannel image restoration; form and classify
multi-band images in remote sensing; update maps in cartography, perform au-
tomatic quality control in industrial vision, and so forth. Co-registered medical
images provide more complete information about the patient, help to monitor
tumor growth and verify treatment, and allow for comparing the patient’s data
to anatomical atlases.

Most of the known registration methods fall into two main categories: feature-
based and area-based techniques [1]. Feature based techniques rely on salient
local structures extracted from images, e.g. specific areas such as water reser-
voirs and lakes [2, 3], buildings [4], forests [5], or urban areas [6], specific lines
like straight segments [7-9], object contours [10-12], coast lines [13, 14], rivers,
or roads [15, 16], and specific points, e.g. road crossings [17], centroids of water
areas, or oil and gas pads [18]. Scale invariant feature transform (SIFT) pro-
posed by Lowe [19] is most popular at present because it reliably determines
a number of point-wise correspondences between two images differing by affine
transformation and local contrast / offset signal deviations. But these methods
can be used only if objects have distinctive and non-repetitive local features.



Area-based methods such as the classical least square correlation match di-
rectly image signals to avoid feature extraction [20]. However, because the objects
are assumed identical to within spatially uniform signal deviations, the correla-
tion is too sensitive to non-uniform and spatially interdependent deviations of
the corresponding signals due to sensor noise, illumination variations, and/or
different sensor types. Alternative phase correlation and spectral-domain (e.g.
Fourier-Mellin transform based) methods [21-25] are more robust with respect
to the correlated and frequency dependent noise and non-uniform time vary-
ing illumination. However, these methods typically allow for only very limited
geometric transformations.

More powerful mutual information (MI) based image registration [26, 27] ex-
ploits a probabilistic similarity measure that allows for more general types of
signal deviations than correlation. The statistical dependency between two data
sets is measured by comparing a joint empirical distribution of the corresponding
signals in the two images to the joint distribution of the independent signals. Be-
cause the MI-based registration performs the best with multi-modal images [27],
it is used in many of medical imaging applications. The joint distribution is
estimated using Parzen windows [28,29] or discrete histograms [30]. The main
advantage of the MI is insensitivity to monotone variations of correspondence
between the object and prototype signals, but the objects should be of almost
identical shape apart from their affine geometrical and monotone signal trans-
formations. The MI allows also for some non-monotone signal correspondence
variations although they may change the visual appearance too much and hinder
registration accuracy.

We consider a more general case of registering a textured object to a pro-
totype with similar but not necessarily identical visual appearance under their
relative 2D /3D affine transformations and monotone variations of signal corre-
spondences. The variations are suppressed by equalizing signals in the images.
The co-registered equalized images are described with a characteristic subset of
signal co-occurrence statistics. The description implicitly “homogenizes” the im-
ages, i.e. considers them as spatially homogeneous patterns with the same statis-
tics. In contrast to the feature-based registration, the statistics characterize the
whole object. In contrast to the conventional area-based techniques, similarities
between the statistics rather than pixel-to-pixel correspondences are measured.
Section 2 represents the equalized object and prototype images as samples of
a generic Markov—Gibbs random field (MGRF) with pairwise pixel interaction.
Gibbs potentials are analytically estimated from co-occurrence statistics for the
prototype. Similarity between an affinely transformed object and the prototype
is measured with a total Gibbs energy for a characteristic pixel neighborhood.
A new algorithm for selecting the neighborhood for the MGRF model is intro-
duced. After an automatic initialization, the affine transformation aligning the
object with the prototype is found by the gradient search for the maximum
Gibbs energy of the transformed object. Experiments in Section 3 confirm that
our method is more efficient for complex textured objects than more conventional
SIFT and MI based registration techniques.



2 MGRF Based Image Registration

Basic notation. We denote @ = {0,...,Q—-1}; R=[(z,y,2) :2=0,..., X —
Liy=0,...,Y —1;2=0,...,Z — 1], and R, C R a finite set of scalar image
signals (e.g. gray levels), a 3D arithmetic lattice supporting digital LDCT data
g : R — Q, and its arbitrary-shaped part occupied by the prototype, respec-
tively. A finite set N' = {(£1,1m1,¢1), -, (&n, s Cn) } Of (2,9, 2)-coordinate offsets
defines neighbors {((z & y+1, 2+ C), (- &y, 2—0) : (£.1,¢) € N} A Ry
interacting with each pixel (z,y, z) € Rp. The set A yields a neighborhood graph
on R, to specify translation invariant pairwise interactions with n families C¢ ¢
of cliques Ce¢ ., c(z,y,2) = (x,y,2), (@ + &y + 1,2+ () (see Fig. 1). Interac-

tion strengths are given by a vector VI = [Vg-,n-( (&, Q) € N} of potentials

Vg,n,c = [Vg,n,g(q,q’) 1 (q,q) € Qz] depending on signal co-occurrences; here T
indicates transposition.
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Fig. 1. Pairwise pixel interaction MGRF model.

Image normalization. To account for monotone (order-preserving) changes of
signals (e.g. due to different illumination or sensor characteristics), the images
are equalized using the cumulative empirical probability distributions of their
signals.

MGRF based appearance model. Generic MGRF with multiple pairwise
interaction (Fig. 1) [31], the Gibbs probability P(g) x exp(E(g)) of an object g
aligned with the prototype g° on Ry, is specified with the Gibbs energy

E(g) = [Ry[VF(g) (1)

where FT(g) is the vector of scaled empirical probability distributions of sig-
nal co-occurrences over each clique family: F'(g) = [pf,mCFgT,n,g(g) :(&,n,0) €



N] where pe ¢ = % is the relative size of the family and F¢, ((g) =

ICe.n.cia.q’ (9)] .
[femca.dlg) = (a.4) € QIT; here, feqcla.d'lg) = 5224 are empiri-
cal probabilities of signal co-occurrences, and Ce .y ciq.9/(9) C Cepnc is a sub-

family of the cliques c¢ , ¢(x,y,2) supporting the co-occurrence (g, = ¢,
Gotéy+n,2+¢ = ¢') in g. The co-occurrence distributions and the Gibbs energy
for the object are determined over Ry, i.e. within the prototype boundary af-
ter an object is affinely aligned with the prototype. To account for the affine
transformation, the initial image is resampled to the back-projected R, by in-
terpolation.

The appearance model consists of the neighborhood A/ and the potential V
to be learned from the prototype.

Learning the potentials. The MLE of V is proportional in the first approxi-
mation to the scaled centered empirical co-occurrence distributions for the pro-
totype [31]:

1
Ve = Mg (Fa,n,c(gc’) - QQU> ;i (Em Q) eN

where U is the vector with unit components. The common scaling factor A is also
computed analytically; it is approximately equal to Q? if Q > 1 and Peme ~ 1
for all (¢,m,¢) € M. In our case it can be set to A = 1 because the registration
uses only relative potential values and energies.

Learning the characteristic neighbors. To find the characteristic neighbor-
hood set NV, the relative energies E¢ ,, ¢(¢°) = pg,mcvgn,chm,c(go) for the clique
families, i.e. the scaled variances of the corresponding empirical co-occurrence
distributions, are compared for a large number of possible candidates. For exam-
ple in 2D case, Fig. 2 shows a zebra prototype and its Gibbs energies E¢ ,,(g°)
for 5000 clique families with the inter-pixel offsets || < 50; 0 < n < 50.

To automatically select the characteristic neighbors, we consider an em-
pirical probability distribution of the energies as a mixture of a large “non-
characteristic” low-energy component and a considerably smaller characteristic
high-energy component: P(E) = mP(E)+ (1 — )Py (E). Both the components
P (E), Py(E) are of arbitrary shape and thus are approximated with linear
combinations of positive and negative discrete Gaussians (efficient EM-based al-
gorithms introduced in [32] are used for both the approximation and estimation
of ).

The intersection of the approximate mixture components gives an energy
threshold 6 for selecting the characteristic neighbors: N = {(&,7,() : E¢,.¢(9°) >
0} where Py;i(0) > Po(6)7/(1— 7). The above 2D example results in the thresh-
old 8 = 28 producing 168 characteristic neighbors shown in Fig. 3 together with
the corresponding relative pixel-wise energies e, ,(g°) over the prototype:



Fig. 2. Zebra prototype (a) and relative interaction energies (b) for the clique families
in function of the offsets (&, 7).

(a) (b)

Fig. 3. (a) Characteristic 168 neighbors among the 5000 candidates (a; in white) and
the pixel-wise Gibbs energies (b) for the prototype under the estimated neighborhood.

Fig. 4. (a) Gibbs energies for translations of the object with respect to the prototype
and (b) initial position of the object with respect to the prototype.

Fig.5. Our (a), MlI-based (b), NMI-based (c), and SIFT-based (d) registration.
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In similar way, the relative energy in the 3D case is calculating as follows:

€ry,2(9°) = Z ‘/%,n,ﬁ(gg,y7za9;+5,y+n7z+()
(EnQeN

Appearance-based registration. The object g is affinely transformed to (lo-
cally) maximize its relative energy E(ga) = V'F(ga) under the learned ap-
pearance model [N, V]. Here, g is the part of the object image reduced to R,
by the affine transformation a = [a11,...,as3]: ' = a112 + a12y + a132 + ay4;
Y = ao1T + agoy + a23z + as4; 2’ = as1x + asoy + azzz + ass. The initial trans-
formation is a pure translation with a1y = age = az3 = 1; a2 = a13 = as; =
a3 = az; = agze = 0, ensuring the most “energetic” overlap between the ob-
ject and prototype. For example in 2D case, the energy for different translations
(a14, agq) of the object relative to the prototype is shown in Fig. 4(a); the chosen
initial position (a},,a3,) in Fig. 4(b) maximizes this energy. Then the gradient
search for the local energy maximum closest to the initialization selects the six
parameters a; Fig. 5 (a) shows the final transformation aligning the prototype
contour to the object.

3 Experimental results and conclusions

Due to space limitations, we focus on zebra photos and low dose computed to-
mography (CT) of human chest commonly perceived as difficult for both the
area- and feature-based registration. We compare our approach to three popular
conventional techniques, namely, to the area-based registration using MI [27] or
normalized MI [30] and to the feature-based registration establishing correspon-
dences between the images with SIFT [19]. Results are shown in Fig. 5.

To clarify why the MI- or NMI-based alignment is less accurate, Fig. 6 com-
pares the MI / NMI and Gibbs energy values for the affine parameters that ap-
pear at successive steps of the gradient search for the maximum energy. Both the
MI and NMI have many local maxima that potentially hinder the search, whereas
the energy is practically unimodal in these experiments. The SIFT-based align-
ment fails because it cannot establish accurate correspondences between similar
zebra stripes (Fig. 7).

In the above example the object aligned with the prototype has mainly differ-
ent orientation and scale. Figure 8 shows more diverse zebras and their Markov-
Gibbs appearance-based and MI-based alignment with the prototype in Fig. 2(a).
Visually, the back-projection of the prototype contour onto the objects suggests
the better performance of our approach. To quantitatively evaluate the accuracy,
masks of the co-aligned objects obtained by manual segmentation are averaged
in Fig. 9. The common matching area is notably larger for our approach (91.6%)
than for the MI-based registration (70.3%). Similar results obtained for the 3D
Lung images are shown in Fig. 10.
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Fig. 6. Gibbs energy, MI, and NMI values at the successive steps of the gradient search.

Fig. 7. Corresponding points by SIFT.

4 Conclusions

In this paper we introduced a new approach to align an image of a textured
object with a given prototype whose appearance is modeled with a Markov-Gibbs
random field with pairwise interaction. Experimental results confirm that image
registration based on our Markov-Gibbs appearance model is more robust and
accurate than popular conventional algorithms. Due to the reduced variations
between the co-aligned objects, our approach results in more accurate average
shape models that are useful, e.g. in image segmentation based on shape priors.

As we mentioned in the experimental result section, the proposed approach
is not only limited to zebra photos and lung images but also is suitable for
registering starfish photos and brain images. The latter were not included in the
paper because of the space limitations, but, the algorithms code, sample data
and registration results for the starfishes, brain images will be provided in our
web site.

Our future work will focus on integrating our approach in a framework of
shape based segmentation; which we believe will enhance the accuracy of seg-
mentation results of the existing approaches.
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