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Abstract

Classical shape analysis methods use principal component analysis to reduce
the dimensionality of shape spaces. The basic assumption behind these meth-
ods is that the subspace corresponding to the major modes of variation for a
particular class of shapes is linearised. This may not necessarily be the case
in practice. In this paper, we present a novel method for extraction of the in-
trinsic parameters of multiple shape classes in an unsupervised manner. The
proposed method is based on learning the global structure of shape manifolds
using diffusion maps. We demonstrate that the method is effective in sepa-
rating the members of different shape classes after embedding them into a
low-dimensional Euclidean space.

1 Introduction

The shape of an object plays a critical role in its representation and can be used as an
important cue for indexing purposes for image and video databases, or for searching of
a particular phenomenon (for example, regular-shaped cells) in biomedical images, just
to name a few applications. Intuitively, an object’s shape can be related to the form or
structure of the object. A working definition of shape adopted by most researchers in
computer vision isthe quality of an object that is invariant to transformations such as
translation, rotation, and scaling and to changes in brightness[13]. An interesting varia-
tion in this definition is related to rigid transformations of parts of an object (for instance,
fingers of a hand). A desirable representation of shape shouldquotient outall such trans-
formations [9]. However, such a representation is likely to induce the so-calledcurse of
dimensionalityproblem. To circumvent this problem, classical shape analysis methods
such as [4, 12, 2] utilise principal component analysis (PCA) to reduce the dimension-
ality of the problem. One of the basic assumptions that these methods make is that the
subspace corresponding to the major modes of variation for a particular class of shapes is
linearised. The reality, however, is that such subspaces may be far from linear and hence
a non-linear dimensionality reduction method may be required.

It would not be an exaggeration to say that non-linear dimensionality reduction is
an active area of research [16]. A range of non-linear dimensionality reduction methods
have been proposed in recent years which can be categorised broadly aslocal andglobal.
Local embedding methods such as Laplacian eigenmaps and Locally Linear Embedding
(LLE) attempt to preserve the properties of a small neighbourhood in a high-dimensional
space whileglobal techniques such as Isomap, Kernel PCA, diffusion maps [3] attempt



to preserve global properties of the data (see [16] for a comprehensive survey on dimen-
sionality reduction methods). Local techniques are computationally efficient and perform
well when the local geometry of the manifold is nearly Euclidean while global techniques
preserve global structure of the data more faithfully [16].

A few recent studies on the problem of manifold learning with regard to shape analysis
and its applications to computer vision can be found in the literature. Heet al. [7] utilised
the manifold learning of images for indexing images and using relevance feedback in
the retrieval of images. Souvenir and Pless [14] proposed a manifold learning algorithm
for weighted point sets, the idea being that members of different shape classes may be
given different weights for efficiently separating intersecting manifolds of shape classes.
Yankov and Keogh [17] presented a method for shape clustering using Isomaps for non-
linear dimensionality reduction and used the classical Expectation-Maximisation (EM)
algorithm for clustering the feature vectors of a reduced dimensionality. More recently,
Etyngieret al. [6] extended the Laplacian eigenmap algorithm to enable interpolation
between shape samples using local weighted means. This results in an elegant algorithm
which was applied to both synthetic and real images showing its potential for image seg-
mentation. Twining and Taylor [15] also presented a kernel PCA based extension of the
active shape models.

In this paper, we propose a novel method for extracting the intrinsic parameters of
multiple shape classes in an unsupervised manner, based on learning the global structure
of shape manifolds with the help of diffusion maps. Assuming that similar shapes (and
their transformations) belonging to a particular class lie on a sub-manifold in a high-
dimensional Euclidean spaceℜN, the problem of extracting intrinsic shape parameters
reduces to the problem of finding a low-dimensional embedding of the sub-manifold. A
concept diagram of our method is shown in Figure 1. We choose the recently proposed

Figure 1: Concept diagram of the proposed method

diffusion maps [3] for global learning of our shape manifolds in an unsupervised manner,
due to its control over the dimensionality of the sub-manifolds to embed in the lower-
dimensional space. A diffusion map uses diffusion processes to understand the geometry
of the high-dimensional manifold (shape manifold, in our case) by defining a Markov
random walk on a graph of the data set. Like other spectral clustering methods, it uses
eigenfunctions of a similarity-type matrix, termed as the Markov matrix (described in
Section 3), as coordinates of the data set in a low-dimensional space. However, it differs
from the other aforementioned methods in two respects: (1) it defines a robust metric on
the data that reflects the connectivity of data set, and (2) it defines a time parameter in a
Markov chain that determines the dimensionality of the sub-manifold [10].

The main contribution of this paper is the presentation of a framework for learning
the shape manifolds for multiple classes (demonstrated by using samples from six shape
classes; most shape manifold clustering methods listed above are limited to 2 or 3 classes)
in an unsupervised manner. The proposed method for extraction of intrinsic shape param-
eters is shown to be effective using only two dimensions, even in the presence of noise.
Moreover, the feature vectors used to represent shapes are invariant to scale and rotation,
so no explicit alignment of shapes is required, saving valuable computational time.



The extraction of features from shapes defined as closed curves is outlined in the next
section. Embedding of shape sub-manifolds in a low-dimensional space using diffusion
maps is described in Section 3. Experimental results are presented and discussed in Sec-
tion 4, followed by concluding remarks.

2 Shape Representation

As mentioned above, a desirable representation of shape should factor out any translation,
scale, and rotation transformations. In order to learn the structure of shape manifolds
of different classes in an unsupervised manner, it is crucial that such a representation
employs features related to a shape that are associated with main shape characteristics.
Several features for shape representation (also known asshape descriptors) have been
proposed in the literature. It is beyond the scope of this paper to list and compare them
all.

Let us regard a shape as a closed curve (contour) and initially represent it as a set
of boundary points corresponding to the contour. We have chosenFourier descriptors
to represent a given shape contour. Fourier descriptors are simple yet powerful means
of extracting shape features. It is worth noting that the choice of Fourier descriptors
was made with simplicity in mind. The major objective of this study is to investigate
the unsupervised learning of shape manifolds; no claim of optimality is made here about
the representation of shapes using Fourier descriptors. Having noted that, one of the
advantages of using Fourier descriptors is that they can easily be made invariant to any
scale and rotation transformations (as described in the next paragraph). This implies
that no explicit shape normalisation, as is the case with most well-known shape analysis
methods such as [4], is required.

For a given shape, we extract its corresponding contourC which consists ofN (fixed)
boundary points(xi ,yi), for i = 1,2, . . . ,N. The number of boundary points remains fixed
by employing cubic spline interpolation for re-sampling of the boundary points. A cen-
troidal distance functionr i , for i = 1,2, . . . ,N, is computed as follows [8, 11],

r i =
√

(xi − x̄)2 +(yi − ȳ)2 (1)

where(x̄, ȳ) denotes the coordinates of the centroid of the object. The distance vector
r = {r1, r2, . . . , rN} is transformed into frequency domain using FFT. The feature vectorf
can then be derived as follows,

f =
(
|F1|
|F0|

,
|F2|
|F0|

, . . . ,
|FN/2|
|F0|

)T

(2)

where|Fi | denotes theith Fourier coefficient, withF0 being the DC component. In the
above equation, taking the magnitude of the coefficients yields rotation invariance and
their division by|F0| results in scale invariance. In order to test the robustness of a shape
clustering algorithm in the presence of noise, we add Gaussian noisen with zero mean
and a standard deviationσ to the boundary points(xi ,yi) as follows [8],

xi
′ = xi +di ·n·sinθi

yi
′ = yi +di ·n·cosθi

(3)

for i = 1,2, . . . ,N, whereθi is the tangent angle at(xi ,yi) and di denotes the distance
between(xi ,yi) and(xi−1,yi−1). Figure 2 shows an example contour and its corresponding
centroidal distance vector without noise and with two different levels of noise.
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Figure 2: The contour for a Rat image withN = 400 boundary points (Top row) and
the corresponding centroidal distance vector (Bottom row) for three levels of noise.

3 Learning the Shape Manifolds with Diffusion Maps

3.1 Computation of Shape Distances

The first step of diffusion maps based framework is to consider the feature vectorsΩ =
{f1, f2, . . . , fn} corresponding to a data set of various shapes, wheren denotes the total
number of shapes in the data set. Like most manifold learning methods, we regard the
feature vectors as nodes of an adjacency graph (nodei representing the feature vectorf i)
and compute pairwise similarity matrix betweenf i andf j , i, j = 1,2, . . . ,n, using Gaussian
kernel with widthε,

w(f i , f j) = exp

(
−
||f i − f j ||2

2ε

)
(4)

A Markov random walk is then defined on the graph by defining the state-transition matrix
P (also known as the Markov matrix), with its(i, j)th elementpi j given as follows

pi j =
w(f i , f j)

d(f i)
(5)

whered(f i) denotes the degree of nodef i in the graph and is calculated as follows

d(f i) = ∑
z∈Ω

w(f i ,z). (6)

It can be seen from the above definitions of the Markov matrix that itsith row Pi =
{pi j , j = 1,2, . . . ,n} corresponds to the probabilities of transition from nodei to all the
other nodes after one time step. It is worth noting that unlike most similarity matrices
used in other manifold learning methods, this matrix is generally not symmetric.

3.2 Embedding in a Low-Dimensional Space

Once the Markov matrix for a given set of shapes belonging to different classes has been
determined, sub-manifolds corresponding to the shape classes can be embedded in a
lower-dimensional space as follows. If{λi} is the sequence of eigenvalues ofP such
that |λ0| ≥ |λ1| ≥ · · ·, and{ψi} are the corresponding eigenvectors, then a mapping from



Figure 3: Some of the images used in our experiments.

the shape feature setΩ to a lower-dimensional Euclidean spaceℜm, wherem<< N is the
dimensionality of the lower-dimensional subspace, is given by (see [10, 3] for details),

Ψ : f 7−→ (λ1ψ1(f),λ2ψ2(f), . . . ,λmψm(f)) (7)

The above relationship gives the initial low-dimensional embedding of the shape sub-
manifolds att = 1. In the spirit of a Markov chain, the mappingΨ evolves as the chain
progresses. The above mapping at timet > 1 can be computed by multiplying the diffu-
sion coordinatesψi(f), i = 1, . . . ,n, by the(λi)t as given below [3],

Ψ(t) : f 7−→
(
(λ1)t

ψ1(f),(λ2)t
ψ2(f), . . . ,(λm)t

ψm(f)
)

(8)

Spectral fall-off and the timet of the random walk are the main factors contributing to
dimensionality reduction. Consequently, for large value oft, we will be able to capture
large-scale structures in the data with fewer diffusion coordinates [3]. A natural conse-
quence of diffusion maps based embedding is that it captures the intrinsic dimensionality
of the high dimensional data which could be depicted by the way the objects are organised
in the new, lower-dimensional subspace.

If semantic meaning can be associated with the intrinsic shape parameters,Ψ(t) can be
regarded as a mapping from a low-level (but high-dimensional) shape feature space to a
high-level (low-dimensional) semantic space with the abstraction level of the latter going
up ast increases.

4 Experimental Results and Discussion

To evaluate the clustering performance of the proposed shape manifold learning algo-
rithm, six shape classes were selected from the Kimia database of silhouettes [5]. These
classes are:Dog, Rat, Horse, Hand, Fish, andCarriagewith 49, 20, 20, 16, 32 and 20
members, respectively, making a total of 157 samples. Six randomly chosen members
from each of the six classes are shown in Figure 3. To study the noise sensitivity of differ-
ent algorithms, the extracted boundaries of objects were corrupted by zero mean Gaussian



noise with four different noise levels following the noise addition method outlined in Sec-
tion 2.

The Fourier descriptor (FD) feature vector for each shape contour was used to test the
clustering efficiency of diffusion maps (DM ) against rawFD features andPCA, which
can be thought of as emulating the active shape model [4] (no Procrustes analysis is re-
quired here, as theFD features are scale and rotation invariant). TheFD feature vectors
(with a total of 199 elements forN = 400 boundary points) were then used as input to
the diffusion maps based embedding algorithm as well as to the classical subspace pro-
jection method ofPCA. Figure 4 shows the two-dimensional (2D) scatter plots for the
three methods atσ = 0 andσ = 10; results forσ = 2,5 are not included due to the lim-
ited space, see Table 1 and Figure 5 for quantitative results. It can be observed from
Figure 4 that the first two Fourier descriptors were unable to efficiently separate all the
classes exceptCarriage, Hand, andRat. Members of theDog, Horse, andFish classes
are mapped close to each other in almost all the methods. It is clear from these results that
the embedding with diffusion coordinates clearly separates the former three clusters (far
apart from each other) as well as better separating the latter three (which can be observed
by zooming into the crowded part of the embedding usingDM ). In other words, theDM
approach yields a higher increase in the between-class variance and reduces the within-
class variance. It can also be observed from these results that noise has little effect on
the clustering performance of first two Fourier descriptors as it affects the high frequency
Fourier descriptors only. Interestingly, the performance ofFD goes marginally up in the
presence of noise, which can be put down to statistical variations in the feature space due
to noise as well as the use of only low frequency coefficients (first and second). ThePCA
andDM based embeddings show signs of deterioration in their separability of clusters
due to the use of high frequency coefficients which are more susceptible to noise than the
low frequency coefficients.

In order to quantify the performance of the proposed shape clustering algorithm, we
have used a measure known as theclass separability index(CSI) ci , i being the class
index, defined as

ci =
d̄i√
σ̄2

i

(9)

where d̄i is the average distance from theith cluster’s centroid to the centroids of all
other clusters and̄σ2

i can be regarded as a measure of its average spread estimated by
the average of variances along the cluster’s principal axes. Table 1 presents results of
clustering performance in terms of the CSI. Also shown in Table 1 are ¯c, which is a
measure of the overall clustering performance for a particular method, and ¯ci , which can
be regarded as a measure of the complexity of theith shape and the within-class variation
for its corresponding cluster. It is evident from these results thatDM is clearly superior
to PCA and rawFD at all noise levels. As the noise level increases, the overall clustering
performance goes down for bothPCA andDM , although ¯c for DM at σ = 10 is still
higher than that for the other two methods.

Application to Detection of Nuclei in Histological Images: We also tested the proposed
shape clustering algorithm on images of histological tissue samples from the prostate
gland. The shapes of nuclei provide clues for both the diagnosis and prognosis of can-
cer using computer-assisted systems aimed at quantifying changes in the nuclei shapes.
To this end, the reliable isolation of nuclei from the tissue section populated with other



ci σ = 0 σ = 5 σ = 10
FD PCA DM FD PCA DM FD PCA DM

Dog c1 3.0 2.4 12.5 3.2 2.5 6.7 3.4 2.8 7.9 c̄1 = 4.9
Rat c2 13.1 20.6 110.8 14.0 19.0 76.6 15.7 18.7 80.8 c̄2 = 41.1

Horse c3 2.8 3.7 8.6 2.9 3.6 9.1 3.0 3.5 5.9 c̄3 = 4.8
Hand c4 16.8 23.1 213.1 16.3 19.2 72.2 17.2 16.6 60.2 c̄4 = 50.5
Fish c5 2.8 3.4 15.8 2.8 3.4 10.8 3.0 4.0 9.9 c̄5 = 6.5

Carriage c6 11.4 12.9 17.9 11.5 12.8 66.5 11.7 12.5 68.4 c̄6 = 31.0
c̄ 8.3 11.0 72.0 8.5 10.2 40.3 9.0 9.7 38.9

Table 1: Class separability indexci , for i = 1,2, . . . ,6, using first two Fourier descriptors
(FD), top two PCA coordinates (PCA), and top two (2nd and 3rd) diffusion coordinates
(DM ), for different levelsσ of noise.

undesirable objects is pivotal for the success of these systems. Figure 6(a) shows a typ-
ical tissue section from prostate gland. The tissue section images were binarised using
a intensity-basedk-mean clustering scheme. Diffusion maps for theFD feature vectors
of the various object boundaries were computed. The potential nuclei identified by a
simple zero-crossing applied to the top two coordinates in the embedding are shown in
Figure 6(b). From these preliminary results, it can be observed that our algorithm has
successfully detected all regular-shaped nuclei (shown ingreen), effectively separating
them from the remaining objects, such as parts of nuclei, overlapping nuclei clusters, nu-
clear debris, and extracellular objects (shown inred). One of the major advantages of
this detection scheme is its low computational complexity. It only needs two thresholding
operations to separate regular-shaped nuclei from other objects. The spatial arrangement
of these nuclei as dictated by the diffusion mapping can be semantically interpreted as
well (see [1] for more details).

5 Conclusions

Extraction of the intrinsic parameters of shape is of vital importance for a wide range of
applications. In this paper, we have presented a novel framework for learning the global
structure of shape manifolds using diffusion maps in an unsupervised manner. The clus-
tering results using the proposed framework show its superiority over classical shape clus-
tering using linear dimensionality reduction. The difficulty in separating members ofDog
andHorseclasses stems from the fact that their contours have certain subtle differences
which could not be picked up by the first two diffusion coordinates. It is our observation
that the class separability indices for these two classes can be significantly increased by
increasing the number of diffusion coordinates. A naı̈ve extension of the proposed shape
clustering algorithm for the shape classification problem would require re-computing the
Markov matrix every time there is a new test sample. This extra computation can be
avoided by employing out-of-sample extension methods (such as the Nyström formula)
[16] to embed a new sample into the low-dimensional diffusion coordinate space without
having to re-compute the Markov matrix. The proposed framework can also be extended
for it to be applied to the general problem of shape modelling.
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Figure 4: Two-dimensional feature space (Top) and 2D embeddings using PCA (Middle)
and diffusion maps (Bottom).
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Figure 5: Clockwise from Top-Left: Logarithm of the class separability indexci , for i ∈
{Dog,Rat,Horse,Hand,Fish,Carriage}, using top two Fourier descriptors (FD), PCA
coordinates (PCA), and diffusion coordinates (DM ) for σ = 0, 2, 5, and 10.

Figure 6: Detection of nuclei: A prostate histology image (Left), 2D embedding of the
feature vectors for nuclei contours (Middle), and Regular-shaped nuclei (shown in green
colour) detected by zero-crossings of the diffusion coordinates (Right).


