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Abstract

The continual improvement of object recognition systems has resulted in an
increased demand for their application to problems which require an exact
pixel-level object segmentation. In this paper, we illustrate an example of
an object class recognition and segmentation system which is trained using
weakly supervised training data, with the goal of examining the influence
that different model choices can have on its performance. In order to achieve
pixel-level labeling for rigid and deformable objects, we employ regions gen-
erated by unsupervised segmentation as the spatial support for our image
features, and explore model selection issues related to their representation.
Numerical results for pixel-level accuracy are presented on two challenging
and varied datasets.

1 Introduction

In this paper, we illustrate an example of an object class recognition system which is
trained using weakly supervised training data, and the influence that different model
choices can have on its performance. The primary objectives of our system are torec-
ognizeand segmentobject classes innovel imagesusing models learned fromweakly
supervisedtraining data for which image-level labels exist but no indication of individual
object localization exists. In order to achieve pixel-level labeling such as in Figure1 for
rigid and deformable objects, we employ regions generated by unsupervised segmentation
as the spatial support for our image features. By using established methods for weakly
supervised learning, we can concentrate on the actual instantiations of the region repre-
sentations and examine how different choices for these instantiations affect performance.

Performing pixel-level recognition and segmentation of learned object classes in novel
images is itself a very difficult problem which requires image classification to determine
the presence of the object, identification of discriminative object parts to roughly localize
the object, and identification of non-discriminative object parts to complete the segmenta-
tion. For object recognition, local interest point-based methods which use highly discrimi-
native features such as SIFT [17] on fixed-shape object patches have been very successful.
These methods do not, however, provide a way to exactly determine which pixels are part
of the object unless the shape of the object is rigid or can be parameterized or modelled
easily. So we join a growing number of approaches which advocate using regions from
unsupervised segmentations to group pixels together and allow proper classification of
object parts which are not themselves discriminative [30, 22, 23, 25, 14, 16, 9, 10].
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Figure 1: For the image of the cheetah in (a), our goal is to produce an exact, pixel-level
object segmentation mask as in (b). Regions generated by unsupervised segmentation (c)
can be classified to produce such a mask (d).

Many systems which attempt to identify all of the pixels in an object require fully su-
pervised training data that has the objects segmented or extremely obvious [29, 15, 9, 16,
31, 26, 2, 18, 32, 8, 11, 21, 10, 28]. Training data that contains pixel level segmentations
is extremely tedious to obtain, however, so such systems are not able to scale to large
datasets. On the other hand, object discovery performed in large datasets of completely
unlabeled images, such as in [25] can lead to the discovery of objects which are unintuitive
or unimportant. Additional constraints may also be needed, for example that an object of
interest be exactly denoted by one region [25] or that video data be available [14]. A com-
promise is to have weakly labeled data in which images are labeled with the objects of
interest that they contain, but without the object locations. This type of data is far cheaper
to obtain, and has been used in numerous image classification and object recognition tasks
that utilize interest points (sparse or dense) or fixed-shape image patches, such as [22].
Very few systems, however, have attempted to use weakly supervised training data and
regions to learn object segmentations and object classifiers [1, 6, 3].

As a consequence of using weakly supervised training data and requiring pixel-level
object segmentation as output, the image features employed must be carefully designed.
As discussed, we cannot use interest points or fixed-shape patches, so we choose to use
region-based features. Since we do not know the object shape a priori, we cannot use it as
a cue as done in [29, 14, 16]. As argued by [24], we also cannot assume that one segmen-
tation region will correspond to an entire object of interest. So we use and compare three
region descriptors which are based on region texture and discriminative region features.
Two of the features are adaptations of the texton histograms introduced in [19] to regions,
and the third is the Region-based Context Feature (RCF) [23], which includes information
about discriminative image features in and around a region. Although other representa-
tions are possible, by instantiating our algorithm with these three concrete representations
we can study how model changes affect performance.

The structure of the remainder of the paper is as follows. We begin by discussing
our system framework which includes our image segmentation method and the learning
algorithm used for classifying regions. We then describe the datasets on which results
will be presented. With this general framework in mind, we classify single regions using
the various representations and compare their performance. We then examine methods
for combining representations. Finally, we examine whether incorporating information
from neighbouring regions allows for more robust detection and localization.

2 Framework

The general framework for all of the object recognition and segmentation experiments
in this paper is as follows: images are first divided into regions using unsupervised seg-



mentation, a representation is then computed for the regions, a model is learned which
determines whether a given region feature is indicative of the object in question, and fi-
nally novel regions are classified to produce object masks in novel images. This section
lays the groundwork for the presented experiments by briefly describing the segmentation
and classification methods used, as well as the datasets.

2.1 Segmentation

Although our approach is independent of the segmentation algorithm, it is useful to un-
derstand the nature of the regions we are working with. We use mean shift-based seg-
mentation [4] with pixel features of image position (2-dimensional), L*u*v* colour (3-
dimensional), and a texton histogram (30-dimensional). An example segmentation is
given in Figure1. We use the algorithm from the Berkeley segmentation database web-
site [19, 20] to compute the texton histograms; the texton at each pixel is a vector of
responses to 24 filters quantized into 30 textons, and the texton histogram centred at a
pixel is an accumulation of the textons in a 19x19 pixel window. The low dimensionality
of our texton histograms allows for generalization during segmentation, grouping together
pixels surrounded by similar but not identical textures. Some scale invariance is achieved
by segmenting each image at three different image sizes with the same parameters. For
clarity, we derive the formalism in this paper for only one segmentation of each image.

2.2 Classification model

Once we have segmented the image into regions, we can represent each region by a fea-
ture F (defined in Section3). To perform region classification, we require a score for
each region-representing feature. The method we use for scoring features in our weakly
supervised learning environment was introduced for interest points in [5, 27], and for
regions in [23]. We assign a score to each feature which indicates how well it discrimi-
nates between the positive (object) and negative (background) classes based on the image
labels. LetO indicate thepresenceof the positive object class in animage, andŌ the
absenceof the object class in animage. Then we can defineR as the log likelihood ratio
of the object’s presence, and scoreR̃ as our posterior belief inO givenF (assuming that
P(O) = P(Ō)):

R(F) = log
P(F |O)
P(F |Ō)

∈ (−∞,∞) R̃(F) = P(O|F) =
P(F |O)

P(F |O)+P(F |Ō)
∈ [0,1] (1)

Note thatR̃ preserves the ordering ofR but rescales the scores to lie in[0,1]. For R, a
score approaching negative infinity implies thatF indicates a negative image, a score ap-
proaching infinity implies thatF indicates a positive image, and a score of 0 indicates that
F is uninformative for either class. For̃R, a score of 0 implies a negative image, a score
of 1 implies a positive image, and a score of 0.5 is uninformative. Laplace smoothing is
performed during numerical evaluation of the probabilities for robustness.

For a novel image, we generate its segmentation, compute a feature for each region,
and classify each region based on the learned scoreR̃. The union of all positively classified
pixels (or regions) is the object segmentation.

2.3 Datasets

Creating datasets for weakly supervised learning requires much less effort than fully seg-
menting all of the objects. There is a trade off, however, in that the images chosen for



the weakly supervised datasets must facilitate tractable learning. Specifically, the back-
grounds in the images which contain the object must share features with the images which
do not contain the object. In this way, we can learn that image features which are seen in
both object and non-object images are in fact part of the background. In addition, since
we compute pixel-level accuracy, we require images with segmented objects in thetest
image set (butnot in the training image set).

We present results on two datasets. The first is the ‘Spotted Cats’ dataset used in [23],
which consists of data from the Corel Image Database. The folder ‘Cheetahs, Leopards
and Jaguars’ serves as the positive class, and the folder ‘Backyard Wildlife’ the negative
class. Each folder contains 100 images, half of which are used for training, and half for
testing. The images contain cats in a variety of poses, at a variety of sizes, and in varying
numbers.

The second dataset we use is the ‘Cars’ dataset comprised of images from the PAS-
CAL challenge VOC2006 dataset [7]. For training, we use the cars training and validation
images (553 images) as the positive set. As the negative training set we use all of the bi-
cycle and bus training and validation images which do not contain cars (509 images).
For testing, we use the cars test set (544 images). The PASCAL VOC2006 dataset is ex-
tremely challenging, with a large variety of object sizes, poses, lighting conditions, and
occlusion. A large number of the images contain multiple cars. We have produced ground
truth object masks for the test set for the purpose of the experiments herein.

The results we produce are pixel-level, in other words they compute the recall and
precision of classifying each individual pixel in each image as object or background. Note
that most of the existing evaluations for recognition and localization (which do not rely on
human segmentations) are presented as either image classification or object localization in
terms of bounding boxes or object centres, with a few exceptions such as [23, 25, 29, 9].
Thus the pixel-level results we present are unusually strict. For most of the experiments,
recall-precision curves are presented as in Figure2. Given the volume of experiments, we
summarize some of them in Table1 by their average precision.

3 Region representations

In order to classify regions we require a way to represent them. In this section, we show
that region representation can in fact strongly affect performance. We present three ap-
proaches to modeling regions, two based on histograms of textons [19], and another by
the Region-based Context Feature [23], and evaluate their performance.

Texture representation 1: mode of the texton histograms in a region.Texture is
a representation of the average, or repetitive, patterns within a region. For segmentation,
we use a 30-dimensional texton histogram computed at each pixel in the image. Since
our segmentation method is mean shift-based, and mean shift computes the mode of the
features within a region, a texton histogram mode (TM) for each region results directly
from the segmentation. The 30-dimensional texton histogram modes from every train-
ing region are clustered into a vocabulary of sizeKTM ∈ {50,300}, and new modes are
assigned to the cluster with the closest centroid.

Texture representation 2: histogram of the textons in a region.As discussed in
section2.1, a low-dimensional texton space facilitates segmentation. However, for region
classification a more discriminative texton vocabulary would lead to more discriminative
descriptors of region texture. The second texture representation, then, requires computing
a new texton vocabulary whose size,KTEX ∈ {30,200,1000}, is independent of that used
for segmentation. The texton words in a segmentation region are then accumulated to
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Figure 2: Comparison of region representations by pixel-level recall-precision curves for
recognition and segmentation of (a) Spotted Cats vs. Backyard Wildlife, and (b) PASCAL
Cars vs. background. TM means texture representation 1, the texton mode; TR means
texture representation 2, the histogram of textons over the region; RCF means Region-
based Context Feature. The first number is the size of the texton dictionary used, and the
second is the size of the texton histogram mode or texton histogram dictionary.

form a new texton histogram (TR). Note that this texton histogram is computed over the
region, not over square windows as in the previous method. These histograms can be
clustered to create a different vocabulary of region descriptors of sizeKTR∈ {50,300}.

Region-based Context Features.The shape of a segmentation region is data-driven,
which is useful for specifying the spatial support of texture features, but it can also work
against us. Consider the images in the top row of Figure4(b,e). The regions on the body
of the cheetah are detected using texture, but the head and face are missed since they have
little interior texture. The head regions do, however, have discriminative features such as
the shape of the ear or the presence of an eye. Cars also have little texture within a region,
but the shape of the wheels are strong cues. For these image structures, we require a rep-
resentation which can both encapsulate their uniqueness and extend past the boundaries of
the region to capture shape. To address these concerns, we adopt the Region-based Con-
text Feature (RCF) [23]. RCFs are the cluster centres of clustered histograms of quantized
SIFT [17] descriptors computed at local interest points in andarounda given region. The
SIFT descriptors ensure their discriminative power, and the histograms include points
outside the region in a principled manner. For implementation details, please see [23].

Experiments. We experiment with model selection for region representation by
choosing a representation type, TM, TR or RCF, a texton or SIFT dictionary sizeKTEX,
and a size for the descriptor, or histogram, dictionaryKTM, KTR or KRCF. In Figure2
and Table1 we compare choices for these parameters. Figure2 presents recall-precision
curves for pixel-level detection on the two datasets. For each pixel in each image, we
evaluate whether it has been assigned to the correct class. Curves are shown for the
TM representation (texton representation 1) withKTM ∈ {50,300}, the TR representation
(texton representation 2) with(KTEX,KTR) ∈ {(30,50),(1000,300)}, and the RCF rep-
resentation withKSIFT = KRCF = 50. Curves corresponding to the other model choices
are omitted for clarity. Table1 presents values for the average precision of all model
choices. The top row corresponds to the representation, the second row to the texton or
SIFT dictionary size, and the left column to the feature dictionary size.

While larger dictionaries seem intuitively more desirable, the results in Figure2 dis-



TM TR TR TR RCF
30 30 200 1000 50

50 0.493 0.513 0.504 0.542 0.392
300 0.498 0.493 0.533 0.545 -

TM TR TR TR RCF
30 30 200 1000 50

50 0.246 0.253 0.302 0.353 -
300 0.316 0.261 0.346 0.329 0.548

(a) (b)

Table 1: Comparison of region representations by average precision computed on (a) the
Spotted Cats dataset, and (b) the PASCAL cars dataset. The first row indicates the region
representation used, the second row indicates the size of the texton (or SIFT) dictionary,
and the left column indicates the size of the descriptor (histogram) dictionary. Note that
the average precisions do not increase monotonically with dictionary size.

agree. For the TM representation on the Spotted Cats dataset, a dictionary size of 300
performs better for low recall values, a dictionary size of 50 performs better for medium
recall values, and they perform similarly for high recall values. This trend can also be
seen for the TR curves for the Spotted Cats. In Table1 we can see that the average preci-
sion does not increase monotonically with dictionary size, reinforcing the fact that model
selection is crucial to meeting specific system requirements.

4 Combining features
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Figure 3: Recall-precision curves compar-
ing feature combination methods for pixel-
level recognition and segmentation of the
PASCAL Cars. ‘Indep’ means combining
features assuming independence; ‘Joint’
means using joint distributions.

In the previous section, we described three
different ways to represent segmentation-
generated regions for object recognition and
localization: TM, TR and RCFs. We found
that the texture descriptors are better suited
to objects with regular texture, such as spot-
ted cats, while the RCFs are better suited
to objects with discriminative parts, such as
cars. This section focuses on combining the
representations with the goal of eliminating
the need to make a class-dependent choice
between them.

To combine feature sets, a simplifying
assumption that could be made is feature in-
dependence. Although a texture represen-
tation of a region and an RCF are clearly
not independent, this naı̈ve Bayes assump-
tion allows us to estimate their joint proba-
bility from relatively little data. We define
the independent score for a feature pair to
be:

R̃(T,RCF) ∝ R̃(T) R̃(RCF)

WhereT is a texture feature, andRCF is a Region-based Context Feature.
With sufficient training data, the score of the joint probability of the texture features

and RCFs,R̃ j(T,RCF), can be modeled as for a single feature:

R j(T,RCF) = log
P(T,RCF|O)
P(T,RCF|Ō)

R̃ j(T,RCF) =
P(T,RCF|O)

P(T,RCF|O)+P(T,RCF|Ō)
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Figure 4: Examples of results on the Spotted Cats and Cars datasets. Columns (a) and (d)
show the original images, (b) and (e) shown the results of using single region classification
with feature TR(1000,300) for the Spotted Cats and RCFs for the Cars, and (c) and (f)
show the results of incorporating neighbourhood information. Results are in the ‘jet’
colourmap, ranging from dark blue for background to dark red for object detections.

In Figure3 we compare the effects of using the two feature combination models. For
clarity, only two representative curves per model are plotted. The combination of RCFs
with the TR texture representation with(KTEX,KTR) = (1000,50) provided the best re-
sults for both combination methods, surpassing even(KTEX,KTR) = (1000,300). Despite
a large amount of training data, the best results are not always obtained with the largest
dictionaries. Another counter-intuitive result is that combining the features with an as-
sumption of independence performs better than modeling the joint distribution even on the
Cars dataset which contains more than 1000 training images. Finally, note that although
the combination(KTEX,KTR) = (200,300) performs very poorly in the joint distribution
representation, it outperforms(KTEX,KTR) = (1000,50) for high recall values in the in-
dependent distribution representation. This indicates that performance under one type of
distribution does not mirror performance under the other. This result can be applied to
other object recognition systems, suggesting that many common assumptions in system
implementations should in fact be verified.

5 Incorporating neighbourhood information

We have made progress in classifying regions to detect and segment objects, however
we still make mistakes, especially with respect to spurious object detections and missed
detections which are inconsistent with the regions around them, such as in columns (b)
and (e) of Figure4. In this section we describe a method for smoothing the localization
results using information from adjacent pairs of regions which leads to the results in
columns (c) and (f) of Figure4.

To incorporate pairwise information, the two-class classification problem can be re-
formulated as an energy minimization. Letxi ∈ {0,1} be the label of regioni, with 0
for background and 1 for object. ThenX = [x1..xN] is the vector of assignments to every
region in an image. Also, letFi be the feature cluster for regioni, andF = [F1..FN] be
the vector of region features over the entire image. HereF can be a texture feature or an
RCF. We define the energy of an assignment of labelsX to an image to be:

E(X,F) = ∑
i

U(xi ,Fi)+α ∑
i

∑
j

B(xi ,x j ,Fi ,Fj) (2)

Provided that the pairwise termB(xi ,x j ,Fi ,Fj) is associative, we can use graph cuts to
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Figure 5: Pixel-level precision-recall curves for the (a) Spotted Cats and (b) Cars datasets
using pairwise neighbourhood information. The best-performing single-region represen-
tations were used, TR(1000,300) for the Spotted Cats and RCFs for the Cars. Each curve
shows the results using a differentα as in Equation2. Forα = 0 the binary energy term
is ignored, and the results mirror those of single regions in Figure2. From theα = 5
curve we see that incorporating neighbourhood information can indeed improve precision
by 5-10% for many of the recall values.

minimize the energy exactly and obtain a region labeling [13].
In the energy function, the unary term serves to classify single regions. By using a

generative model, we can define the unary energy term as:

− logP(Fi |xi)=− logP(Fi |xi =0)(1−xi)P(Fi |xi =1)xi =−xi log
P(Fi |xi =1)
P(Fi |xi =0)

− logP(Fi |xi =0)

Note that logP(Fi |xi =0) is constant with respect to the label assigned toxi , so we can
ignore it in the energy minimization. Also, as in the single-region classifier, we can use
the bounded posterior̃R(Fi) instead of the unbounded log likelihood ratio. Note that
this is an approximation computed usingimagelabels, notregion labels. Finally, energy
minimization via graph cuts produces a binary labeling of the data, but it does not produce
marginals. To compute different recall-precision values, we use a penalty termβ which
adjusts the threshold between declaring a region part of an object or the background.
Another method for achieving this goal is presented in [12]. Our final unary term is:

U(xi ,Fi) = −xi
(
R̃(Fi)−β

)
In most energy minimizations, the binary energy term is a classifier between the

four possible assignments(xi ,x j)∈ {(0,0),(0,1),(1,0),(1,1)} trained using fully labeled
data. Since we only have image-level labels, defining and training the binary energy term
is a more difficult process. We choose to defineB(xi ,x j ,Fi ,Fj) as a smoothing term which
only differentiates between the two regions having the same label or different labels. The
lack of training data with adjacent neighbours labeled(0,1) or (1,0) makes this impossi-
ble to train directly, so we define the binary terms as:

B(xi ,x j ,Fi ,Fj) =

{
log(1+ P(Fi ,Fj |ion j)

P(Fi ,F∗|ion j)+P(F∗,Fj |ion j) ) xi 6= x j

0 xi = x j

(3)



Wherei on j means thati and j are neighbours, andF∗ is any feature cluster. The 1+ term
ensures thatB>= 0 and hence is associative. By this definition ofB, we prefer to smooth
region labels if the regions are frequently seen together and hence are likely to belong
to the same object. Features which are rarely seen together are more likely to belong to
different objects, hence their respective region labels are less prone to smoothing.

We performed experiments using this energy function on both datasets. The features
used were the TR(1000,300) for the Spotted Cats, and the RCFs for the Cars, since they
performed best on the single-region representation task. Values ofα of 0, 0.5, 1 and 5
were used. In Figure5 we show the results of settingα = 0 andα = 5. We omit the
α = 0.5 andα = 1 settings for clarity since they lie strictly between theα = 0 andα = 5
curves. Ifα = 0, the binary term in the energy function is ignored, and indeed this curve
matches the single-representation RCF curve in Figure2.

From theα = 5 curve we can see that using this pair-wise smoothing approach does
indeed improve precision by 5-10% for most recall values. Example results are given in
Figure4.

6 Conclusions

In this paper we have presented a study of issues related to using segmentation-generated
regions for object class recognition and segmentation in a weakly supervised learning
framework through a particular instantiation of such a system. Results were computed
for pixel-level localization. We explored three different region representations and model
selection issues for each, concluding that the choices are dataset-dependent and hence
multiple representations should be evaluated for future systems in this category.

In order to reduce the burden of region representation, we examined ways to combine
representations that would perform at least as well as a single representation alone. Our
results showed that modeling the joint distribution of the representations by assuming
their independence can lead to promising performance. However, even a large dataset
such as the 1000 training images we used for the PASCAL Cars was not enough to prop-
erly model a full joint distribution between representations.

Finally, we attempted to reduce the spurious object detections and spurious object
misses by incorporating information from a region’s neighbourhood. Both single regions
and pairs of neighbouring regions were used to compute an energy-minimizing labeling
solution which outperformed the use of single regions alone.
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