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Abstract

In this paper we will consider a combination of the RANSAC algorithm and
the Hough transform for fast model estimation under the presence of outliers.
The model will be computed by sampling a smaller than minimalsubset, fol-
lowed by a voting process of the remaining data. In order to use the com-
bined method for this purpose, an adequate parameterization of the model
in the Hough space is required. We will show that in case of hyperplane and
fundamental matrix estimation, there is a similar and very general parameter-
ization possible. It will allow these models to be estimatedin a very efficient
manner.

1 Introduction

The Hough transform determines for every data point the parameter subspace of models
it supports, and increases the votes in the Hough space for all these models. An extension
of this principle is to vote for sets of data points instead ofsingle points. The subspace
of supported models is then smaller, while the number of different point sets is larger.
For example, a hyperplane inRN is specified byN points, and a single point imposes a
N − 1 dimensional subspace of supported models in the Hough space. When a pair of
points is considered, the set of supported models is aN −2 dimensional subspace. The
voting process is then faster, but we have to consider

(n
2

)

different pairs instead of only
n points. The limiting case is when precisely sets ofN points are selected, which then
results in a single point in the Hough space. This is the principle of the randomized
Hough transform [11]. Instead of the total number of possible sets

(n
N

)

, only a small
number of random sets is selected which is sufficient to find the best model.

In contrast to the Hough transform, the RANSAC algorithm [3]samplesN points
and verifies the amount of support for the corresponding model. In view of the above,
it is also possible to sample less thanN points and verify the support for each supported
model in the parameter subspace. This use of RANSAC in combination with the Hough



transform has been proposed in [8, 9] to improve the efficiency and quality of model
estimation. It was argued that using sets ofN −1 points is probably the best choice in
terms of efficiency. This results in a one-dimensional subspace of models, which may
be parameterized by a single quantity. Then there is no need to accumulate the largeN
dimensional Hough space.

The number of iterationsJ needed in the RANSAC algorithm is determined from the
required probability of success, i.e. the probability thatat least one all-inlier sample is
found in J iterations [3]. Letε denote the outlier ratio in the data, andd the number of
points needed to hypothesize a model. Ifp is the probability of success, e.g. 0.99, then
we have the relation

p = 1− (1− (1− ε)d)J (1)

The necessary number of iterations of the combined RANSAC and Hough method is
clearly lower than for standard RANSAC, since only sets ofd = N −1 instead ofd = N
points are sampled for forming model hypotheses.

In general, an explicit parameterization of the fundamental matrix in the Hough space
is impractical. Its estimation requires a 7-dimensional voting array (due to the 7 degrees
of freedom [4]), which becomes unmanageable even for a moderate number of quantiza-
tion levels. To be able to use the method in [8], we propose a new parameterization for
hyperplanes which can also be applied to the fundamental matrix. The parameterization
is based on the nullspace of a sample, where the sample will contain one point less than
the minimally required number. For hyperplane estimation,we can include the threshold
for the support set directly into the voting process. As a result, the whole range of models
supported by the remaining data is taken into account. For fundamental matrix estima-
tion, the correspondences will vote for single models. The resulting estimation by 6-point
samples will be very efficient due to the reduced number of iterations. In [8] the quality
of the model was also improved by using an error propagation mechanism for the data.
Error propagation is not incorporated in our method, since no explicit parameterization of
the model is used. Note that the standard RANSAC algorithm also neglects noise effects
of points in the sample [2].

Several other modifications of RANSAC have been proposed to speed up the algo-
rithm; the most directed to homography or fundamental matrix estimation. For example,
in [10] the feature matching score is used in the selection probabilities of the correspon-
dences in order to sample inliers more often. In [2], hypothesized models are optimized to
compensate for noisy inliers and the resulting loss of support points. A faster support set
evaluation has been proposed in [1], where a small number of randomly selected points is
initially evaluated for support. Only when the hypothesized model has sufficient support
points among this number, the remaining data is tested for support.

All these methods apply different speed-up mechanisms thanour algorithm, and can
therefore be combined with our algorithm to achieve even faster fundamental matrix esti-
mation.

In Section 2 the proposed parameterization technique is discussed for hyperplane esti-
mation. Section 3 describes the application of the method tofundamental matrix estima-
tion. In Section 4, hyperplane and fundamental matrix estimation are evaluated on range
data and real image pairs, respectively. Section 5 will conclude the paper.



2 Hyperplane estimation

The data pointsxi for i = 1, . . . ,n in R
N will be denoted byx = (x1,x2, . . . ,xN)⊤. A hy-

perplane with normal vectorn = (a1,a2, . . . ,aN)⊤ and offsetb is given by
a1x1 +a2x2 + . . .+aNxN +b = 0. In short, the parameters of the hyperplane will be indi-
cated byh = (n⊤ b)⊤. The random samples that will be drawn consist ofN −1 points
{x̃1, x̃2, . . . , x̃N−1}, and solving for the hyperplane
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h = 0 (2)

yields a two-dimensional space{h1,h2} for h. This nullspace can in practice be computed
by a singular value decomposition of the lefthand-side matrix. If the sample
{x̃1, x̃2, . . . , x̃N−1} contains only inliers, then the true hyperplane can be givenby a linear
combination of the nullspace vectors as

h = αh1 +(1−α)h2 (3)

The value ofα can be found by solving(x⊤ 1)h = 0 for another inlying pointx, and
should be the same for all other inliers. The outliers will produce different values forα.

To find the true value ofα we use a Hough-based voting mechanism for the remaining
n−N + 1 data points [8]. We could use the projections ofx ontoh1 andh2 directly for
computingα, but this may result inα values which are difficult to quantize. In particular,
the nullspace vector with the largest singular value, sayh1, is likely to constitute the
largest part ofh and thereforeα ≈ 1. The binning of many values close to 1 and possibly
some values far from 1 is impractical. It would be more convenient to have anα with
equiprobable values over a large range.

For this purpose, we will make use of an orthonormal basis{u1,u2} for the space
spanned byn1 and n2, which are the normals inh1 and h2 from (3). We will take a
point x̃1 from the sample, and project all vectorsxi − x̃1 for i = 1, . . . ,n (except those
from the sample) onto this basis. The pointx̃1 can be seen as the origin for the space
spanned by{u1,u2}, which is shown in Fig. 1 for a line in 2D. From (3) we have that
n = αn1 + (1−α)n2, and sincen1 andn2 are linear combinations of{u1,u2} we can
write

n = c1u1 + c2u2 (4)

for certain valuesc1 andc2. It then follows, that for the inliers the ratio of projections
ontou2 andu1 becomes

(x− x̃1)
⊤u2

(x− x̃1)⊤u1
=

(x− x̃1)
⊤(n− c1u1)

1
c2

(x− x̃1)⊤u1

=
(x− x̃1)

⊤u1
−c1
c2

(x− x̃1)⊤u1

=
−c1

c2
(5)
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Figure 1: The sampled pointx̃1 will serve as the origin for the space spanned by{n1,n2}.
Each pointx is projected onto this space by projecting the vectorx− x̃1 onto the orthonor-
mal basis{u1,u2}.

since(x− x̃1)
⊤n = −b− (−b) = 0. The outliers will produce different values for the

projection ratio since in that casex⊤n 6= −b. The projection ratio in (5) will cover a
relatively large range of values, and the angleγ of the projected vectorx− x̃1 with respect
to the basis{u1,u2}

γ = arctan

(

(x− x̃1)
⊤u2

(x− x̃1)⊤u1

)

(6)

offers a quantity which can conveniently be used in a voting space.
In principle, not only the hyperplane which crosses a pointx should receive a vote,

but all possible hyperplanes that are within allowable distance from the point. A data
point will support a hyperplane if its orthogonal distance to the hyperplane is smaller
than a thresholdT (which is usually chosen heuristically in the RANSAC algorithm), see
Fig. 2. Here the angleβ determines for which models the indicated point can possibly be
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Figure 2: The projection of the pointx in the frame{u1,u2}. There is a range of hy-
perplanes which the point supports. The maximum angleβ for the range depends on
thresholdT and the lengthδ of the projection of the vectorx− x̃1.

a support point, and we have sin(β ) = T
δ whereδ =

√

((x− x̃1)⊤u1)2 +((x− x̃1)⊤u2)2.
A data point will vote for all angles in the range[γ −β ,γ +β ]. We note that the distance



from pointx to the hyperplane is equal to the projected distance in the space spanned by
{u1,u2}, since the component ofx that lies outside this space is orthogonal to it.

The angleγ will be measured in degrees and we choose to use a voting spaceof 180
bins; one bin for each degree from -90 to 89. After calculating this angle for all points, it
should result in a large number of votes in the bin of the true angle. A drawback of using
all data points for voting, is that the voting operation may become quite complex for large
data sets. Following the concept of the probabilistic Houghtransform [6], we can also
examine a subset of randomly sampled data points and calculate the best angle for this
subset. This should give a sufficiently accurate estimate ofthe angleγ while making the
voting process much faster. In the experiments we have chosen for a total of 100 randomly
sampled data points, and only in casen ≤ 100 we use all data.

The bin containing most votes determines the angleγ∗ for which the final hyperplane
is calculated according to

h =

(

u1 + tan(γ∗ + 1
2π)u2

−x̃⊤1 (u1 + tan(γ∗ + 1
2π)u2)

)

(7)

where point̃x1 is taken from the sample.

3 Fundamental matrix estimation

The fundamental matrix can be estimated by following roughly the same technique as
for hyperplane estimation. However, there are two major differences with the preceding
scenario.

First, the 7-point algorithm uses the singularity constraint to determine the fundamen-
tal matrix. After seven correspondences are selected, solving for the fundamental matrix
yields a two-dimensional nullspace [4]. Then the singularity constraint of the fundamen-
tal matrix needs to be used to find the solution. If we sample six points, the resulting
nullspace is three-dimensional. We would like to use the singularity constraint for remov-
ing one dimension and use voting to find the final solution. Unfortunately, the singular-
ity constraint on the three-dimensional nullspace is a cubic polynomial in two variables,
which does not allow voting with respect to a fixed pair of nullspace vectors. As a result,
we have to solve the singularity constraint for each correspondence individually. The
complexity of the algorithm will therefore increase, but aswe have already indicated, a
subset of the data points will suffice in the voting process.

Second, since there is no fixed two-dimensional nullspace during voting, we can not
calculate the range of allowable models as in Fig. 2. The number of fundamental matrices
consistent with a seventh correspondence will be either oneor three, just like for the 7-
point algorithm. Therefore, there is no range of matrices for which e.g. the Sampson
distance can be evaluated, and votes are cast for either one or three separate angles.

To start the estimation process we sample 6 correspondences
{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6}, and solve
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...

...
...

...
...

...
...

...
...
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f = 0 (8)

which results in a three-dimensional space of solutions



f = αf1 +β f2 +(1−α −β )f3 (9)

If we take a single correspondencex ↔ x′ and solve

(

x′x x′y x′ y′x y′y y′ x y 1
)

f = 0 (10)

for f from (9) we get a linear constraint inα andβ . When the correspondence is an inlier,
the true values forα andβ will satisfy this constraint. Let the resulting linear relation be
β = rα +g. Then we use the singularity constraint

det(αF1 +(rα +g)F2 +(1−α − (rα +g))F3) = 0 (11)

whereF1, F2, and F3 are the 3× 3 matrices containing the elements off1, f2 and f3,
respectively. This will result in either one or three real solutions forα and thus forf. Now,
writing the vectorsf1, f2 andf3 in (9) asf1 = (n⊤

1 b1)
⊤, f2 = (n⊤

2 b2)
⊤ andf3 = (n⊤

3 b3)
⊤,

we construct an orthonormal basis{u1,u2,u3} from {n1,n2,n3}. This basis is used for
the projection of the solutions forf. In particular, we calculate the angles

γ1 = arctan

(

( f1 · · · f8)u2

( f1 · · · f8)u1

)

γ2 = arctan

(

( f1 · · · f8)u3

( f1 · · · f8)u2

)

(12)

and use them to cast a vote in a two-dimensional array. The angles will be rounded
towards full degrees in the range -90 to 89.

As in hyperplane estimation, we do not use all data points during voting. When the
data set contains more than 100 correspondences, only 100 randomly selected correspon-
dences are considered. Examples of vote distributions are given in [5].

After having located the values ofγ∗1 andγ∗2 for the bin containing most votes, we can
find the first eight elements of the correspondingf by







f1
...
f8






= u1 + tan(γ∗1)u2 + tan(γ∗1) tan(γ∗2)u3 (13)

and the last element by

f9 = −
(

x̃′1x̃1 x̃′1ỹ1 x̃′1 ỹ′1x̃1 ỹ′1ỹ1 ỹ′1 x̃1 ỹ1
)
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f8






(14)

The correspondencẽx1 ↔ x̃′1 is part of the 6-point sample, and therefore lies on the final
f.

The fundamental matrix that is found this way does not automatically satisfy the sin-
gularity constraint. Due to the rounding effect in the voting array, the matrix will slightly
deviate from a singular one. We can solve this by applying theSVD to this matrix, and
setting the smallest singular value to zero [4]. A prerequisite for this to work properly is
a normalization of the correspondences. This entails a translation which results in zero
means for the(x,y) coordinates, followed by a scaling which makes their average distance
to the origin equal to

√
2. The transformation is applied to both images’ correspondences



independently. Before the support of the fundamental matrix is evaluated, the coordinates
are transformed back again to their original values.

The whole sequence of steps in the estimation process is listed in Fig. 3. Note that the
number of iterationsJ is determined adaptively as in [4]. When the largest support set so
far is found, i.e.|S j| > |Smax|, the outlier ratioε is updated accordingly. The number of
iterationsJ is then recomputed according to (1).

• j = 1, J = ∞, Smax = /0
• Normalize the image correspondences.
• while j < J do

• Randomly select 6 correspondences{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6} and use them
to compute their nullspace{f1, f2, f3} by solving (8).

• Determine the orthonormal basis{u1,u2,u3} for the space spanned by
the normals in{f1, f2, f3}.

• if n > 100then
• form the setC by randomly selecting 100 correspondences from
{x1↔x′1, . . . ,xn↔x′n}\{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6}

• else
• form C = {x1↔x′1, . . . ,xn↔x′n}\{x̃1 ↔ x̃′1, . . . , x̃6 ↔ x̃′6}

• for each x↔x′ in C do
• Find the possible solutions forx↔x′ by solving (10) and (11).
• Determineγ1 andγ2 according to (12) for each solution, and round

the angles to the nearest degree.
• Add one vote for each pair of angles(γ1,γ2) in the voting array.

• Determine the pair(γ∗1 ,γ∗2) with the maximum number of votes.
• Constructf from (13) and (14) forγ∗1 andγ∗2 .
• Find the closest approximationf̂ to f with det(F̂) = 0 using the SVD.
• Determine the set of support pointsS j for the denormalized̂f, by verifying

which points are within distanceT .
• if |S j| > |Smax| then

• J = log(1− p) · log−1
(

1−
( |S j |

n

)6
)

• Smax = S j

• j = j +1

• Re-estimate the fundamental matrix based on the largest support setSmax.

Figure 3: The RANSAC-Hough algorithm for fundamental matrix estimation using a
two-dimensional voting space.



∑JR (·103) ∑JRH (·103) tR tRH ∑ |Smax|R (·104) ∑ |Smax|RH (·104) #hR #hRH

image 0 9.50±1.42 1.63±0.17 19.9±2.37 3.84±0.31 6.29±0.032 6.29±0.033 14.0±0.7 13.8±0.6
image 1 3.41±0.48 0.72±0.09 5.47±0.64 1.39±0.13 6.37±0.029 6.37±0.028 10.8±0.6 10.4±0.6
image 2 5.36±0.75 1.05±0.11 9.58±1.53 2.06±0.24 6.41±0.034 6.41±0.034 13.0±0.7 12.7±0.6
image 3 2.12±0.37 0.51±0.07 4.13±0.70 1.13±0.14 6.41±0.028 6.41±0.026 10.0±0.6 9.7±0.6
image 4 2.88±0.50 0.63±0.08 5.71±0.73 1.45±0.14 6.41±0.029 6.40±0.028 11.1±0.7 10.6±0.6
image 5 2.55±0.34 0.58±0.07 4.32±0.57 1.14±0.13 6.39±0.029 6.39±0.030 10.0±0.6 9.7±0.6
image 6 5.03±0.68 1.00±0.11 9.80±1.18 2.18±0.20 6.36±0.029 6.36±0.031 12.3±0.6 12.0±0.6
image 7 1.62±0.29 0.41±0.05 3.74±0.39 1.07±0.08 6.44±0.026 6.44±0.024 9.7±0.6 9.3±0.5
image 8 2.00±0.36 0.47±0.07 3.61±0.57 1.00±0.11 6.40±0.028 6.40±0.028 9.2±0.6 8.9±0.6
image 9 1.91±0.37 0.46±0.07 4.09±0.52 1.14±0.10 6.44±0.029 6.44±0.029 10.2±0.7 9.7±0.7

Table 1:The results for finding all planes using RANSAC (R) and RANSAC-Hough(RH) in the
ABW range images. Indicated are the averages and standard deviations(±) for the total number of
iterations∑J per image, the running timet in seconds, the total size of the maximum support sets
∑ |Smax| and the number of planes #h found.

4 Experimental results

We will compare the proposed RANSAC-Hough method with the standard RANSAC
algorithm for plane fitting and fundamental matrix estimation. For all experiments we
report the averages and standard deviations over a number ofruns of both the executed
number of iterationsJ and the size of the maximum support set|Smax|. Furthermore, the
average running time for a single run is listed. The final re-estimation step in RANSAC
will be omitted. The algorithms were implemented in C and ranon Intel Xeon 3.07 GHz
/ 3.2 GHz computers. For implementation details see [5].

4.1 Plane fitting

As application we consider the fitting of planes in range image data. We have used 10
images (“train” 0 to 9) from the ABW structured light scannerin the USF database1. The
images contain several different planar objects, and the intensity values correspond to the
measured depth by the scanner. An example of one of the imagesis shown in Fig. 4(a).
We have subsampled the images with a factor 2 to obtain 256×256 sized images. We
search with RANSAC for planes in the images, and subsequently delete the points from
the data set which belong to a plane. The repeated application of RANSAC is stopped
when a plane is returned with support smaller than 500 pixels. For the shown example
image, the number of planes extracted this way will be about 12. The experiment is
repeated 500 times for each image. The threshold for the orthogonal distance to the plane
is set toT = 2.5, which is large enough to capture noisy variations of the inliers. Table 1
shows the results of the experiments.

The RANSAC-Hough method outperforms RANSAC in all aspects;in some cases it is
up to a factor 5 faster. The total number of points on the extracted planes is comparable,
while the number of planes is a bit smaller. This means that the extracted planes are
actually better fits, since they contain a larger part of the data.

4.2 Fundamental matrix estimation

Some of the real images we have used for testing are shown in Fig. 4(b) and 4(c). There
are differences in viewpoint and/or zoom factor between theleft and right images. The

1Available at http://marathon.csee.usf.edu/range/seg-comp/images.html.



SIFT keypoint detector2 [7] has been applied for establishing correspondences between
the image pairs. The left images in Fig. 4(b) to 4(c) show the final sets of inlying feature
points, and the right images the outlying feature points. Also indicated for every image
pair are the total number of correspondencesn and the outlier ratioε. The Sampson
distance is chosen as error measure, and we have set the square root of the threshold to
T = 1.5 pixels.

(a) A range image used for
plane fitting.

(b) Wadham college:n = 921 andε = 0.71.

(c) Pile of books:n = 548 andε = 0.82.

Figure 4: Some of the images used in the experiments.

The results of running RANSAC 500 times on the image pairs areshown in Table 2.
The difference in running times is best noticeable for higher outlier ratios. The number
of iterations is reduced here considerably and the additional complexity of the voting pro-
cess does not prohibit a speedup anymore. The support sets found are slightly smaller
than those for RANSAC. This is a result of the rank 2 enforcement which finds an ap-
proximation of the fundamental matrix computed from the data. Since the data is not
considered in finding this approximation, some inliers are lost in the process.

5 Discussion

The combination of RANSAC and the Hough transform, that has been advocated in the
past, is made applicable to hyperplanes and the fundamentalmatrix by a new parameter-
ization of the model. For hyperplanes, the result is an efficient one-dimensional voting
space and a reduction of the sample size by one point. For the fundamental matrix, a
two-dimensional voting space is applied because of the singularity constraint. Instead of
sampling 7 correspondences per model, we now only need to take 6-point samples. This

2The code is obtained from http://www.cs.ubc.ca/∼lowe/keypoints/.



image pair ε # inliers JR JRH |Smax|R |Smax|RH tR tRH

books 0.74 189 7.2±0.64 ·104 1.92±0.17 ·104 187±2.5 185±2.9 25.1±3.6 11.7±1.9
pile of books 0.82 97 4.03±0.71 ·105 0.93±0.18 ·105 109±2.9 106±3.5 114±24.2 52.5±12.0

Wadham college 0.71 264 7.08±2.93 ·104 1.96±0.73 ·104 241±13.8 236±14.4 29.0±12.4 12.4±4.9
Univ. British Columbia 0.56 399 2.65±0.56 ·103 1.14±0.25 ·103 372±11.0 369±12.8 1.13±0.28 0.72±0.20

Corridor 0.43 150 466±160 261±95.5 139±5.8 138±6.8 0.08±0.031 0.13±0.055
Valbonne church 0.58 127 2.56±0.63 ·103 1.23±0.40 ·103 123±3.7 121±5.4 0.49±0.13 0.64±0.23

Table 2:Fundamental matrix estimation using RANSAC (R) and RANSAC-Hough (RH) on real
image pairs. Indicated are the averages and standard deviations (±) for the executed number of
iterationsJ, the maximum number of support points|Smax| and the running timet in seconds.

makes it much easier to find an all-inlier sample by random trials. In addition, we use for
both models randomly selected subsets of the data to speed upthe voting stage.

The consecutive extraction of planes in range images took considerably less time us-
ing the RANSAC-Hough method. The quality of the solutions iseither equal or better
than standard RANSAC. In case of the fundamental matrix, a much faster estimation is
achieved for high outlier ratios, with only a minor decreasein the size of the support.

A further improvement of the algorithm may be circumventingthe loss of support
points caused by enforcement of the singularity constraint.
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