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Abstract

The faithful reconstruction of 3-D models from irregular and noisy point
samples is a task central to many applications of computer vision and graph-
ics. We present an approach to denoising that naturally handles intersections
of manifolds, thus preserving high-frequency details without oversmoothing.
This is accomplished through the use of a modified locally weighted regres-
sion algorithm that models a neighborhood of points as an implicit product
of linear subspaces. By posing the problem as one of energy minimization
subject to constraints on the coefficients of a higher order polynomial, we can
also incorporate anisotropic error models appropriate for data acquired with
a range sensor. We demonstrate the effectiveness of our approach through
some preliminary results in denoising synthetic data in 2-D and 3-D do-
mains.”

1 Introduction

Surface reconstruction from unorganized point samples is a challenging problem relevant
to several applications, such as the digitization of architectural sites for creating virtual
environments, reverse-engineering of CAD models from probed positions, remote sensing
and geospatial analysis. Improvements in scanner technology have made it possible to
acquire dense sets of points, and have fueled the need for algorithms that are robust to
noise inherent in the sampling process.

In several domains, particularly those involving man-made objects, the underlying ge-
ometry consists of surfaces that are only piece-wise smooth. Such objects possess sharp
features such as corners and edges which are created when these smooth surfaces inter-
sect. The reconstruction of these sharp features is particularly challenging as noise and
sharp features are inherently ambiguous, and physical limitations in scanner resolution
prevent proper sampling of such high-frequency features.

This paper proposes a denoising technique to accurately reconstruct intersections of
manifolds from irregular point samples. The technique can correctly account for the
anisotropic nature of sensing errors in the sampled data under the assumption that a noise
model for the sensor used to acquire the points is available. The method does not assume
prior availability of connectivity information, and avoids computing surface normals or
meshes at intermediate steps.

* Prepared through collaborative participation in the Robotics Consortium sponsored by the U.S Army
Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-209912.
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Figure 1: Example of denoising a toy dataset by global fitting of an implicit degenerate
polynomial (a) Input data consisting of points from two intersecting line segments cor-
rupted with uniform Gaussian noise of std. deviation o = 0.5 (b) Denoised data using
an implicit quadratic fit with the HEIV estimator [6]. Note that the sharp feature formed
by the intersection is not preserved. (c) Denoised output after imposing degeneracy con-
straints on fit coefficients fixes this problem.

1.1 Related Work

There have been several proposed approaches to recover geometry from noisy point sam-
ples. They may be coarsely categorized as based on computational geometry, local re-
gression, or implicit function fitting.

In general, past approaches have often made simplifying assumptions about the data
due to the ill-posed nature of the problem. (1) Methods based on classical regression
typically assume that the geometry can be treated locally as a smooth surface, which is
clearly a problem at surface intersections. (2) Most approaches assume the noise in the
data to be isotropic and homogeneous, perhaps because they often lead to convenient
closed-form analytical expressions. However, noise is almost always highly directional
and dependent on the distance of the point to the sensor. This is, for example, the case
with laser range scanners. Ignoring the anisotropy in the noise model typically results
in a systematic bias in the surface reconstruction [6]. (3) Some methods assume the
reliable availability of additional information about the geometry, such as connectivity
information (meshes) and surfaces normals, and try to produce estimates of geometry that
agree with this information. However, the estimation of both these quantities is error-
prone. Estimation of differential quantities like surface normals and tangents is difficult
in the presence of noise even for relatively smooth surfaces [7, 10], and is of course not
even well-defined at intersections.

Several methods based on computational geometry have been developed and rigor-
ously analyzed in the literature [3]. Many algorithms in this category come with theoreti-
cal guarantees of accuracy in the reconstruction but their applicability is largely restricted
to dense low-noise datasets.

Surface estimation from noisy point samples may be posed naturally as an instance
of the local regression problem from classical statistics. A popular non-parametric tech-
nique in this category is locally weighted regression, also known in its more general form
as Savitzky-Golay filtering. As explained in [4], it adapts well to non-uniformly sampled
data and exhibits less bias at boundaries. The moving least squares (MLS) technique [5]
builds on this by first computing a locally approximating hyperplane and then applying a
locally weighted regression procedure to the data projected to the hyperplane. The tech-



nique works well with noise but is unable to reproduce sharp features due to its implicit
assumption of a single locally smooth surface.

Fleishman et al. [8] fit quadratic polynomials locally to data and used standard tech-
niques from robust statistics in the fitting process. The technique relied on an initially
finding low-noise local regions to obtain a reliable estimate of the quadratic fit, which
may not always be feasible.

Wang et al. [13] proposed a more complicated procedure involving a sequence of
voxelization and gap-filling, topological thinning and mesh-generation. Based on local
connectivity, each voxel is classified as being at a junction, boundary and surface interior.
The procedure has several points of failure, particularly at regions that are not densely
sampled with respect to the voxel size.

The method presented in this paper combines the strengths of some of the previous
approaches. We modify a locally weighted smoother to implicitly represent potentially
multiple linear subspaces through a degenerate high-order polynomial. This allows us
to explicitly model edge intersections instead of trying to fit a highly non-smooth sur-
face. The use of a local smoother preserves the adaptability to varying sample density.
By posing the regression as a constrained energy minimization problem, we can easily
incorporate anisotropic error models in the data. We outline the algorithm in Section 2
and examine its behavior through several experiments in Section 3.

2 Constrained Local Regression

In this section, we describe a modified regression algorithm that will enable us to recover
noise-free surfaces from noisy point cloud data, while preserving high-frequency features
in the geometry. We will first consider the case of 2-D data to simplify the explanation of
the main idea.

2.1 Problem definition and approach

We assume that we are given a set of points {x;} € R? that are assumed to be noisy
observations of the positions of true points {%;} € R? that lie on a locally continuous,
but not necessarily smooth surface. The associated noise covariances A; € S‘i at each
point are assumed to be known, for instance, through a noise model of the sensor used to
acquire the points. The points are assumed to be irregular, in the sense that they do not
follow a known regular sampling distribution, and unstructured in the sense that the local
connectivity of the points, such as in the form of a mesh, is not available.

Our goal will be to compute the true position X; corresponding to each observed point
x;. The operating assumption will be that points in a local neighborhood, .4 (x;) of x; may
be modeled as belonging to one or more linear subspaces. This naturally suggests a max-
imum likelihood (or equivalently defined minimum energy) formulation of the problem,
subject to the constraint that the noise-free points lie on one or more subspaces. Since
the parameters of the models, number of models, as well as the association of the points
to each subspaces are unknown, a popular strategy is to attempt a procedure of iterative
model fitting and data association, such as Expectation-Maximization (EM). However,
such iterative procedures tend to be error prone when performed with few and noisy data
points, as may be expected for our problem.

Instead, we propose to model the problem as one of maximum likelihood subject to
two types of constraints. The first type of constraint ensures that each noise-free point in



the neighborhood of interest lies on a high-order polynomial whose degree is an upper
bound on the number of subspaces in that neighborhood. The second type of constraint
is a function of the coefficients of the polynomial, which restricts the family of allowable
polynomials to degenerate forms that can represent combinations of linear subspaces. In
practice, we will sometimes relax the constraint of degeneracy to make the optimization
problem more tractable at the expense of admitting a single non-linear manifold but re-
strict them to locally developable surfaces.

2.2 Constraints in the 2-D case

In the case of 2-D data, each local neighborhood can be modeled as as consisting of a pair
of linear subspaces. Thus locally the shape may be described implicitly as a zero-level set
of the equation (Y1x +d;)(¥3x+dz) = 0, where ¥; € R2, d; € R are the parameters for
each of the two linear subspaces (lines in the case of 2-D data). Note that this subsumes
the case where the subspaces coincide. Expanding out the terms yields an inhomogeneous
2nd degree polynomial in 2 variables, which we will refer to as x and y corresponding to
each spatial dimension.
Let us denote the coefficients of each monomial in the polynomial as given by the
expression
01x% + 62 + O3xy + O4x + O5y + 65 = 0. (1)

This may be rewritten in matrix form as

[X 1 ] 93 292 95

200 63 64 [
6y 05 266

’1‘] ~[x 1]A m —0. )

It is a known result in algebraic geometry that a quadratic in two variables reduces to
a product of two linear factors only if A is singular [1]. In fact, the case where A has only
rank one corresponds to the case where the subspaces (lines) coincide.

The determinant in this case may be written explicitly to yield the equality

46,0,05 + 630,05 — (6,07 + 6,02 +6565) =0, 3)

which can be used to constrain the solution for the 6;’s. We will denote such constraints
on the coefficients of the polynomial as ¢ (6) = 0.

2.3 Constrained optimization

Together with the constraint on coefficients we can pose the task as a constrained opti-
mization problem defined at each point of interest x € {x;} given by

minZwi(x) (x; — f(,')TAfl (x; — %), )

subject to two sets of constraints. The first set of constraints is 8"v(&;) = 0 Vi where
0 € R™ is the vector of monomial coefficients and v(x) : R¢ — R™ is the mapping from
the d-dimensional point to the monomials formed by its coordinates. For the 2-D case
(d = 2), the number of monomial terms m = 6. The second constraint is that on the
monomial coefficients, which is (3) in the case of 2-D data.



The weighting term w;(x) is used to give more importance to points closer to the
point of interest X. We can define w;(X) using a kernel loss function, such as a truncated
Gaussian function centered at X, so as to suitably delineate the neighborhood of interest
A (x). Our implementation uses the Epanechnikov kernel w;(x) = 1 — ||x — x;||?/o? for
lx —x;|| < o and O elsewhere, chosen because of its finite support and asymptotically
optimal properties in related tasks such as kernel regression [12]. Here ¢ determines the
length scale, which may be chosen differently for each x. We comment on its selection
later in Section 2.5. In what follows, we will sometimes drop the dependence on x in the
notation for clarity, with the understanding that the optimization problem is being solved
for points in a local neighborhood of each x € {x;}.

The standard approach to solving such a constrained optimization problem is by first
forming the Lagrangian

Z %W,‘(X,‘ — f{i)TAi_l (Xi — )’Zl) + Z}L,'OTV(&') + aT¢(6)7 ®))

1

where {A;} and & are the Lagrange multipliers.
To proceed further, we linearize the equations around the current estimate of x;’s and
0. Let Ax; = X; —x; and A@ = 0y — 0, where 0, is the current estimate of the true 6. To
reduce notational clutter, we denote Vv(x;) by Vv; and V@(0¢) by V@,,. This yields the
equation
% ZWiAXlTA_IAX,‘ +Z;Li (O(T)V(Xi) +v(x;)TAO + G(T)VV,'AX,‘) +a" (¢(00)+ V¢0A9) =0.
1 1

(6)
Taking derivatives with respect to Af, Ax; and the Lagrange multipliers yields the
system of equations:
Wl‘AiilAXi + AiOBVvi =0 Z)q‘VT(Xi) + aTV¢O =0 @)
i
oV(xi) +v(x;)'AO + Oy Vv,Ax; = 0 ¢(00)+Ve,A0 =0. 3)

The solution to the above set of equations can be written as

AB =—¢(00)(V;Ve,) 'V, )
Ai = wi(O5VVIAVV;00) 'v(x;)" (80 +AB) (10)
AXi = — L A;VViB04; = —A;VVi0o(05VV A VV;80) ' v(x,)" (80 +AB). (11)

The above solutions to the linearized constrained optimization problem suggests an
iterative technique in which a candidate initial value of O is computed and the values of @
and the &;’s are progressively modified until the constraints are satisfied. The initial value
of @y may be chosen as the result of an unconstrained optimization using the Fundamental
Numerical Scheme (FNS) algorithm [2] or the related Heteroscedastic Errors in Variables
(HEIV) method [0] based on solving a generalized eigenvalue problem.

Related formulations: At this point, we wish to comment on some related work to
clarify some superficial similarities. The use of a high-order polynomial product to repre-
sent a combination of (low-order polynomial) subspaces is not new. Work by Taubin [9]
fit complex 3-D curves to data, and used a high-order polynomial to represent the intersec-
tion of surfaces that formed the curve. It used an approximation to the distance function
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Figure 2: Illustration of sequence of optimization steps in an example of global fitting
of (a) noisy observations of points lying on two planes. Level-set surfaces are shown at
values O (green), 0.15 (red) and —0.15 (blue), and are drawn for parameters estimated
with (b) TLS, which are used to initialize solution to the (¢c) HEIV estimate, which when
subject to degeneracy constraints yields the best fit at the intersection of the planes as
shown in (d).

that reduced the fitting problem to an easily solvable generalized eigenvector problem,
but implicitly made the assumption of uniform noise covariance on the points. Vidal et
al. [11] proposed the Generalized Principal Components Analysis (GPCA) algorithm to
model combinations of linear subspaces. However, they did not consider noise in the
points, and have to resort to a separate estimation procedure to compute the parameters of
the individual subspaces.

In contrast, the formulation in this section explicitly incorporates a heteroscedastic
noise model on the points. We use a separate constraint to capture the desired degeneracy
of the polynomial as part of the optimization procedure, instead of resorting to post-
processing of the result. Lastly, our focus is on local rather than global fitting of the
data, since the data in our application cannot necessary be described globally by linear
subspaces.

2.4 Constraints in the 3-D case

In the case of 3-D data, we consider the choice of model corresponding to an upper bound
of 2 linear subspaces (planes) in each local neighborhood under consideration. This may
be described formally as a zero-level set of the equation (¥]x+d;)(Y5Xx+d>) =0, where
x € R3 and Y; € R3, d; € R are the parameters for each of the two planes. Note that this
again subsumes the case where the subspaces coincide. Expanding out the terms yields
an inhomogeneous 2nd degree polynomial in 3 variables (denoted x, y and z).

Let us denote the coefficients of each monomial in the polynomial as given by the
expression

01x% 4 62y% + 0327 + O4xy + O5yz + Ogxz + B7x + gy + Boz + 619 = 0. (13)
This may be rewritten in matrix form as

200 64 65 6
6y 206, 065 O X| X[

ERRTE Dl R H_[x 1]AH_o. (14)
6, 65 6 20



Algorithm 1: DenoiseByConstrainedFitting({x;}, {A;})
Data: Points X = {x;} € R? with noise covariance {A;}

1 begin

2 forx € X do

3 Compute weights w; = k(x — x;) where & is a loss function such a Gaussian
4 Find the total least squares solution Oy g to the unconstrained fitting

problem. The least square solution is simply equal to the minimal
eigenvector of the weighted covariance matrix formed by the v(x;)’s, i.e.
the minimal eigenvector of ¥; w;v(x;)v(x;)"

5 Use 0115 to initialize the iterative solution to an unconstrained
optimization procedure [6]. The solution to the unconstrained problem
Oygrv can be obtained through an fixed-point iteration procedure given by:

S(0(k)0(k+1) = 1C(B(k))O(k+1) (12)
where A is the smallest generalized eigenvalue, and S and C are given by:

A; 0'A,0
with A; = w;v(x;)v(x;)" and B; = VVIA;Vy;

6 Iteratively enforce the degeneracy constraint (3) using equations (9)
and (11) (or (14) and (15) in the case of 3-D) along with the unit norm
constraint ||@| = 1 and initializing with @ygry

7 end

8 end

Following the argument in Section 2.2, it is easy to see that matrix A must be of rank 2
for the associated quadric surface to represent a pair of planes. This is equivalent to the
constraints that the determinant of A as well as each of its 3 x 3 minors are zero. We have
observed it sufficient to relax the constraints on the minors and retain the constraints only
on the principal minor formed by the degree 2 coefficients, as

261 64 96
det(B) = det 6, 26, 06 =0. (15)
6 65 203

Geometrically, the use of this particular subset of constraints restricts the family of sur-
faces represented by the polynomial coefficients to the family of parallel or intersecting
planes, and cylinders. Using the parameters estimated with this subset of constraints, we
may then construct the matrix A, find its rank-2 approximation using its SVD decompo-
sition, and recover the parameters of the degenerate polynomial from the rank-2 matrix.
Figure 2 illustrates the sequence of steps involved in estimating the polynomial coef-
ficients for a synthetic dataset consists of noisy points lying on two planes intersecting at
right angles. Level-set surfaces are displayed for the polynomial coefficients estimated at
each step of fitting all the points. It can be seen that the TLS solution misfits the geometry,
the HEIV solution tends to oversmooth the intersection (as in Figure 1 for 2-D data) and
enforcing the degeneracy constraints recovers the true geometry in this example.
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Figure 3: Example of denoising a toy dataset by local fitting of an implicit degener-
ate polynomial (a) Input data consisting of points from six line segments corrupted with
spherical Gaussian noise of std. deviation o = 0.5 (b) (b) Denoised data using an implicit
quadratic fit with the HEIV estimator [0]. (c) Denoised output after imposing degeneracy
constraints on coefficients.

2.5 Algorithm and Implementation

From the solution of the constrained optimization problem in the previous section, we
may construct our denoising procedure as given in Algorithm 1. We draw attention to
some details that influence the performance of the proposed method.

Support radius: The choice of support radius used to compute the weights w; in
the kernel function has a significant influence on the algorithm in two ways. First, the
proposed method assumes an upper bound of 2 subspaces in the volume of interest, which
need not be the case for any choice of support size. The chosen support radius must be
one for which the modeling assumption is valid, conditional on there always existing such
a choice. Secondly, even when the assumption of number of subspaces is valid, there is
a tradeoff between choosing too small a radius, risking poor estimates due to the fewer
number of points, or too large a radius, risking the unfavorable influence of points that do
not belong to the local model.

We currently use a heuristic strategy of choosing the support radius that gives the best
fit, in a maximum likelihood sense, to the corresponding neighborhood of the interest
point, excluding the point itself to prevent the trivial solution of zero radius. In practice,
we have observed that when the number of manifolds is under- or over-estimated, this
strategy tends to reduce the support radius and show bias toward a one-manifold solution
when enforcing the degeneracy constraint. However, this is an area in need of further
study.

Robustness: The use of weights w; also suggests the use of robust statistics to iden-
tify outliers to the model [8]. One strategy to identify points that have a large influence on
the estimated model parameters, such as using eigenvector perturbation bounds [10] for
the generalized eigenvalue problem (12) or using influence functions. In our experiments,
we use a simple greedy strategy of evaluating leave-one-out fitting score and ignoring the
point as an outlier if it is not a good fit with its neighbors.

3 Experiments

We performed a series of controlled experiments of synthetic data in known configurations
to evaluate the behavior of the denoising algorithm. Figure 3 shows an example where
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Figure 4: Example of denoising samples from a triangular wave function (a) Input data
corrupted with spherical Gaussian noise of std. deviation ¢ = 0.5 (b) Denoised data using
radial basis function based smoother with Gaussian kernel. (c) Denoised output after local
degenerate polynomial fitting.
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Input data with Gaussian noise (G = 0.05)

Figure 5: Example of denoising samples from 3 faces of a regular cube (a) Input data
corrupted with uniform noise of std. deviation 6 = 0.02. Denoised points are shown with
patches color coded by (b) distance error and (c) surface normal angle error.

an Epanechnikov loss function with bandwidth 0.3 was used to denoise a 2x2 square grid
pattern of points. The use of a constraint enforcing degeneracy in the polynomial can be
seen to preserve the intersections better than using an HEI'V smoother.

Figure 4 compares the proposed fitting procedure with a standard interpolation algo-
rithm based on radial basis functions (RBF). The RBF algorithm has two parameters [ 14].
The first controls the width of the Gaussian kernel which influences the locality of the
smoothing. The other controls the tolerance to fitting error, i.e. a value of zero would
lead to interpolation between the points, while higher values allow greater fitting error.
The parameters were tuned so that the results best matched the ground-truth in the sense
of least-square error. It can be seen that the proposed algorithm does a better job of pre-
serving sharp changes in the function and is more stable at the boundary, while the RBF
function tends smooths over the high curvature regions.

In Figure 5, we test the proposed algorithm on 300 noisy 3-D samples (spherical
Gaussian with std. dev. 0.05) from 3 faces of a unit cube, and compared it against using
the HEIV estimator from [6]. The use of the proposed estimator reduced the minimum
error in normal angle over the dataset from 0.67° to 0.46° and the median distance of the
points to their corresponding planes from 0.012 to 0.009 units.



4 Conclusions

In this document, we investigated the strategy of fitting local degenerate high-order poly-
nomials to data to more faithfully represent and estimate high-frequency variations in
point-sampled surfaces. The proposed strategy helps to address the inherent inability
to perform differential analysis at non-manifold regions, such as intersections of curves,
without actually having to estimate the parameters of component manifolds.

A current open problem is the judicious selection of the support region of the loss
function. Too small a value results in a fragmented reconstruction, while the use of too
large a value degrades the solution due to the influence of outliers to the implicit model.
Work on an analytical solution to the optimal support radius to replace our current heuris-
tic is in progress.

References

[1] K. Barrett. Degenerate polynomial forms. Communications in numerical methods
in engineering, 15(5), 1999.

[2] W. Chojnacki, M. J. Brooks, A. van den Hengel, and D. Gawley. FNS, CFNS and
HEIV: A unifying approach. Journal of Mathematical Imaging and Vision, 2005.

[3] T. K. Dey. Curve and Surface Reconstruction. Cambridge University Press, 2006.

[4] T. Hastie and C. Loader. Local regression: Automatic kernel carpentry. Statistical
Science, 8(2):120-129, 1993.

[5] D. Levin. Mesh-independent surface interpolation. In Geometric Modeling for Sci-
entific Visualization, pages 37-39, 2003.

[6] B. Matei and P. Meer. Estimation of nonlinear errors-in-variables models for com-
puter vision applications. IEEE Trans. PAMI, 28(10):1537-1552, 2006.

[7] N. J. Mitra, A. Nguyen, and L. Guibas. Estimating surface normals in noisy point
cloud data. Journal of Computational Geometry and Applications, 14(4), 2004.

[8] S.Fleishman, D. Cohen-Or, and C. T.Silva. Robust moving least-squares fitting with
sharp features. In Proc. ACM SIGGRAPH, 2005.

[9] G. Taubin. An improved algorithm for algebraic curve and surface fitting. In
Intl. Conf. on Computer Vision, 1993.

[10] R. Unnikrishnan, J.-F. Lalonde, N. Vandapel, and M. Hebert. Scale selection for the
analysis of point-sampled curves. In Proc. 3DPVT, 2006.

[11] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis (GPCA).
IEEE Trans. Pattern Analysis and Machine Intelligence, 27(12):1945-1959, 2005.

[12] M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall, 1994.

[13] J. Wang, M. M. Oliveira, and A. E. Kaufman. Reconstructing manifold and non-
manifold surfaces from point clouds. In Proc. IEEE Visualization, 2005.

[14] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004.



