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Abstract

We present a novel method for fully automated exterior catibn of a
2D scanning laser range sensor that attains accurate ptdseespect to a
fixed 3D reference frame. This task is crucial for applicagithat attempt to
recover self-consistent 3D environment maps and produngraiely regis-
tered or fused sensor data.

A key contribution of our approach lies in the design of a €lakcal-
ibration target objects whose pose can be reliably recegritom a single
observation (i.e. from one 2D range data stripe). Unlikeptechniques, we
do not require simultaneous camera views or motion of the@emaking
our approach simple, flexible and environment-independent

In this paper we illustrate the target geometry and deriea dationship
between a single 2D range scan and the 3D sensor pose. Wibdestalgo-
rithm for closed-form solution of the 6 DOF pose that miniesan algebraic
error metric, and an iterative refinement scheme that sulesely minimizes
geometric error. Finally, we report performance and sitgmf our technique
on synthetic and real data sets, and demonstrate accurtigy Widegree of
orientation and 3 cm of position in a realistic configuration

1 Introduction

In recent years, the ubiquity of laser range sendadsr§) has increased, and their ap-
plication to many domains — including vision and roboticsas lgrown rapidly. Indeed,
heterogeneous sensor suites consisting of multiple lidarseras, and other devices have
become quite common for such applications as object retiogntracking, navigation,
and environment reconstruction.

For multi-sensor systems to be useful, they must produceuements in a com-
mon coordinate system so that observations from two or memeass may be related to
one another in a meaningful way within a consistesative reference frame. Further,
for higher-level geometric reasoning it is often esserftialsensors to be situated with
respect to a knowabsolute reference frame. In simultaneous localization and mapping
for instance, sensors must be carefully calibrated witheetto the robot's body frame
to enable the robot to accurately localize obstacles ardhianks (Figure 1).

Several different types of lidar devices currently existhwarying scanning mecha-
nisms, number of lasers, and geometric configurations.isrmtbrk we focus on the most
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Figure 1: A typical application in which a lidar is rigidlytathed to a mobile robot that

produces pushbroom-like scans of its environment. We wistetermine the transforma-

tion between the lidar’'s coordinate system and that of a kn@ference such as the body
frame or the environment.

common, the planar or line-scanning lidar. The calibratibabsolute orientation is espe-
cially important and challenging for these sensors, aspnegiuce only 2D slices of their
3D environment. As the lidar plane moves (e.g. spins at a fixeakion to produce full
spherical scans, or translates on a mobile robot to sweep®@environment ahead), sys-
tems require accurate hand-eye calibration to assemblaediédual slices into a metric
— and thus physically meaningful — 3D point cloud.

In this paper we present a novel and fully-automated proeethr calibrating the
exterior 6-degree-of-freedom pose, consisting of 3D iocadnd orientation, for a planar
lidar sensor with respect to a fixed reference frame. We mak&ssumptions about the
surrounding environment and do not require the sensor tsipailfy move. Our algorithm
merely requires a single range-only scan of a carefullyguhesi calibration target, making
the technique flexible and independent of errors in othes@emeasurements such as
odometers or servos.

1.1 Prior Work

There are many strategies for calibrating the pose of a $idasor. In the literature, these
tend to fall into two main categories: those that require uke of additional sensors
such as cameras, and those that require known motion ofdaeitself. Multi-sensor
calibration typically determines the relative Euclideeansformation between the lidar
and a rigidly-attached camera. Zhang and Pless preserti@dee in which both sensors
image a planar checkerboard target at different (unknowehtations; the camera’s pose
with respect to the target is determined using a standaroheixt calibration method, and
combined with straight-line profiles extracted from thealido form constraints on the
lidar’s pose [10]. Mei and Rives developed a more generalrhef lidar registration to
catadioptric cameras, considering additional cases ichwtiie laser returns are visible
to the camera, thus forming explicit correspondences lerivilmage pixels and range
samples [6]. Several methods have also been proposed tlieg structured light, or
visible laser profiles in the images [4, 7].

Motion-based ogctive calibration involves imaging objects from multiple locais
and orientations. Several methods move a robotic arm, tohwthie laser is attached, and



capture range data of a fixed planar surface at differemtaii®ns; knowledge of precise
relative arm pose is assumed [8, 2]. Mclvor places a cubibrzdion target on a motion

table, and “scans” the object with the lidar to obtain bothge and intensity data; the
laser pose that best rectifies the data to the known targetetepis then determined [5].
Finally, Zhang and Pless estimate egomotion of a movingtrelaorobust matching of

consecutive lidar scans over time, using the structureesthrrounding environment to
constrain the hand-eye lidar pose [9].

1.2 Contributions

In this work, we develop a flexible lidar calibration techuégbased on a novel target
object design. Our technique has several unique charstitsrthat provide advantages
over prior methods: it does not require additional sensoch §is cameras; it does not
require motion of the sensor or the target; and it requirdg @nge data, not intensity

data. These properties offer applicability to a wide vgrigtdifferent 2D laser scanners
and imaging geometries. Further, because our targetaidan be painted with visible
patterns, our method also enables precise lidar-cameistreggpn. To our knowledge,

this is the first such published technique.

2 Fundamentals

We seek the rigid-body Euclidean transformat{@T) that aligns a particular sensor’s
local coordinate system with some fixed reference frame.eHeris the sensor’'s 3D
location in the reference frame, and the columns of the adhwoal rotation matrixR
represent the axes of the sensor expressed in referencreates. Thus, the transforma-
tion between a reference poitand a sensor poir@ is given by

Q=R'(M-T), (1)
and the inverse transformation is given by
M=RQ+T. 2

The laser produces 2D range scans consisting of discretdaarsgmples in a plane.
For each ray sample along the direction denoted by aigle sensor measures a corre-
sponding distancg along that ray. We place the origin of the sensor coordingtem
at the origin of all laser rays; the ray @t= 0 is coincident with the sensorsaxis, and
the ray atd = 11/2 is coincident with the axis. Thus, the scan produces measurements
of the form

Q= (w W 0)=rg(cosf sinG 0). (3)

Since the range measurements all lie in a plane, the tranafam between lidar coordi-
nates and reference coordinates given in (2) can be redo@ekddmography [3] as

M=Hq=RKq=R(e& & R'T)q, (4)

wheree, ande, represent unit vectors in theandy direction, respectively, and’ =
(u v 1).



Internal mis-calibration and servo scan inconsistency o@ase error irf, which is
generally negligible. Range measuremeralso exhibit uncertainty induced by quantiza-
tion (i.e. fixed bit allocation in analog-to-digital congéyn of the range return), typically
on the order of 1cm, and by measurement noise from mateflattigity and environ-
mental effects, typically also on the order of 1cm [1]. Fipatonlinear range errors can
arise from depth discontinuities in imaged surfaces duetezero laser spot size.

3 Calibration Target Design

The most important factor in designing a target object blgtfor single-scan range-based
calibration is the 3D pose recovery itself. While many sienpbjects allow determina-
tion of certain straightforward extrinsic parameters, design problem becomes more
challenging as the number of required DOFs increases. Ansefawtor is reliable and
stable detection of the target object, which must accouridar measurement errors and
discrete rather than continuous angular sampling. Fintilgre are practical matters to
consider such as the ease, repeatability, and accuracysicahtarget construction.

The lidar produces as measurements a series of ranges iespbaegles that consti-
tute the (sampled) intersection of a virtual plane with ttsghle 3D surfaces in the scene.
We next consider two classes of simple 3D objects that p@dua@ue 2D cross sections
determined entirely by the orientation and position of tiergy plane.

3.1 Conic Sections

It is well known that conic sections are produced by intetisas of a plane with a double
cone, with the particular type and shape of the curve defindceéy by the position and
orientation of the slicing plane. For simplicity, and witlidoss of generality we assume
a cone with apex at the origin and whose axis of symmetry isztagis in reference
coordinates, defined by the implicit equation

X?+Y2-72=0=M"3Mm, (5)

where the reflection matri$ = diag(1,1,—1). Intuitively, the size of a cross section is
related to the translation of the sensor slice plane aloagyimmetry axis, and the shape
of the cross section is related to the slice plane’s oriemigFigure 2).

Substitution of (4) into (5) reveals

(Hg)"S(Hg) = 0=q'K'R"SRKq. (6)

Thus, each observed lidar sample generates a single gicannastraint equation in the 6
unknown parameters encodedRwgndT, and it would seem that six such points in non-
degenerate configuration uniquely determine these paeasaéiowever, due to inherent
geometric symmetries, not all DOFs may in fact be recovered.

A geometric illustration of this ambiguity is shown in Figu. Algebraically, we
can see that applying a rotation abaub reference poinvl does not affect (6) since the
reflection and rotation axes are identical; we can nonetkalbtain an accurate estimate
for RandT in closed form, modulo this rotation abafsee Appendix A). Unfortunately,
this inherent ambiguity precludes use of the cone for fullGM>calibration. Further, a
conic target is difficult to construct with sufficient sizedgprecision for pose recovery.
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Figure 2: A conic section orthogonal to the symmetry axisri®m circle whose size
varies withz. Lidars with poses A and B would produce the same circulan kt).
An off-axis slice plane produces elliptical or hyperboliogs sections determined by the
plane’s orientation (right).
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Figure 3: Polypod legs with directiary intersect the lidar slice plane to form poimjsin
sensor coordinates. The relationship betwegandg is a plane projective homography.

3.2 Polypods

We define gpolypod as a multi-legged structure consisting of a set of rays thetraite
from a single point in known directions. Without loss of geality we assume that the
ray origin is coincident with the origin of the reference oioate system. As with the
cone, moving the slice plane along thaxis changes the size of the cross section, and
tilting the plane changes the cross section’s shape (FRjutdowever, unlike the cone, a
polypod can be designed so that its cross section uniquédyrdimes the sensor’s full 6
DOF pose, up to a duality of solutions.

We now derive a geometric relationship between the polypgd &nd the lidar mea-
surements given a particular orientatirand positionT . Letm‘I = (xk Yk 1) repre-
sent the direction of thith ray, or polypod leg; reference poirlis on the 3D ray may
thus be parameterized 8 = mgs. To determine the lidar poin®®, we then transform
the ray to lidar coordinates and find its intersection with lidar slice plane=0. The
new ray direction is given bR" my, and the new ray origin is-R" T, according to the
transformation (1). Thus, the ray parameterization besome

Q=-R'T+R'ms. (7)



To find the intersection of the ray and the plane 0, we determine the parameter
such that the component oR is zero. Solving (7) foQ'e, = 0 givess= RI T/RI my,
whereR; is the third column of the rotation matrRR Substituting back into (7) gives

RIT

_T)7 (8)

which we can re-write component by component as

Uk RIMKR T — RYTR] my
Vi | RIme=aqRIme = [ RImRIT —RITRIm | . 9)
1 RImy

After manipulation of (9), we find that

t, 0 —t
&k~ |0 t; —ty | R"my=K 1R my (10)
0 0 1

wheret = RTT. The 3x 3 matrixK ~1R" defines a plane projective homography between
measured pointg, on the lidar slice plane and the corresponding polypod nays

Note that (10) is the inverse of (4), the basic relationsklépMeen lidar points and
reference points; here, polypod legs equate to projectiys.rFurther, we observe that
the ambiguity from symmetry in the conic case is completelofved, because cross
sections are not rotationally symmetric and because tiseaeuinique homography that
relates points to points, rather than points to surfacesyiged that at least four non-
degenerate correspondences exist [3].

3.3 Pyramid Target

Having derived the abstract geometric relationship betwsaypod configuration and
lidar cross section, we now define a more practical and ctecedibration target design.
First, for precise and simple construction, and becausereogmaphy is uniquely defined
by four correspondences, we use the minimum number of fgsr. I[#/e also avoid con-
struction of a literal polypod; noisy measurements of is tbgs would lead to significant
errors in recovered pose, and in fact the legs might be misgdide laser entirely.

Rather than detecting the polypod legs directly as singietpneasurements, then,
we design our target so that we can indirectly, but morelsljanfer their locations in
the scan. To achieve this, we construct a pyramid-shapgéttathose four planar faces
intersect to form “virtual” polypod legs (Figure 4). The smosection is a quadrilateral
whose edges may be estimated directly from sets of multipde points, and whose
verticesgx may then be recovered more precisely as the intersectichesé edges.

4 Pose Recovery

To reduce the effects of quantization error and stochasigerin range and angle mea-
surements, we keep the target stationary in the lidar’s &éeldew for a few seconds and
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Figure 4: Our target design consists of a pyramid (left) wmidhes cut into the front faces
so that the back faces are visible. Bold lines indicate tal't polypod legs formed by
intersection of the pyramid faces. A lidar scan of this ob{eight) forms a quadrilateral
cross section that uniguely determines the sensor pose.
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Figure 5. Target segmentation involves several steps #satltrin rejection of clutter
points and a robustly estimated quadrilateral cross seofithe target object.

obtain a series of several hundred scans, which are theagrato form a single, noise-
suppressed scan. Our algorithm processes this data to atitally segment the target
points from the background, find the vertices of the quatgitd cross section, solve for
the approximate pose in closed form, and iteratively retieegpose for higher accuracy.

4.1 Segmentation

A particular lidar scan contains both the desired crossmedf the calibration target
object and clutter from the environment. Our first task isefiere to segment the points of
interest from the clutter (Figure 5). We first remove all fgsibeyond a threshold distance
from the sensor. We next search the scan for contiguougstritne segments using a
successively applied RANSAC algorithm [3]. Each RANSAQCaten selects two points
at random from the scan, fits a line to those points, and eteuithe remaining points
against the line. The line associated with the most inligkept, the inliers are removed
from the scan points, and the procedure repeats until ndiadal lines are found.

We next subdivide each line into contiguous segments, rergaegments shorter
than a threshold length, where the threshold is relatededafyet’s expected cross sec-
tional dimensions. The final step is to find the “correct” fbone segments corresponding
to the true target cross section. We first search for carelggment pairs that might form
the front two faces; we then search the remaining segmers fosiiclosed quadrilaterals.



4.2 Position and Orientation Estimation

We form the four verticegj via intersection of the extracted line segments, then apply
an ordering constraint to assign theto the correct (known) polypod leg directiong.
Having established four correspondences, we solve fordahsolgraphyH = RK using a
standard technique [3].

We next factoH using QR decomposition, which results in an orthonormatim#t
and an upper-triangul#t. Because of the unknown scale dnthe matrixK will not be
of the proper form of (4). In the absence of noise, it will difby a constant scale factor,
so we divideK by either of its first two diagonal entries (which are equal) determine
T by left-multiplying the third column of the result byR. In general, however, they
will be noisy, andK will not simply differ fromK by a constant scale factor. We therefore
approximate the tru& by dividing K by the average of its first two diagonal entries
(which are no longer equal), and determinificas before. Note that this differs from
the factorization of Zhang [11], which solves fidrexactly and then approximat&sby
finding the “closest” rotation in Frobenius norm to the estietR.

In general, when noise is present in the data, the aboveraligetpproximation leads
to a pose solution that is reasonably accurate, but not aptifrhis solution can, how-
ever, be used to initialize a direct optimization methodandT, such as Levenberg-
Marquardt, that seeks to minimize the sum of Euclidean disia between the trans-
formed pointdH gy and their counterparts.

5 Experiments

To demonstrate the efficacy of our target object design alildration method, we con-
ducted several different experiments in simulation (taesystically control noise sources
and other DOFs) and on real data (to show performance witkipalysensor, target, and
measurements). Results of these experiments are prebshbed

5.1 Synthetic Data

We generated simulated data for experiments as followst, kire constructed a virtual
3D model of the target pyramid with realistic dimensionspf@ximately one meter on
a side). Next, we chose a set of lidar poses with translatrangng between 2 and 30
meters and rotations varying between 0 and 45 degrees ahchitegis. For each pose
we generated virtual lidar scans by intersecting scan raiysthe target surface at 0.25
degree spacing. Ray angles and intersection ranges wetelget by additive Gaussian
noise with specified variance; ranges were also quantizédrolevels, and range dis-
continuities were averaged to simulate real sensor phenamentioned in Section 2.
Results are shown in Figure 6; we report the mean positionogiedtation errors over
500 trials for each variant.

5.2 Real Data

We constructed a physical calibration target (Figure 4)@ndigured six different sensor
poses with the target sitting on the ground. We measureddaed position and orienta-
tion by hand, so the “ground truth” pose was known only apjpnately. The sensor was
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Figure 6: Performance of our algorithm on simulated datattiply position and orienta-
tion error with varying range uncertainty (A and B) and arguincertainty (C and D).

Table 1: Position and Rotation Error using Real Data

Dist (cm) | Roll (°) | Pitch (°) | Yaw (°) | PosErr (cm) | Rot Err (°)
356+ 5 0+2 0+2 | 30+2 3.1 1.1
311+ 5 0+2 30+2 15+2 5.4 1.8
347+5 | 10+2 0+2 | 45+2 4.9 0.9
312+5 | 10+2 30+2 | 45+2 6.1 1.3
623+5 | 10+2 30+2 | 45+2 2.2 0.5
988+5 | 10+2 30+2 | 45+2 3.2 0.4

a SICK LMS291 set for @5° angular and 1cm range resolution. At each pose, we col-
lected and averaged several hundred scans of the objettameur algorithm to segment
the target and solve f& andT. Results are summarized in Table 1.

6 Conclusions and Future Work

We have presented a unique target object design and algoigthautomatic calibration
of a 2D laser range sensor. Unlike previous methods, ounsiresgneither additional
sensors such as cameras nor motion of the lidar, affordingat geal of flexibility and
generality. We have derived target geometries that suggstirnation of extrinsic pose
from a single cross sectional range measurement, and sadgespecific pyramid de-
sign based on a quadropod. Our techniques were demondivaggdibit robustness and
accuracy, reliably locating the target amidst clutter astth@ating pose to within less than
1° of rotation error and a few cm of position error for realist@nsor characteristics.

Our technique relies on precise construction of the caiitmatarget, and requires
that the scan’s slice plane fall within a valid band that is¢éets all four faces of the
pyramid. Because of finite angular resolution, the targestrbe placed within a small
enough radius (empirically on the order of 20 meters) thatatuces a sufficient number
of samples on the target surface for reliable estimatiompréctice, the target also must
be held still so that range errors may be diminished via @megeof multiple scans.

We are currently working to incorporate this technique etarger end-to-end system
for self-consistent calibration of heterogeneous mulbidiad sensor suites. For true abso-
lute pose estimation — e.g. relative to an inertial framleeathan to the calibration target
— a precise and repeatable method must be developed to ra¢hsuarget’'s pose with
respect to the frame of interest. Our pyramid target coulchbdified to simultaneously
calibrate cameras by placing visible fiducials or pattem#®surface. Finally, it would
be interesting to study the effect of relative target dini@mson pose estimation.
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A Posefrom Conic Section

We briefly describe a technique for estimating pose from acotnoss section. LeA =
RK andB = AT SA; then (6) becomes

q'ATsaq=q'Bq=0. (11)

Note that the constraints are linear in the entries of ma@riginceB is symmetric, and
since it is defined only up to scale due to the homogeneity bf, ([t has 5 degrees of
freedom. A set of 5 linear constraints (i.e. 5 distinct psujtis therefore required for a
unique solution, with each constraint of the focfb = 0, where

c'=(? 2w 2u v 2v 1) (12)
andb is a vector defining the relevant entries of the malrixs
b" =(Bux Biz Biz Bz Bzz Bsg). (13)

We form a constraint matri€¢ whose rows encode measured poifug vk) and take the
formc"b = 0, and solve the homogeneous syst@m= 0 by computing the eigenvector
corresponding to the smallest eigenvalu€CdC. We then factor the symmetric matrix
B asB =VAVT, where the columns &f are the eigenvectors and whexas a diagonal
matrix of the eigenvalues. Using (11), we have

B=VAVT = ATSA, (14)

so it follows thatA = v/SAVT. The resulting matriXA may now be factored to obtaR
andT as in Section 4.2. To refine these initial closed-form patansewe again optimize
using an iterative nonlinear algorithm; in particular, vetimate the pose parameters such
that the sum of squared distances betwRkny and the cone surface is minimized.



