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Abstract

We present a novel method for fully automated exterior calibration of a
2D scanning laser range sensor that attains accurate pose with respect to a
fixed 3D reference frame. This task is crucial for applications that attempt to
recover self-consistent 3D environment maps and produce accurately regis-
tered or fused sensor data.

A key contribution of our approach lies in the design of a class of cal-
ibration target objects whose pose can be reliably recognized from a single
observation (i.e. from one 2D range data stripe). Unlike other techniques, we
do not require simultaneous camera views or motion of the sensor, making
our approach simple, flexible and environment-independent.

In this paper we illustrate the target geometry and derive the relationship
between a single 2D range scan and the 3D sensor pose. We describe an algo-
rithm for closed-form solution of the 6 DOF pose that minimizes an algebraic
error metric, and an iterative refinement scheme that subsequently minimizes
geometric error. Finally, we report performance and stability of our technique
on synthetic and real data sets, and demonstrate accuracy within 1 degree of
orientation and 3 cm of position in a realistic configuration.

1 Introduction

In recent years, the ubiquity of laser range sensors (lidars) has increased, and their ap-
plication to many domains – including vision and robotics – has grown rapidly. Indeed,
heterogeneous sensor suites consisting of multiple lidars, cameras, and other devices have
become quite common for such applications as object recognition, tracking, navigation,
and environment reconstruction.

For multi-sensor systems to be useful, they must produce measurements in a com-
mon coordinate system so that observations from two or more sensors may be related to
one another in a meaningful way within a consistentrelative reference frame. Further,
for higher-level geometric reasoning it is often essentialfor sensors to be situated with
respect to a knownabsolute reference frame. In simultaneous localization and mapping,
for instance, sensors must be carefully calibrated with respect to the robot’s body frame
to enable the robot to accurately localize obstacles and landmarks (Figure 1).

Several different types of lidar devices currently exist, with varying scanning mecha-
nisms, number of lasers, and geometric configurations. In this work we focus on the most
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Figure 1: A typical application in which a lidar is rigidly attached to a mobile robot that
produces pushbroom-like scans of its environment. We wish to determine the transforma-
tion between the lidar’s coordinate system and that of a known reference such as the body
frame or the environment.

common, the planar or line-scanning lidar. The calibrationof absolute orientation is espe-
cially important and challenging for these sensors, as theyproduce only 2D slices of their
3D environment. As the lidar plane moves (e.g. spins at a fixedlocation to produce full
spherical scans, or translates on a mobile robot to sweep outthe environment ahead), sys-
tems require accurate hand-eye calibration to assemble theindividual slices into a metric
– and thus physically meaningful – 3D point cloud.

In this paper we present a novel and fully-automated procedure for calibrating the
exterior 6-degree-of-freedom pose, consisting of 3D location and orientation, for a planar
lidar sensor with respect to a fixed reference frame. We make no assumptions about the
surrounding environment and do not require the sensor to physically move. Our algorithm
merely requires a single range-only scan of a carefully-designedcalibration target, making
the technique flexible and independent of errors in other sensor measurements such as
odometers or servos.

1.1 Prior Work

There are many strategies for calibrating the pose of a lidarsensor. In the literature, these
tend to fall into two main categories: those that require theuse of additional sensors
such as cameras, and those that require known motion of the lidar itself. Multi-sensor
calibration typically determines the relative Euclidean transformation between the lidar
and a rigidly-attached camera. Zhang and Pless present a technique in which both sensors
image a planar checkerboard target at different (unknown) orientations; the camera’s pose
with respect to the target is determined using a standard extrinsic calibration method, and
combined with straight-line profiles extracted from the lidar to form constraints on the
lidar’s pose [10]. Mei and Rives developed a more general theory of lidar registration to
catadioptric cameras, considering additional cases in which the laser returns are visible
to the camera, thus forming explicit correspondences between image pixels and range
samples [6]. Several methods have also been proposed that utilize structured light, or
visible laser profiles in the images [4, 7].

Motion-based oractive calibration involves imaging objects from multiple locations
and orientations. Several methods move a robotic arm, to which the laser is attached, and



capture range data of a fixed planar surface at different orientations; knowledge of precise
relative arm pose is assumed [8, 2]. McIvor places a cubic calibration target on a motion
table, and “scans” the object with the lidar to obtain both range and intensity data; the
laser pose that best rectifies the data to the known target geometry is then determined [5].
Finally, Zhang and Pless estimate egomotion of a moving robot via robust matching of
consecutive lidar scans over time, using the structure of the surrounding environment to
constrain the hand-eye lidar pose [9].

1.2 Contributions

In this work, we develop a flexible lidar calibration technique based on a novel target
object design. Our technique has several unique characteristics that provide advantages
over prior methods: it does not require additional sensors such as cameras; it does not
require motion of the sensor or the target; and it requires only range data, not intensity
data. These properties offer applicability to a wide variety of different 2D laser scanners
and imaging geometries. Further, because our target’s surface can be painted with visible
patterns, our method also enables precise lidar-camera registration. To our knowledge,
this is the first such published technique.

2 Fundamentals

We seek the rigid-body Euclidean transformation(R,T ) that aligns a particular sensor’s
local coordinate system with some fixed reference frame. Here, T is the sensor’s 3D
location in the reference frame, and the columns of the orthonormal rotation matrixR
represent the axes of the sensor expressed in reference coordinates. Thus, the transforma-
tion between a reference pointM and a sensor pointQ is given by

Q = RT (M −T), (1)

and the inverse transformation is given by

M = RQ+ T. (2)

The laser produces 2D range scans consisting of discrete angular samples in a plane.
For each ray sample along the direction denoted by angleθk, the sensor measures a corre-
sponding distancerk along that ray. We place the origin of the sensor coordinate system
at the origin of all laser rays; the ray atθ = 0 is coincident with the sensor’sx axis, and
the ray atθ = π/2 is coincident with they axis. Thus, the scan produces measurements
of the form

QT
k =

(

uk vk 0
)

= rk
(

cosθk sinθk 0
)

. (3)

Since the range measurements all lie in a plane, the transformation between lidar coordi-
nates and reference coordinates given in (2) can be reduced to a homography [3] as

M = Hq = RKq = R
(

ex ey RT T
)

q, (4)

whereex andey represent unit vectors in thex andy direction, respectively, andqT =
(

u v 1
)

.



Internal mis-calibration and servo scan inconsistency maycause error inθ , which is
generally negligible. Range measurementsr also exhibit uncertainty induced by quantiza-
tion (i.e. fixed bit allocation in analog-to-digital conversion of the range return), typically
on the order of 1cm, and by measurement noise from material reflectivity and environ-
mental effects, typically also on the order of 1cm [1]. Finally, nonlinear range errors can
arise from depth discontinuities in imaged surfaces due to non-zero laser spot size.

3 Calibration Target Design

The most important factor in designing a target object suitable for single-scan range-based
calibration is the 3D pose recovery itself. While many simple objects allow determina-
tion of certain straightforward extrinsic parameters, thedesign problem becomes more
challenging as the number of required DOFs increases. A second factor is reliable and
stable detection of the target object, which must account for lidar measurement errors and
discrete rather than continuous angular sampling. Finally, there are practical matters to
consider such as the ease, repeatability, and accuracy of physical target construction.

The lidar produces as measurements a series of ranges at specified angles that consti-
tute the (sampled) intersection of a virtual plane with the visible 3D surfaces in the scene.
We next consider two classes of simple 3D objects that produce unique 2D cross sections
determined entirely by the orientation and position of the slicing plane.

3.1 Conic Sections

It is well known that conic sections are produced by intersections of a plane with a double
cone, with the particular type and shape of the curve defined entirely by the position and
orientation of the slicing plane. For simplicity, and without loss of generality we assume
a cone with apex at the origin and whose axis of symmetry is thez axis in reference
coordinates, defined by the implicit equation

X2+Y 2−Z2 = 0 = MT SM, (5)

where the reflection matrixS = diag(1,1,−1). Intuitively, the size of a cross section is
related to the translation of the sensor slice plane along the symmetry axis, and the shape
of the cross section is related to the slice plane’s orientation (Figure 2).

Substitution of (4) into (5) reveals

(Hq)T S(Hq) = 0 = qT KT RT SRKq. (6)

Thus, each observed lidar sample generates a single quadratic constraint equation in the 6
unknown parameters encoded byR andT , and it would seem that six such points in non-
degenerate configuration uniquely determine these parameters. However, due to inherent
geometric symmetries, not all DOFs may in fact be recovered.

A geometric illustration of this ambiguity is shown in Figure 2. Algebraically, we
can see that applying a rotation aboutz to reference pointM does not affect (6) since the
reflection and rotation axes are identical; we can nonetheless obtain an accurate estimate
for R andT in closed form, modulo this rotation aboutz (see Appendix A). Unfortunately,
this inherent ambiguity precludes use of the cone for full 6 DOF calibration. Further, a
conic target is difficult to construct with sufficient size and precision for pose recovery.
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Figure 2: A conic section orthogonal to the symmetry axis forms a circle whose size
varies withz. Lidars with poses A and B would produce the same circular scan (left).
An off-axis slice plane produces elliptical or hyperbolic cross sections determined by the
plane’s orientation (right).
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Figure 3: Polypod legs with directionmk intersect the lidar slice plane to form pointsqk in
sensor coordinates. The relationship betweenmk andqk is a plane projective homography.

3.2 Polypods

We define apolypod as a multi-legged structure consisting of a set of rays that emanate
from a single point in known directions. Without loss of generality we assume that the
ray origin is coincident with the origin of the reference coordinate system. As with the
cone, moving the slice plane along thez axis changes the size of the cross section, and
tilting the plane changes the cross section’s shape (Figure3). However, unlike the cone, a
polypod can be designed so that its cross section uniquely determines the sensor’s full 6
DOF pose, up to a duality of solutions.

We now derive a geometric relationship between the polypod legs and the lidar mea-
surements given a particular orientationR and positionT . Let mT

k =
(

xk yk 1
)

repre-
sent the direction of thekth ray, or polypod leg; reference pointsM on the 3D ray may
thus be parameterized asM = mks. To determine the lidar pointsQ, we then transform
the ray to lidar coordinates and find its intersection with the lidar slice planez = 0. The
new ray direction is given byRT mk, and the new ray origin is−RT T , according to the
transformation (1). Thus, the ray parameterization becomes

Q = −RT T + RT mks. (7)



To find the intersection of the ray and the planez = 0, we determine the parameters
such that thez component ofQ is zero. Solving (7) forQT ez = 0 givess = RT

z T/RT
z mk,

whereRz is the third column of the rotation matrixR. Substituting back into (7) gives

Q = RT (mk
RT

z T

RT
z mk

−T ), (8)

which we can re-write component by component as




uk

vk

1



RT
z mk = qkRT

z mk =





RT
x mkRT

z T −RT
x TRT

z mk

RT
y mkRT

z T −RT
y TRT

z mk

RT
z mk



 . (9)

After manipulation of (9), we find that

qk ∼





tz 0 −tx
0 tz −ty
0 0 1



RT mk = K−1RT mk (10)

wheret = RT T . The 3×3 matrixK−1RT defines a plane projective homography between
measured pointsqk on the lidar slice plane and the corresponding polypod raysmk.

Note that (10) is the inverse of (4), the basic relationship between lidar points and
reference points; here, polypod legs equate to projective rays. Further, we observe that
the ambiguity from symmetry in the conic case is completely resolved, because cross
sections are not rotationally symmetric and because there is a unique homography that
relates points to points, rather than points to surfaces, provided that at least four non-
degenerate correspondences exist [3].

3.3 Pyramid Target

Having derived the abstract geometric relationship between polypod configuration and
lidar cross section, we now define a more practical and concrete calibration target design.
First, for precise and simple construction, and because a homography is uniquely defined
by four correspondences, we use the minimum number of four legs. We also avoid con-
struction of a literal polypod; noisy measurements of its thin legs would lead to significant
errors in recovered pose, and in fact the legs might be missedby the laser entirely.

Rather than detecting the polypod legs directly as single-point measurements, then,
we design our target so that we can indirectly, but more reliably, infer their locations in
the scan. To achieve this, we construct a pyramid-shaped target whose four planar faces
intersect to form “virtual” polypod legs (Figure 4). The cross section is a quadrilateral
whose edges may be estimated directly from sets of multiple scan points, and whose
verticesqk may then be recovered more precisely as the intersections ofthese edges.

4 Pose Recovery

To reduce the effects of quantization error and stochastic noise in range and angle mea-
surements, we keep the target stationary in the lidar’s fieldof view for a few seconds and
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Figure 4: Our target design consists of a pyramid (left) withholes cut into the front faces
so that the back faces are visible. Bold lines indicate “virtual” polypod legs formed by
intersection of the pyramid faces. A lidar scan of this object (right) forms a quadrilateral
cross section that uniquely determines the sensor pose.
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Figure 5: Target segmentation involves several steps that result in rejection of clutter
points and a robustly estimated quadrilateral cross section of the target object.

obtain a series of several hundred scans, which are then averaged to form a single, noise-
suppressed scan. Our algorithm processes this data to automatically segment the target
points from the background, find the vertices of the quadrilateral cross section, solve for
the approximate pose in closed form, and iteratively refine the pose for higher accuracy.

4.1 Segmentation

A particular lidar scan contains both the desired cross section of the calibration target
object and clutter from the environment. Our first task is therefore to segment the points of
interest from the clutter (Figure 5). We first remove all points beyond a threshold distance
from the sensor. We next search the scan for contiguous straight line segments using a
successively applied RANSAC algorithm [3]. Each RANSAC iteration selects two points
at random from the scan, fits a line to those points, and evaluates the remaining points
against the line. The line associated with the most inliers is kept, the inliers are removed
from the scan points, and the procedure repeats until no additional lines are found.

We next subdivide each line into contiguous segments, removing segments shorter
than a threshold length, where the threshold is related to the target’s expected cross sec-
tional dimensions. The final step is to find the “correct” fourline segments corresponding
to the true target cross section. We first search for candidate segment pairs that might form
the front two faces; we then search the remaining segment pairs for closed quadrilaterals.



4.2 Position and Orientation Estimation

We form the four verticesqk via intersection of the extracted line segments, then apply
an ordering constraint to assign theqk to the correct (known) polypod leg directionsmk.
Having established four correspondences, we solve for the homographyH = RK using a
standard technique [3].

We next factorH using QR decomposition, which results in an orthonormal matrix R
and an upper-triangular̃K. Because of the unknown scale onH, the matrixK̃ will not be
of the proper form of (4). In the absence of noise, it will differ by a constant scale factor,
so we divideK̃ by either of its first two diagonal entries (which are equal) and determine
T by left-multiplying the third column of the result by−R. In general, however, theqk

will be noisy, andK̃ will not simply differ fromK by a constant scale factor. We therefore
approximate the trueK by dividing K̃ by the average of its first two diagonal entries
(which are no longer equal), and determiningT as before. Note that this differs from
the factorization of Zhang [11], which solves forK exactly and then approximatesR by
finding the “closest” rotation in Frobenius norm to the estimatedR̃.

In general, when noise is present in the data, the above algebraic approximation leads
to a pose solution that is reasonably accurate, but not optimal. This solution can, how-
ever, be used to initialize a direct optimization method onR andT , such as Levenberg-
Marquardt, that seeks to minimize the sum of Euclidean distances between the trans-
formed pointsHqk and their counterpartsmk.

5 Experiments

To demonstrate the efficacy of our target object design and calibration method, we con-
ducted several different experiments in simulation (to systematically control noise sources
and other DOFs) and on real data (to show performance with physical sensor, target, and
measurements). Results of these experiments are presentedbelow.

5.1 Synthetic Data

We generated simulated data for experiments as follows. First, we constructed a virtual
3D model of the target pyramid with realistic dimensions (approximately one meter on
a side). Next, we chose a set of lidar poses with translationsvarying between 2 and 30
meters and rotations varying between 0 and 45 degrees about each axis. For each pose
we generated virtual lidar scans by intersecting scan rays with the target surface at 0.25
degree spacing. Ray angles and intersection ranges were perturbed by additive Gaussian
noise with specified variance; ranges were also quantized to1cm levels, and range dis-
continuities were averaged to simulate real sensor phenomena mentioned in Section 2.
Results are shown in Figure 6; we report the mean position andorientation errors over
500 trials for each variant.

5.2 Real Data

We constructed a physical calibration target (Figure 4) andconfigured six different sensor
poses with the target sitting on the ground. We measured the lidar’s position and orienta-
tion by hand, so the “ground truth” pose was known only approximately. The sensor was
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Figure 6: Performance of our algorithm on simulated data, plotting position and orienta-
tion error with varying range uncertainty (A and B) and angular uncertainty (C and D).

Table 1: Position and Rotation Error using Real Data
Dist (cm) Roll (◦) Pitch (◦) Yaw (◦) Pos Err (cm) Rot Err (◦)

356± 5 0± 2 0± 2 30± 2 3.1 1.1
311± 5 0± 2 30± 2 15± 2 5.4 1.8
347± 5 10± 2 0± 2 45± 2 4.9 0.9
312± 5 10± 2 30± 2 45± 2 6.1 1.3
623± 5 10± 2 30± 2 45± 2 2.2 0.5
988± 5 10± 2 30± 2 45± 2 3.2 0.4

a SICK LMS291 set for 0.25◦ angular and 1cm range resolution. At each pose, we col-
lected and averaged several hundred scans of the object, then ran our algorithm to segment
the target and solve forR andT . Results are summarized in Table 1.

6 Conclusions and Future Work

We have presented a unique target object design and algorithm for automatic calibration
of a 2D laser range sensor. Unlike previous methods, ours requires neither additional
sensors such as cameras nor motion of the lidar, affording a great deal of flexibility and
generality. We have derived target geometries that supportestimation of extrinsic pose
from a single cross sectional range measurement, and suggested a specific pyramid de-
sign based on a quadropod. Our techniques were demonstratedto exhibit robustness and
accuracy, reliably locating the target amidst clutter and estimating pose to within less than
1◦ of rotation error and a few cm of position error for realisticsensor characteristics.

Our technique relies on precise construction of the calibration target, and requires
that the scan’s slice plane fall within a valid band that intersects all four faces of the
pyramid. Because of finite angular resolution, the target must be placed within a small
enough radius (empirically on the order of 20 meters) that itproduces a sufficient number
of samples on the target surface for reliable estimation. Inpractice, the target also must
be held still so that range errors may be diminished via averaging of multiple scans.

We are currently working to incorporate this technique intoa larger end-to-end system
for self-consistent calibration of heterogeneous multi-modal sensor suites. For true abso-
lute pose estimation – e.g. relative to an inertial frame rather than to the calibration target
– a precise and repeatable method must be developed to measure the target’s pose with
respect to the frame of interest. Our pyramid target could bemodified to simultaneously
calibrate cameras by placing visible fiducials or patterns on its surface. Finally, it would
be interesting to study the effect of relative target dimensions on pose estimation.



References
[1] Sick laser measurement systems technical description.Product Data Sheet, 2002.

[2] H. Andreasson, R. Triebel, and W. Burgard. Improving plane extraction from 3d data by fusing laser data
and vision. InIEEE IROS, pages 2656–2661, August 2005.

[3] R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cambridge University Press,
2000.

[4] O. Jokinen. Self-calibration of a light striping systemby matching multiple3-d profile maps. InSecond
International Conference on 3-D Digital Imaging and Modeling, pages 180–190, 1999.

[5] A. M. McIvor. Calibration of a laser stripe profiler. In2nd International Conference on 3D Digital Imaging
and Modeling (3DIM), pages 92–98, 1999.

[6] C. Mei and P. Rives. Calibration between a central catadioptric camera and a laser range finder for robotic
applications. InIEEE ICRA, pages 532–537, May 2006.

[7] B. Tiddeman, M. Duffy, G. Rabey, and J. Lokier. Laser-video scanner calibration without the use of a
frame store.Vision, Image and Signal Processing, 145(4):244–248, Aug 1998.

[8] G. Q. Wei and G. Hirzinger. Active self calibration of hand-mounted laser range finders.IEEE Trans.
Robotics and Automation, 14(3):493–497, 1998.

[9] Q. Zhang and R. Pless. Constraints for heterogeneous sensor auto-calibration. InIEEE Workshop on
Realtime 3D Sensors and Their Use, pages 38–43, 2004.

[10] Q. Zhang and R. Pless. Extrinsic calibration of a cameraand laser range finder. InIEEE IROS, pages
2301–2306, 2004.

[11] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(11):1330–1334, 2000.

A Pose from Conic Section

We briefly describe a technique for estimating pose from a conic cross section. LetA =
RK andB = AT SA; then (6) becomes

qT AT SAq = qT Bq = 0. (11)

Note that the constraints are linear in the entries of matrixB. SinceB is symmetric, and
since it is defined only up to scale due to the homogeneity of (11), it has 5 degrees of
freedom. A set of 5 linear constraints (i.e. 5 distinct points q) is therefore required for a
unique solution, with each constraint of the formcT b = 0, where

cT =
(

u2 2uv 2u v2 2v 1
)

(12)

andb is a vector defining the relevant entries of the matrixB as

bT =
(

B11 B12 B13 B22 B23 B33
)

. (13)

We form a constraint matrixC whose rows encode measured points(uk,vk) and take the
form cT b = 0, and solve the homogeneous systemCb = 0 by computing the eigenvector
corresponding to the smallest eigenvalue ofCTC. We then factor the symmetric matrix
B asB = VΛV T , where the columns ofV are the eigenvectors and whereΛ is a diagonal
matrix of the eigenvalues. Using (11), we have

B = VΛV T = AT SA, (14)

so it follows thatA =
√

SΛV T . The resulting matrixA may now be factored to obtainR
andT as in Section 4.2. To refine these initial closed-form parameters, we again optimize
using an iterative nonlinear algorithm; in particular, we estimate the pose parameters such
that the sum of squared distances betweenRKqk and the cone surface is minimized.


